Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models

Frequency in power systems is a real-time information that shows the balance between generation and demand. Good system frequency observation is vital for system security and protection. This paper analyses the system frequency response following disturbances and proposes a data-driven approach for...

Full description

Autores:
Chamorro, Harold R
Orjuela Cañón, Alvaro D.
Ganger, David
Persson, Mattias
Gonzalez Longatt, Francisco
Alvarado Barrios, Lazaro
Sood, Vijay K.
Martinez, Wilmar
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3260
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3260
https://repositorio.escuelaing.edu.co/
Palabra clave:
Frecuencia (Sistemas eléctricos)
Frequency (Electrical Systems)
Análisis de sistemas
System analysis
Redes neurales artificiales
Artificial neural networks
Inteligencia artificial - Procesamiento de datos
Artificial intelligence - Data processing
Generación no síncrona
Respuesta de frecuencia
Sistemas de energía de baja inercia
Control primario de frecuencia
Energía eólica
Estimación nadir
Aprendizaje automático
Aprendizaje profundo
non-synchronous generation
Frequency response
low-inertia power systems
Primary frequency control
Wind power
Nadir estimation
Machine learning
Deep learning
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_28f26af51f02cffb46b415c34353818b
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3260
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
title Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
spellingShingle Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
Frecuencia (Sistemas eléctricos)
Frequency (Electrical Systems)
Análisis de sistemas
System analysis
Redes neurales artificiales
Artificial neural networks
Inteligencia artificial - Procesamiento de datos
Artificial intelligence - Data processing
Generación no síncrona
Respuesta de frecuencia
Sistemas de energía de baja inercia
Control primario de frecuencia
Energía eólica
Estimación nadir
Aprendizaje automático
Aprendizaje profundo
non-synchronous generation
Frequency response
low-inertia power systems
Primary frequency control
Wind power
Nadir estimation
Machine learning
Deep learning
title_short Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
title_full Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
title_fullStr Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
title_full_unstemmed Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
title_sort Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models
dc.creator.fl_str_mv Chamorro, Harold R
Orjuela Cañón, Alvaro D.
Ganger, David
Persson, Mattias
Gonzalez Longatt, Francisco
Alvarado Barrios, Lazaro
Sood, Vijay K.
Martinez, Wilmar
dc.contributor.author.none.fl_str_mv Chamorro, Harold R
Orjuela Cañón, Alvaro D.
Ganger, David
Persson, Mattias
Gonzalez Longatt, Francisco
Alvarado Barrios, Lazaro
Sood, Vijay K.
Martinez, Wilmar
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Frecuencia (Sistemas eléctricos)
Frequency (Electrical Systems)
Análisis de sistemas
System analysis
Redes neurales artificiales
Artificial neural networks
Inteligencia artificial - Procesamiento de datos
Artificial intelligence - Data processing
topic Frecuencia (Sistemas eléctricos)
Frequency (Electrical Systems)
Análisis de sistemas
System analysis
Redes neurales artificiales
Artificial neural networks
Inteligencia artificial - Procesamiento de datos
Artificial intelligence - Data processing
Generación no síncrona
Respuesta de frecuencia
Sistemas de energía de baja inercia
Control primario de frecuencia
Energía eólica
Estimación nadir
Aprendizaje automático
Aprendizaje profundo
non-synchronous generation
Frequency response
low-inertia power systems
Primary frequency control
Wind power
Nadir estimation
Machine learning
Deep learning
dc.subject.proposal.spa.fl_str_mv Generación no síncrona
Respuesta de frecuencia
Sistemas de energía de baja inercia
Control primario de frecuencia
Energía eólica
Estimación nadir
Aprendizaje automático
Aprendizaje profundo
dc.subject.proposal.eng.fl_str_mv non-synchronous generation
Frequency response
low-inertia power systems
Primary frequency control
Wind power
Nadir estimation
Machine learning
Deep learning
description Frequency in power systems is a real-time information that shows the balance between generation and demand. Good system frequency observation is vital for system security and protection. This paper analyses the system frequency response following disturbances and proposes a data-driven approach for predicting it by using machine learning techniques like Nonlinear Autoregressive (NAR) Neural Networks (NN) and Long Short Term Memory (LSTM) networks from simulated and measured Phasor Measurement Unit (PMU) data. The proposed method uses a horizon-window that reconstructs the frequency input time-series data in order to predict the frequency features such as Nadir. Simulated scenarios are based on the gradual inertia reduction by including non-synchronous generation into the Nordic 32 test system, whereas the PMU collected data is taken from different locations in the Nordic Power System (NPS). Several horizon-windows are experimented in order to observe an adequate margin of prediction. Scenarios considering noisy signals are also evaluated in order to provide a robustness index of predictability. Results show the proper performance of the method and the adequate level of prediction based on the Root Mean Squared Error (RMSE) index.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-09-14T13:38:33Z
dc.date.available.none.fl_str_mv 2024-09-14T13:38:33Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3260
dc.identifier.eissn.spa.fl_str_mv 2079-9292
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
url https://repositorio.escuelaing.edu.co/handle/001/3260
https://repositorio.escuelaing.edu.co/
identifier_str_mv 2079-9292
Universidad Escuela Colombiana de Ingeniería
Repositorio Digital
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 10 No. 151, 2021
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationissue.spa.fl_str_mv 151
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 10
dc.relation.ispartofjournal.eng.fl_str_mv Electronics
dc.relation.references.spa.fl_str_mv Frankl, P. Energy System Debate: What Lies Ahead for the Future [In My View]. IEEE Power Energy Mag. 2018, 17, 100–198. [CrossRef]
Miettinen, J.; Holttinen, H.; Ämmälä, J.; Piironen, M. Wind power forecasting at Transmission System Operator’s control room. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5.
Gonzalez-Longatt, F.; Acosta, M.N.; Chamorro, H.R.; Topic, D. Short-term Kinetic Energy Forecast using a Structural Time Series Model: Study Case of Nordic Power System. In Proceedings of the 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 14–16 October 2020; pp. 173–178. [CrossRef]
Kayedpour, N.; Samani, A.E.; De Kooning, J.D.M.; Vandevelde, L.; Crevecoeur, G. A Data-Driven Approach Using Deep Learning Time Series Prediction for Forecasting Power System Variables. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 2–4 November 2019; pp. 43–47
van Waes, J.B.M.; van de Ploeg, P.J.; Fadriansyah, T.; de Graaff, S.A. Development of grid security forecasting processes at TenneT TSO B.V. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6.
Wang, Q.; Li, F.; Tang, Y.; Xu, Y. Integrating Model-Driven and Data-Driven Methods for Power System Frequency Stability Assessment and Control. IEEE Trans. Power Syst. 2019, 34, 4557–4568. [CrossRef]
Raak, F.; Susuki, Y.; Hikihara, T.; Chamorro, H.R.; Ghandhari, M. Partitioning power grids via nonlinear Koopman Mode Analysis. In Proceedings of the ISGT 2014, Washington, DC, USA, 19–22 February 2014; pp. 1–5.
Sharma, P.; Huang, B.; Ajjarapu, V.; Vaidya, U. Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.
Kusiak, A.; Zhang, Z. Short-Horizon Prediction of Wind Power: A Data-Driven Approach. IEEE Trans. Energy Convers. 2010, 25, 1112–1122. [CrossRef]
Yi, J.; Lin, W.; Hu, J.; Dai, J.; Zhou, X.; Tang, Y. An Integrated Model-Driven and Data-Driven Method for On-Line Prediction of Transient Stability of Power System With Wind Power Generation. IEEE Access 2020, 8, 83472–83482. [CrossRef]
Oneto, L.; Laureri, F.; Robba, M.; Delfino, F.; Anguita, D. Data-Driven Photovoltaic Power Production Nowcasting and Forecasting for Polygeneration Microgrids. IEEE Syst. J. 2018, 12, 2842–2853. [CrossRef]
Ma, J.; Tang, J.; Yan, Z.; Jiang, F.; Zeng, H.; Fang, C. Data-driven Power System Collapse Predicting Using Critical Slowing Down Indicators. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 1879–1884
Xu, Y.; Qu, Z.; Harvey, R.; Namerikawa, T. Data-Driven Wide-Area Control Design of Power System Using the Passivity Shortage Framework. IEEE Trans. Power Syst. 2020, 1. Avaliable online: https://ieeexplore.ieee.org/document/9141445 (accessed on 11 January 2021).
Yan, Z.; Xu, Y. Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep Reinforcement Learning Method With Continuous Action Search. IEEE Trans. Power Syst. 2019, 34, 1653–1656. [CrossRef]
Hou, Q.; Du, E.; Zhang, N.; Kang, C. Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven Approach. IEEE Trans. Power Syst. 2020, 35, 731–741. [CrossRef]
Aggarwal, R.; Yonghua Song. Artificial neural networks in power systems. III. Examples of applications in power systems. Power Eng. J. 1998, 12, 279–287. [CrossRef]
Sun, Y.; Li, Z.; Yu, X.; Li, B.; Yang, M. Research on Ultra-Short-Term Wind Power Prediction Considering Source Relevance. IEEE Access 2020, 8, 147703–147710. [CrossRef]
Raza, M.Q.; Mithulananthan, N.; Li, J.; Lee, K.Y.; Gooi, H.B. An Ensemble Framework for Day-Ahead Forecast of PV Output Power in Smart Grids. IEEE Trans. Ind. Inform. 2019, 15, 4624–4634. [CrossRef]
Baltas, G.N.; Chamorro, H.R.; Gonzalez-Longatt, F.; Rodriguez, P. Coherency Groups Analysis based on Self Organizing Maps. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.
Schmitt, A.; Lee, B. Steady-state inertia estimation using a neural network approach with modal information. In Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5
Zhang, L.; Wang, G.; Giannakis, G.B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Trans. Signal Process. 2019, 67, 4069–4077. [CrossRef]
Rivero, C.R.; Pucheta, J.; Otaño, P.; Orjuela-Cañon, A.D.; Patiño, D.; Franco, L.; Gorrostieta, E.; Puglisi, J.L.; Juarez, G. Time Series Forecasting using Recurrent Neural Networks modified by Bayesian Inference in the Learning Process. In Proceedings of the 2019 IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), Barranquilla, Colombia, 5–7 June 2019; pp. 1–6.
Qi, M.; Zhang, G.P. Trend Time–Series Modeling and Forecasting With Neural Networks. IEEE Trans. Neural Netw. 2008, 19, 808–816. [PubMed]
Yu, Z.; Niu, Z.; Tang, W.; Wu, Q. Deep Learning for Daily Peak Load Forecasting—A Novel Gated Recurrent Neural Network Combining Dynamic Time Warping. IEEE Access 2019, 7, 17184–17194. [CrossRef]
Vaitheeswaran, S.S.; Ventrapragada, V.R. Wind Power Pattern Prediction in time series measuremnt data for wind energy prediction modelling using LSTM-GA networks. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–5.
Orjuela-Cañón, A.D.; Hernández, J.; Rivero, C.R. Very short term forecasting in global solar irradiance using linear and nonlinear models. In Proceedings of the 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 31 May–2 June 2017; pp. 1–5.
Zhuang, L.; Liu, H.; Zhu, J.; Wang, S.; Song, Y. Comparison of forecasting methods for power system short-term load forecasting based on neural networks. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 114–119
Nespoli, A.; Ogliari, E.; Leva, S.; Massi Pavan, A.; Mellit, A.; Lughi, V.; Dolara, A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies 2019, 12, 1621. [CrossRef]
Mujcinagic, A.; Kusljugic, M.; Osmic, J. Frequency Response Metrics of an Interconnected Power System. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; pp. 1–5.
Quiroz, J.; Chavez, H. Towards On-line PMU-based Model Calibration for Look-ahead Frequency Analysis. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–5.
Schäfer, B.; Beck, C.; Aihara, K.; Witthaut, D.; Timme, M. Non-Gaussian Power Grid Frequency Fluctuations Characterized by Lévy-Stable Laws and Superstatistics. Nat. Energy 2018, 3, 119–126. [CrossRef]
Wang, W.; Yao, W.; Chen, C.; Deng, X.; Liu, Y. Fast and Accurate Frequency Response Estimation for Large Power System Disturbances Using Second Derivative of Frequency Data. IEEE Trans. Power Syst. 2020, 35, 2483–2486. [CrossRef]
Bolzoni, A.; Todd, R.; Forsyth, A.; Perini, R. Real-time Auto-regressive Modelling of Electric Power Network Frequency. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 515–520.
Lin, J.; Zhang, Y.; Liu, J.; Wang, X.; Tian, F.; Shi, D. A Physical-Data Combined Power Grid Dynamic Frequency Prediction Methodology Based on Adaptive Neuro-Fuzzy Inference System. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 4390–4397.
Liu, L.; Li, W.; Ba, Y.; Shen, J.; Jin, C.; Wen, K. An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance. IEEE Trans. Power Syst. 2020, 35, 2527–2536. [CrossRef]
Djukanovic, M.B.; Popovic, D.P.; Sobajic, D.J.; Pao, Y.. Prediction of power system frequency response after generator outages using neural nets. IEE Proc. C Gener. Transm. Distrib. 1993, 140, 389–398. [CrossRef]
Mitchell, M.A.; Lopes, J.A.P.; Fidalgo, J.N.; McCalley, J.D. Using a neural network to predict the dynamic frequency response of a power system to an under-frequency load shedding scenario. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), Seattle, WA, USA, 16–20 July 2000; Volume 1, pp. 346–351.
Gupta, M.; Srivastava, S.; Gupta, J.R.P. Power System Frequency Estimation Using Neural Network and Genetic Algorithm. In Proceedings of the 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, New Delhi, India, 12–15 October 2008; pp. 1–5.
Chassin, D.P.; Huang, Z.; Donnelly, M.K.; Hassler, C.; Ramirez, E.; Ray, C. Estimation of WECC system inertia using observed frequency transients. IEEE Trans. Power Syst. 2005, 20, 1190–1192. [CrossRef]
Porretta, B.; Porretta, S. Calculation of power systems inertia and frequency response. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [CrossRef]
Nilsson, M.; Söder, L.; Zhao Yuan. Estimation of Power system frequency response based on measured simulated frequencies. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5.
Tripathi, S.; De, S. Dynamic Prediction of Powerline Frequency for Wide Area Monitoring and Control. IEEE Trans. Ind. Inform. 2018, 14, 2837–2846. [CrossRef]
Ashton, P.M.; Taylor, G.A.; Carter, A.M.; Bradley, M.E.; Hung, W. Application of phasor measurement units to estimate power system inertial frequency response. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.
Xiao, Y.; Zhao, R.; Wen, Y. Deep Learning for Predicting the Operation of Under-Frequency Load Shedding Systems. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 4142–4147.
Zhao, J.; Mili, L.; Milano, F. Robust Frequency Divider for Power System Online Monitoring and Control. IEEE Trans. Power Syst. 2018, 33, 4414–4423. [CrossRef]
Wu, X.; Lan, Q.; Li, Z.; Zhuang, K.; Miao, Y.; Li, W. Frequency characteristics of East China Power Grid after bipolar locking of ultra-high voltage direct current (UHVDC). J. Eng. 2017, 2017, 1237–1241. [CrossRef]
Ganger, D.; Zhang, J.; Vittal, V. Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Trans. Power Syst. 2018, 33, 1004–1012. [CrossRef]
Polajžer, B.; Dolinar, D.; Ritonja, J. Correlation-based estimation of area’s frequency response characteristic during large disturbances. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–5. [CrossRef]
Chamorro, H.R.; Orjuela-Cañón, A.D.; Ganger, D.; Persson, M.; Gonzalez-Longatt, F.; Sood, V.K.; Martinez, W. Nadir Frequency Estimation in Low-Inertia Power Systems. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 918–922.
Farrokhseresht, N.; Chávez, H.; Hesamzadeh, M.R. Economic impact of wind integration on Primary Frequency Response. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The The Netherlands, 29 June–2 July 2015; pp. 1–6.
Chamorro, H.R.; Ordonez, C.A.; Peng, J.C.; Ghandhari, M. Non-synchronous generation impact on power systems coherency. IET Gener. Transm. Distrib. 2016, 10, 2443–2453. [CrossRef]
Persson, M.; Chen, P. Frequency evaluation of the Nordic power system using PMU measurements. IET Gener. Transm. Distrib. 2017, 11, 2879–2887. [CrossRef]
IEEE Standard Association. IEEE Standard for Synchrophasor Measurements for Power Systems. 2011. Available online: https://ieeexplore.ieee.org/document/6111219 (accessed on 11 January 2021).
Haykin, S. Neural Networks and Learning Machines; Number v. 10 in Neural networks and Learning Machines; Prentice Hall: Upper Saddle River, NJ, USA, 2009.
Triebe, O.; Laptev, N.; Rajagopal, R. AR-Net: A simple Auto-Regressive Neural Network for time-series. arXiv 2019, arXiv:1911.12436
Zhao, Y.; Ye, L.; Pinson, P.; Tang, Y.; Lu, P. Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting. IEEE Trans. Power Syst. 2018, 33, 5029–5040. [CrossRef]
Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]
Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep Learning with Long Short-Term Memory for Time Series Prediction. IEEE Commun. Mag. 2019, 57, 114–119. [CrossRef]
Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]
Li, J.; Chen, H.; Zhou, T.; Li, X. Tailings Pond Risk Prediction Using Long Short-Term Memory Networks. IEEE Access 2019, 7, 182527–182537. [CrossRef]
Zhang, Y.; Xin, D. Dynamic Optimization Long Short-Term Memory Model Based on Data Preprocessing for Short-Term Traffic Flow Prediction. IEEE Access 2020, 8, 91510–91520. [CrossRef]
Zaytar, M.A.; El Amrani, C. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. Int. J. Comput. Appl. 2016, 143, 7–11.
Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 2018, 120, 70–83. [CrossRef]
Farrokhseresht, N.; Oréstica, H.C.; Hesamzadeh, M.R. Determination of acceptable inertia limit for ensuring adequacy under high levels of wind integration. In Proceedings of the 11th International Conference on the European Energy Market (EEM14), Krakow, Poland, 28–30 May 2014; pp. 1–5.
Sánchez, F.; Gonzalez-Longatt, F.; Rueda, J.L. Security Assessment of System Frequency Response. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.
Zhou, M.; Yan, J.; Feng, D. Digital twin framework and its application to power grid online analysis. CSEE J. Power Energy Syst. 2019, 5, 391–398
Xie, X.; Parlikad, A.K.; Puri, R.S. A Neural Ordinary Differential Equations Based Approach for Demand Forecasting within Power Grid Digital Twins. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019; pp. 1–6.
Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [CrossRef]
Cheng, L.; Yu, T. A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 2019, 43, 1928–1973. [CrossRef]
Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401.
Temür, A.S.; Akgün, M.; Temür, G. Predicting housing sales in Turkey using ARIMA, LSTM and hybrid models. J. Bus. Econ. Manag. 2019, 20, 920–938. [CrossRef]
Mpawenimana, I.; Pegatoquet, A.; Roy, V.; Rodriguez, L.; Belleudy, C. A comparative study of LSTM and ARIMA for energy load prediction with enhanced data preprocessing. In Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia, 9–11 March 2020; pp. 1–6.
Babich, L.; Svalov, D.; Smirnov, A.; Babich, M. Industrial power consumption forecasting methods comparison. In Proceedings of the 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 25–26 April 2019; pp. 307–309.
Dougan, E. Analysis and Comparison of LSTM Short-Term Traffic Prediction Performance. Avaliable online: https://trid.trb.org/ \view/1736396 (accessed on 11 January 2021).
Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2020. Avaliable online: https://www.sciencedirect.com/science/article/abs/pii/S09473\58020301667 (accessed on 11 January 2021). [CrossRef]
Zhu, Z.; Pan, Y.; Zhou, Q.; Lu, C. Event-Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Systems with Unmeasured States and Unknown Backlash-Like Hysteresis. IEEE Trans. Fuzzy Syst. 2020, 1. Avaliable online: https://ieeexplore.ieee.org/ abstract/document/8998163 (accessed on 11 January 2021). [CrossRef]
Sayghe, A.; Hu, Y.; Zografopoulos, I.; Liu, X.; Dutta, R.G.; Jin, Y.; Konstantinou, C. Survey of machine learning methods for detecting false data injection attacks in power systems. IET Smart Grid 2020, 3, 581–595. [CrossRef]
Wang, L.; Yang, D.; Cai, G.; Ma, J.; Tian, J.; Wang, B. Synchronised ambient data-driven electromechanical oscillation modes extraction for interconnected power systems using the output-only observer/Kalman filter identification method. IET Gener. Transm. Distrib. 2020, 14, 4000–4009. [CrossRef]
Chamorro, H.R.; Ordonez, C.A.; Peng, J.C.; Gonzalez-Longatt, F.; Sood, V.K.; Sharaf, A.M. Impact of non-synchronous generation on transmission oscillations paths. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [CrossRef]
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI (Multidisciplinary Digital Publishing Institute)
dc.publisher.place.spa.fl_str_mv Basel (Suiza)
dc.source.spa.fl_str_mv https://www.mdpi.com/2079-9292/10/2/151
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3260/4/Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3260/3/Portada%20Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.JPG
https://repositorio.escuelaing.edu.co/bitstream/001/3260/5/Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3260/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3260/1/Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.pdf
bitstream.checksum.fl_str_mv f34cccc6e4c90f1a2639f0b28acac8c4
2d3169f38e07722c5dbb139b4cec282e
12640921089fba07aaf82fef7d938cd2
5a7ca94c2e5326ee169f979d71d0f06e
7ece9845aabbaf0a82763722131e6cd5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1811575271506051072
spelling Chamorro, Harold R063bd147866ae1b7d932787a281f7fb3Orjuela Cañón, Alvaro D.a1cbcc1bf84dc076ff7ac679a8e4a998Ganger, Davida5f786f95adc9564f5b7f68469bdeb61Persson, Mattias6d533ed15bda701b34f9c869e56beddbGonzalez Longatt, Francisco009bacd027df643dfd38da8f6eef5da1Alvarado Barrios, Lazaro512f11b15493d90cd38ccbfa2bedc2daSood, Vijay K.be7ffe4ade6c8866a466709543e7b526Martinez, Wilmarfea9697d592081dc097b47e8c8555a66GiBiome2024-09-14T13:38:33Z2024-09-14T13:38:33Z2021https://repositorio.escuelaing.edu.co/handle/001/32602079-9292Universidad Escuela Colombiana de IngenieríaRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Frequency in power systems is a real-time information that shows the balance between generation and demand. Good system frequency observation is vital for system security and protection. This paper analyses the system frequency response following disturbances and proposes a data-driven approach for predicting it by using machine learning techniques like Nonlinear Autoregressive (NAR) Neural Networks (NN) and Long Short Term Memory (LSTM) networks from simulated and measured Phasor Measurement Unit (PMU) data. The proposed method uses a horizon-window that reconstructs the frequency input time-series data in order to predict the frequency features such as Nadir. Simulated scenarios are based on the gradual inertia reduction by including non-synchronous generation into the Nordic 32 test system, whereas the PMU collected data is taken from different locations in the Nordic Power System (NPS). Several horizon-windows are experimented in order to observe an adequate margin of prediction. Scenarios considering noisy signals are also evaluated in order to provide a robustness index of predictability. Results show the proper performance of the method and the adequate level of prediction based on the Root Mean Squared Error (RMSE) index.La frecuencia en los sistemas eléctricos es una información en tiempo real que muestra el equilibrio entre generación y demanda. Una buena observación de la frecuencia del sistema es vital para la seguridad y protección del sistema. Este artículo analiza la respuesta de frecuencia del sistema después de perturbaciones y propone una enfoque basado en datos para predecirlo mediante el uso de técnicas de aprendizaje automático como redes neuronales (NN) autorregresivas no lineales (NAR) y redes de memoria a corto plazo (LSTM) de datos simulados y medidos de la Unidad de Medición de Fasores (PMU). El método propuesto utiliza un Ventana de horizonte que reconstruye los datos de series de tiempo de entrada de frecuencia para predecir características de frecuencia como el Nadir. Los escenarios simulados se basan en la reducción gradual de la inercia por incluida la generación no síncrona en el sistema de prueba Nordic 32, mientras que la PMU recopiló los datos se toman de diferentes ubicaciones en el Nordic Power System (NPS). Varias ventanas de horizonte se experimentan para observar un margen de predicción adecuado. Escenarios considerando ruidosos Las señales también se evalúan para proporcionar un índice de robustez y previsibilidad. Los resultados muestran la desempeño adecuado del método y el nivel adecuado de predicción basado en la Media Raíz Índice de error cuadrático (RMSE).21 páginasapplication/pdfengMDPI (Multidisciplinary Digital Publishing Institute)Basel (Suiza)https://www.mdpi.com/2079-9292/10/2/151Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural ModelsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 10 No. 151, 202121151110ElectronicsFrankl, P. Energy System Debate: What Lies Ahead for the Future [In My View]. IEEE Power Energy Mag. 2018, 17, 100–198. [CrossRef]Miettinen, J.; Holttinen, H.; Ämmälä, J.; Piironen, M. Wind power forecasting at Transmission System Operator’s control room. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5.Gonzalez-Longatt, F.; Acosta, M.N.; Chamorro, H.R.; Topic, D. Short-term Kinetic Energy Forecast using a Structural Time Series Model: Study Case of Nordic Power System. In Proceedings of the 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 14–16 October 2020; pp. 173–178. [CrossRef]Kayedpour, N.; Samani, A.E.; De Kooning, J.D.M.; Vandevelde, L.; Crevecoeur, G. A Data-Driven Approach Using Deep Learning Time Series Prediction for Forecasting Power System Variables. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 2–4 November 2019; pp. 43–47van Waes, J.B.M.; van de Ploeg, P.J.; Fadriansyah, T.; de Graaff, S.A. Development of grid security forecasting processes at TenneT TSO B.V. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6.Wang, Q.; Li, F.; Tang, Y.; Xu, Y. Integrating Model-Driven and Data-Driven Methods for Power System Frequency Stability Assessment and Control. IEEE Trans. Power Syst. 2019, 34, 4557–4568. [CrossRef]Raak, F.; Susuki, Y.; Hikihara, T.; Chamorro, H.R.; Ghandhari, M. Partitioning power grids via nonlinear Koopman Mode Analysis. In Proceedings of the ISGT 2014, Washington, DC, USA, 19–22 February 2014; pp. 1–5.Sharma, P.; Huang, B.; Ajjarapu, V.; Vaidya, U. Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.Kusiak, A.; Zhang, Z. Short-Horizon Prediction of Wind Power: A Data-Driven Approach. IEEE Trans. Energy Convers. 2010, 25, 1112–1122. [CrossRef]Yi, J.; Lin, W.; Hu, J.; Dai, J.; Zhou, X.; Tang, Y. An Integrated Model-Driven and Data-Driven Method for On-Line Prediction of Transient Stability of Power System With Wind Power Generation. IEEE Access 2020, 8, 83472–83482. [CrossRef]Oneto, L.; Laureri, F.; Robba, M.; Delfino, F.; Anguita, D. Data-Driven Photovoltaic Power Production Nowcasting and Forecasting for Polygeneration Microgrids. IEEE Syst. J. 2018, 12, 2842–2853. [CrossRef]Ma, J.; Tang, J.; Yan, Z.; Jiang, F.; Zeng, H.; Fang, C. Data-driven Power System Collapse Predicting Using Critical Slowing Down Indicators. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 1879–1884Xu, Y.; Qu, Z.; Harvey, R.; Namerikawa, T. Data-Driven Wide-Area Control Design of Power System Using the Passivity Shortage Framework. IEEE Trans. Power Syst. 2020, 1. Avaliable online: https://ieeexplore.ieee.org/document/9141445 (accessed on 11 January 2021).Yan, Z.; Xu, Y. Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep Reinforcement Learning Method With Continuous Action Search. IEEE Trans. Power Syst. 2019, 34, 1653–1656. [CrossRef]Hou, Q.; Du, E.; Zhang, N.; Kang, C. Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven Approach. IEEE Trans. Power Syst. 2020, 35, 731–741. [CrossRef]Aggarwal, R.; Yonghua Song. Artificial neural networks in power systems. III. Examples of applications in power systems. Power Eng. J. 1998, 12, 279–287. [CrossRef]Sun, Y.; Li, Z.; Yu, X.; Li, B.; Yang, M. Research on Ultra-Short-Term Wind Power Prediction Considering Source Relevance. IEEE Access 2020, 8, 147703–147710. [CrossRef]Raza, M.Q.; Mithulananthan, N.; Li, J.; Lee, K.Y.; Gooi, H.B. An Ensemble Framework for Day-Ahead Forecast of PV Output Power in Smart Grids. IEEE Trans. Ind. Inform. 2019, 15, 4624–4634. [CrossRef]Baltas, G.N.; Chamorro, H.R.; Gonzalez-Longatt, F.; Rodriguez, P. Coherency Groups Analysis based on Self Organizing Maps. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.Schmitt, A.; Lee, B. Steady-state inertia estimation using a neural network approach with modal information. In Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5Zhang, L.; Wang, G.; Giannakis, G.B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Trans. Signal Process. 2019, 67, 4069–4077. [CrossRef]Rivero, C.R.; Pucheta, J.; Otaño, P.; Orjuela-Cañon, A.D.; Patiño, D.; Franco, L.; Gorrostieta, E.; Puglisi, J.L.; Juarez, G. Time Series Forecasting using Recurrent Neural Networks modified by Bayesian Inference in the Learning Process. In Proceedings of the 2019 IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), Barranquilla, Colombia, 5–7 June 2019; pp. 1–6.Qi, M.; Zhang, G.P. Trend Time–Series Modeling and Forecasting With Neural Networks. IEEE Trans. Neural Netw. 2008, 19, 808–816. [PubMed]Yu, Z.; Niu, Z.; Tang, W.; Wu, Q. Deep Learning for Daily Peak Load Forecasting—A Novel Gated Recurrent Neural Network Combining Dynamic Time Warping. IEEE Access 2019, 7, 17184–17194. [CrossRef]Vaitheeswaran, S.S.; Ventrapragada, V.R. Wind Power Pattern Prediction in time series measuremnt data for wind energy prediction modelling using LSTM-GA networks. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–5.Orjuela-Cañón, A.D.; Hernández, J.; Rivero, C.R. Very short term forecasting in global solar irradiance using linear and nonlinear models. In Proceedings of the 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 31 May–2 June 2017; pp. 1–5.Zhuang, L.; Liu, H.; Zhu, J.; Wang, S.; Song, Y. Comparison of forecasting methods for power system short-term load forecasting based on neural networks. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 114–119Nespoli, A.; Ogliari, E.; Leva, S.; Massi Pavan, A.; Mellit, A.; Lughi, V.; Dolara, A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies 2019, 12, 1621. [CrossRef]Mujcinagic, A.; Kusljugic, M.; Osmic, J. Frequency Response Metrics of an Interconnected Power System. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; pp. 1–5.Quiroz, J.; Chavez, H. Towards On-line PMU-based Model Calibration for Look-ahead Frequency Analysis. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–5.Schäfer, B.; Beck, C.; Aihara, K.; Witthaut, D.; Timme, M. Non-Gaussian Power Grid Frequency Fluctuations Characterized by Lévy-Stable Laws and Superstatistics. Nat. Energy 2018, 3, 119–126. [CrossRef]Wang, W.; Yao, W.; Chen, C.; Deng, X.; Liu, Y. Fast and Accurate Frequency Response Estimation for Large Power System Disturbances Using Second Derivative of Frequency Data. IEEE Trans. Power Syst. 2020, 35, 2483–2486. [CrossRef]Bolzoni, A.; Todd, R.; Forsyth, A.; Perini, R. Real-time Auto-regressive Modelling of Electric Power Network Frequency. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 515–520.Lin, J.; Zhang, Y.; Liu, J.; Wang, X.; Tian, F.; Shi, D. A Physical-Data Combined Power Grid Dynamic Frequency Prediction Methodology Based on Adaptive Neuro-Fuzzy Inference System. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 4390–4397.Liu, L.; Li, W.; Ba, Y.; Shen, J.; Jin, C.; Wen, K. An Analytical Model for Frequency Nadir Prediction Following a Major Disturbance. IEEE Trans. Power Syst. 2020, 35, 2527–2536. [CrossRef]Djukanovic, M.B.; Popovic, D.P.; Sobajic, D.J.; Pao, Y.. Prediction of power system frequency response after generator outages using neural nets. IEE Proc. C Gener. Transm. Distrib. 1993, 140, 389–398. [CrossRef]Mitchell, M.A.; Lopes, J.A.P.; Fidalgo, J.N.; McCalley, J.D. Using a neural network to predict the dynamic frequency response of a power system to an under-frequency load shedding scenario. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), Seattle, WA, USA, 16–20 July 2000; Volume 1, pp. 346–351.Gupta, M.; Srivastava, S.; Gupta, J.R.P. Power System Frequency Estimation Using Neural Network and Genetic Algorithm. In Proceedings of the 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, New Delhi, India, 12–15 October 2008; pp. 1–5.Chassin, D.P.; Huang, Z.; Donnelly, M.K.; Hassler, C.; Ramirez, E.; Ray, C. Estimation of WECC system inertia using observed frequency transients. IEEE Trans. Power Syst. 2005, 20, 1190–1192. [CrossRef]Porretta, B.; Porretta, S. Calculation of power systems inertia and frequency response. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [CrossRef]Nilsson, M.; Söder, L.; Zhao Yuan. Estimation of Power system frequency response based on measured simulated frequencies. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5.Tripathi, S.; De, S. Dynamic Prediction of Powerline Frequency for Wide Area Monitoring and Control. IEEE Trans. Ind. Inform. 2018, 14, 2837–2846. [CrossRef]Ashton, P.M.; Taylor, G.A.; Carter, A.M.; Bradley, M.E.; Hung, W. Application of phasor measurement units to estimate power system inertial frequency response. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.Xiao, Y.; Zhao, R.; Wen, Y. Deep Learning for Predicting the Operation of Under-Frequency Load Shedding Systems. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 4142–4147.Zhao, J.; Mili, L.; Milano, F. Robust Frequency Divider for Power System Online Monitoring and Control. IEEE Trans. Power Syst. 2018, 33, 4414–4423. [CrossRef]Wu, X.; Lan, Q.; Li, Z.; Zhuang, K.; Miao, Y.; Li, W. Frequency characteristics of East China Power Grid after bipolar locking of ultra-high voltage direct current (UHVDC). J. Eng. 2017, 2017, 1237–1241. [CrossRef]Ganger, D.; Zhang, J.; Vittal, V. Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Trans. Power Syst. 2018, 33, 1004–1012. [CrossRef]Polajžer, B.; Dolinar, D.; Ritonja, J. Correlation-based estimation of area’s frequency response characteristic during large disturbances. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–5. [CrossRef]Chamorro, H.R.; Orjuela-Cañón, A.D.; Ganger, D.; Persson, M.; Gonzalez-Longatt, F.; Sood, V.K.; Martinez, W. Nadir Frequency Estimation in Low-Inertia Power Systems. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 918–922.Farrokhseresht, N.; Chávez, H.; Hesamzadeh, M.R. Economic impact of wind integration on Primary Frequency Response. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The The Netherlands, 29 June–2 July 2015; pp. 1–6.Chamorro, H.R.; Ordonez, C.A.; Peng, J.C.; Ghandhari, M. Non-synchronous generation impact on power systems coherency. IET Gener. Transm. Distrib. 2016, 10, 2443–2453. [CrossRef]Persson, M.; Chen, P. Frequency evaluation of the Nordic power system using PMU measurements. IET Gener. Transm. Distrib. 2017, 11, 2879–2887. [CrossRef]IEEE Standard Association. IEEE Standard for Synchrophasor Measurements for Power Systems. 2011. Available online: https://ieeexplore.ieee.org/document/6111219 (accessed on 11 January 2021).Haykin, S. Neural Networks and Learning Machines; Number v. 10 in Neural networks and Learning Machines; Prentice Hall: Upper Saddle River, NJ, USA, 2009.Triebe, O.; Laptev, N.; Rajagopal, R. AR-Net: A simple Auto-Regressive Neural Network for time-series. arXiv 2019, arXiv:1911.12436Zhao, Y.; Ye, L.; Pinson, P.; Tang, Y.; Lu, P. Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting. IEEE Trans. Power Syst. 2018, 33, 5029–5040. [CrossRef]Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep Learning with Long Short-Term Memory for Time Series Prediction. IEEE Commun. Mag. 2019, 57, 114–119. [CrossRef]Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]Li, J.; Chen, H.; Zhou, T.; Li, X. Tailings Pond Risk Prediction Using Long Short-Term Memory Networks. IEEE Access 2019, 7, 182527–182537. [CrossRef]Zhang, Y.; Xin, D. Dynamic Optimization Long Short-Term Memory Model Based on Data Preprocessing for Short-Term Traffic Flow Prediction. IEEE Access 2020, 8, 91510–91520. [CrossRef]Zaytar, M.A.; El Amrani, C. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. Int. J. Comput. Appl. 2016, 143, 7–11.Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 2018, 120, 70–83. [CrossRef]Farrokhseresht, N.; Oréstica, H.C.; Hesamzadeh, M.R. Determination of acceptable inertia limit for ensuring adequacy under high levels of wind integration. In Proceedings of the 11th International Conference on the European Energy Market (EEM14), Krakow, Poland, 28–30 May 2014; pp. 1–5.Sánchez, F.; Gonzalez-Longatt, F.; Rueda, J.L. Security Assessment of System Frequency Response. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.Zhou, M.; Yan, J.; Feng, D. Digital twin framework and its application to power grid online analysis. CSEE J. Power Energy Syst. 2019, 5, 391–398Xie, X.; Parlikad, A.K.; Puri, R.S. A Neural Ordinary Differential Equations Based Approach for Demand Forecasting within Power Grid Digital Twins. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019; pp. 1–6.Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [CrossRef]Cheng, L.; Yu, T. A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 2019, 43, 1928–1973. [CrossRef]Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401.Temür, A.S.; Akgün, M.; Temür, G. Predicting housing sales in Turkey using ARIMA, LSTM and hybrid models. J. Bus. Econ. Manag. 2019, 20, 920–938. [CrossRef]Mpawenimana, I.; Pegatoquet, A.; Roy, V.; Rodriguez, L.; Belleudy, C. A comparative study of LSTM and ARIMA for energy load prediction with enhanced data preprocessing. In Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia, 9–11 March 2020; pp. 1–6.Babich, L.; Svalov, D.; Smirnov, A.; Babich, M. Industrial power consumption forecasting methods comparison. In Proceedings of the 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 25–26 April 2019; pp. 307–309.Dougan, E. Analysis and Comparison of LSTM Short-Term Traffic Prediction Performance. Avaliable online: https://trid.trb.org/ \view/1736396 (accessed on 11 January 2021).Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2020. Avaliable online: https://www.sciencedirect.com/science/article/abs/pii/S09473\58020301667 (accessed on 11 January 2021). [CrossRef]Zhu, Z.; Pan, Y.; Zhou, Q.; Lu, C. Event-Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Systems with Unmeasured States and Unknown Backlash-Like Hysteresis. IEEE Trans. Fuzzy Syst. 2020, 1. Avaliable online: https://ieeexplore.ieee.org/ abstract/document/8998163 (accessed on 11 January 2021). [CrossRef]Sayghe, A.; Hu, Y.; Zografopoulos, I.; Liu, X.; Dutta, R.G.; Jin, Y.; Konstantinou, C. Survey of machine learning methods for detecting false data injection attacks in power systems. IET Smart Grid 2020, 3, 581–595. [CrossRef]Wang, L.; Yang, D.; Cai, G.; Ma, J.; Tian, J.; Wang, B. Synchronised ambient data-driven electromechanical oscillation modes extraction for interconnected power systems using the output-only observer/Kalman filter identification method. IET Gener. Transm. Distrib. 2020, 14, 4000–4009. [CrossRef]Chamorro, H.R.; Ordonez, C.A.; Peng, J.C.; Gonzalez-Longatt, F.; Sood, V.K.; Sharaf, A.M. Impact of non-synchronous generation on transmission oscillations paths. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [CrossRef]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbFrecuencia (Sistemas eléctricos)Frequency (Electrical Systems)Análisis de sistemasSystem analysisRedes neurales artificialesArtificial neural networksInteligencia artificial - Procesamiento de datosArtificial intelligence - Data processingGeneración no síncronaRespuesta de frecuenciaSistemas de energía de baja inerciaControl primario de frecuenciaEnergía eólicaEstimación nadirAprendizaje automáticoAprendizaje profundonon-synchronous generationFrequency responselow-inertia power systemsPrimary frequency controlWind powerNadir estimationMachine learningDeep learningTEXTData-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.pdf.txtData-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.pdf.txtExtracted texttext/plain60127https://repositorio.escuelaing.edu.co/bitstream/001/3260/4/Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.pdf.txtf34cccc6e4c90f1a2639f0b28acac8c4MD54metadata only accessTHUMBNAILPortada Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.JPGPortada Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.JPGimage/jpeg102081https://repositorio.escuelaing.edu.co/bitstream/001/3260/3/Portada%20Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.JPG2d3169f38e07722c5dbb139b4cec282eMD53open accessData-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.pdf.jpgData-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.pdf.jpgGenerated Thumbnailimage/jpeg15901https://repositorio.escuelaing.edu.co/bitstream/001/3260/5/Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.pdf.jpg12640921089fba07aaf82fef7d938cd2MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3260/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALData-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.pdfData-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models.pdfapplication/pdf2152945https://repositorio.escuelaing.edu.co/bitstream/001/3260/1/Data-Driven%20Trajectory%20Prediction%20of%20Grid%20Power%20Frequency%20Based%20on%20Neural%20Models.pdf7ece9845aabbaf0a82763722131e6cd5MD51metadata only access001/3260oai:repositorio.escuelaing.edu.co:001/32602024-09-15 03:02:38.502metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK