Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial
Este proyecto de investigación trata de solventar una problemática que afrontan hoy en día las empresas de call center, la cual es la rotación de sus empelados, dejando brechas operativas y económicas en la compañía. Desde la división de innovación de Millenium BPO, Datos No Estructuras. Se propone...
- Autores:
-
Pérez Ospino, Camilo Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/2151
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/2151
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23266
- Palabra clave:
- Ingeniería Biomédica
Inteligencia artificial
Ingeniería Biomédica
Inteligencia artificial
Biomedical engineering
Artificial intelligence
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
ESCUELAIG2_11f47ecbf7b055fabc11ff25078dc9af |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/2151 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
dc.title.alternative.eng.fl_str_mv |
Operational behavior analysis in call center agent using artificial intelligence |
title |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
spellingShingle |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial Ingeniería Biomédica Inteligencia artificial Ingeniería Biomédica Inteligencia artificial Biomedical engineering Artificial intelligence |
title_short |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
title_full |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
title_fullStr |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
title_full_unstemmed |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
title_sort |
Análisis de comportamiento operacional en agente de call center empleando inteligencia artificial |
dc.creator.fl_str_mv |
Pérez Ospino, Camilo Andrés |
dc.contributor.advisor.none.fl_str_mv |
Orjuela Canon, Alvaro David |
dc.contributor.author.none.fl_str_mv |
Pérez Ospino, Camilo Andrés |
dc.contributor.corporatename.spa.fl_str_mv |
Millenium BPO |
dc.contributor.researchgroup.spa.fl_str_mv |
Semillero de Inteligencia artificial en salud (SEMILL-IAS) |
dc.subject.armarc.none.fl_str_mv |
Ingeniería Biomédica Inteligencia artificial |
topic |
Ingeniería Biomédica Inteligencia artificial Ingeniería Biomédica Inteligencia artificial Biomedical engineering Artificial intelligence |
dc.subject.proposal.spa.fl_str_mv |
Ingeniería Biomédica Inteligencia artificial |
dc.subject.proposal.eng.fl_str_mv |
Biomedical engineering Artificial intelligence |
description |
Este proyecto de investigación trata de solventar una problemática que afrontan hoy en día las empresas de call center, la cual es la rotación de sus empelados, dejando brechas operativas y económicas en la compañía. Desde la división de innovación de Millenium BPO, Datos No Estructuras. Se propone actuar de manera activa ante esta situación por lo que se propone el uso de la analítica de datos y la correlación de variables en sus asesores que demuestren declive en su comportamiento operacional y de estos mediante el uso de modelos de inteligencia artificial predecir la renuncia psicológica, término acuñado para describir a los empleados que antes de su renuncia presentan patrones de comportamiento que van en contra vía de lo esperado por la empresa, como lo puede ser una baja productividad, no relacionarse con sus compañeros, perdida en la calidad de su trabajo, entre otros. Por diferentes motivos, como lo son la insatisfacción laboral, altas metas operativas, poco crecimiento dentro de la empresa, entre otros. Por ello, esta investigación está enfocada en la para la extracción y transformación de datos con el fin de describir de patrones operaciones de asesores de un call center junto con la implementación de datos socio-demográficos en asesores activos y retirados dentro de la campaña de Icetex durante 12 semanas consecutivas laborales y con estos datos entrenar diferentes modelos de inteligencia artificial para predicción de la renuncia. Los resultados de esta investigación demuestran una diferencia significativa en el rendimiento de las personas que estaban a punto de renunciar y los asesores activos, en términos de la productividad, eficiencia, ausencia en el trabajo y calidad de gestión ante el usuario, otros. Por lo que se expone el comportamiento característico de la renuncia psicológica en los asesores antes de su retiro voluntario. Se realizó un entrenamiento de aprendizaje de máquina para la predicción de un asesor en los estados de activo y retirado, donde se presenta que el modelo de bosques aleatorios (random forest) es el mejor con un 89,5 % ± 4,3 % de exactitud en las pruebas realizadas en 58 agentes de call center. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-23T19:13:10Z |
dc.date.available.none.fl_str_mv |
2023-01-23T19:13:10Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/2151 |
dc.identifier.url.none.fl_str_mv |
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23266 |
url |
https://repositorio.escuelaing.edu.co/handle/001/2151 https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23266 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
60 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.faculty.spa.fl_str_mv |
Ingeniería Biomédica |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/2151/5/P%c3%a9rez%20Ospino%2c%20Camilo%20Andr%c3%a9s-2022.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2151/6/Autorizaci%c3%b3n.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2151/4/P%c3%a9rez%20Ospino%2c%20Camilo%20Andr%c3%a9s-2022.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2151/7/Autorizaci%c3%b3n.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2151/3/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/2151/1/P%c3%a9rez%20Ospino%2c%20Camilo%20Andr%c3%a9s-2022.pdf https://repositorio.escuelaing.edu.co/bitstream/001/2151/2/Autorizaci%c3%b3n.pdf |
bitstream.checksum.fl_str_mv |
793f95e7eea19d7c6ed4dc4d9806d62d 1ed294174232332d2ff1e45918a0f9fc 69dec06b171defb7654fb43886483b2a 9947961029c620a6683b17e7c1b13a22 5a7ca94c2e5326ee169f979d71d0f06e 2f857c52d3bf75ed0b188cf46b509828 89fe9346c62411be40108596605f8dc7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355588029612032 |
spelling |
Orjuela Canon, Alvaro Davidcc8f86677d6dc983cbfe50be82b9e516Pérez Ospino, Camilo Andrés95a1c646bca1c58747d10f8abcc4b666600Millenium BPOSemillero de Inteligencia artificial en salud (SEMILL-IAS)2023-01-23T19:13:10Z2023-01-23T19:13:10Z2022https://repositorio.escuelaing.edu.co/handle/001/2151https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23266Este proyecto de investigación trata de solventar una problemática que afrontan hoy en día las empresas de call center, la cual es la rotación de sus empelados, dejando brechas operativas y económicas en la compañía. Desde la división de innovación de Millenium BPO, Datos No Estructuras. Se propone actuar de manera activa ante esta situación por lo que se propone el uso de la analítica de datos y la correlación de variables en sus asesores que demuestren declive en su comportamiento operacional y de estos mediante el uso de modelos de inteligencia artificial predecir la renuncia psicológica, término acuñado para describir a los empleados que antes de su renuncia presentan patrones de comportamiento que van en contra vía de lo esperado por la empresa, como lo puede ser una baja productividad, no relacionarse con sus compañeros, perdida en la calidad de su trabajo, entre otros. Por diferentes motivos, como lo son la insatisfacción laboral, altas metas operativas, poco crecimiento dentro de la empresa, entre otros. Por ello, esta investigación está enfocada en la para la extracción y transformación de datos con el fin de describir de patrones operaciones de asesores de un call center junto con la implementación de datos socio-demográficos en asesores activos y retirados dentro de la campaña de Icetex durante 12 semanas consecutivas laborales y con estos datos entrenar diferentes modelos de inteligencia artificial para predicción de la renuncia. Los resultados de esta investigación demuestran una diferencia significativa en el rendimiento de las personas que estaban a punto de renunciar y los asesores activos, en términos de la productividad, eficiencia, ausencia en el trabajo y calidad de gestión ante el usuario, otros. Por lo que se expone el comportamiento característico de la renuncia psicológica en los asesores antes de su retiro voluntario. Se realizó un entrenamiento de aprendizaje de máquina para la predicción de un asesor en los estados de activo y retirado, donde se presenta que el modelo de bosques aleatorios (random forest) es el mejor con un 89,5 % ± 4,3 % de exactitud en las pruebas realizadas en 58 agentes de call center.This research project tries to solve a problem that call center companies face today, which is the turnover of its employees, leaving operational and economic gaps in the company. From the innovation division of Millenium BPO, Data Not Structures. It is proposed to act actively against this situation by proposing the use of data analytics and the correlation of variables in data analytics and the correlation of variables in their advisors that show a decline in their operational behavior and from these, through the use of artificial intelligence models, predict psychological resignation, a term coined to describe employees who, before their resignation, present behavior patterns that go against the company's expectations, such as low productivity, not relating with their colleagues, loss in the quality of their work, among others. For different reasons, such as job dissatisfaction, high operational goals, little growth within the company, among others. Therefore, this research is focused on the extraction and transformation of data in order to describe patterns of operations of a call center advisors along with the implementation of socio-demographic data in active and retired advisors within the Icetex campaign during 12 consecutive work weeks and with these data to train different artificial intelligence models for predicting resignation. The results of this research show a significant difference in the performance of people who were about to resign and active advisors, in terms of productivity, efficiency, absence at work and quality of management before the user, others. Therefore, the characteristic behavior of psychological resignation in advisors before their voluntary retirement is exposed. A machine learning training was carried out for the prediction of an advisor in the active and retired states, where it is shown that the random forest model is the best with 89.5 % ± 4.3 % of accuracy in the tests carried out on 58 call center agents.PregradoIngeniero(a) Biomédico(a)60 páginasapplication/pdfspaAnálisis de comportamiento operacional en agente de call center empleando inteligencia artificialOperational behavior analysis in call center agent using artificial intelligenceTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería BiomédicaIngeniería BiomédicaN/Ainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ingeniería BiomédicaInteligencia artificialIngeniería BiomédicaInteligencia artificialBiomedical engineeringArtificial intelligenceTHUMBNAILPérez Ospino, Camilo Andrés-2022.pdf.jpgPérez Ospino, Camilo Andrés-2022.pdf.jpgGenerated Thumbnailimage/jpeg7024https://repositorio.escuelaing.edu.co/bitstream/001/2151/5/P%c3%a9rez%20Ospino%2c%20Camilo%20Andr%c3%a9s-2022.pdf.jpg793f95e7eea19d7c6ed4dc4d9806d62dMD55open accessAutorización.pdf.jpgAutorización.pdf.jpgGenerated Thumbnailimage/jpeg13158https://repositorio.escuelaing.edu.co/bitstream/001/2151/6/Autorizaci%c3%b3n.pdf.jpg1ed294174232332d2ff1e45918a0f9fcMD56metadata only accessTEXTPérez Ospino, Camilo Andrés-2022.pdf.txtPérez Ospino, Camilo Andrés-2022.pdf.txtExtracted texttext/plain89237https://repositorio.escuelaing.edu.co/bitstream/001/2151/4/P%c3%a9rez%20Ospino%2c%20Camilo%20Andr%c3%a9s-2022.pdf.txt69dec06b171defb7654fb43886483b2aMD54open accessAutorización.pdf.txtAutorización.pdf.txtExtracted texttext/plain3450https://repositorio.escuelaing.edu.co/bitstream/001/2151/7/Autorizaci%c3%b3n.pdf.txt9947961029c620a6683b17e7c1b13a22MD57metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2151/3/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD53open accessORIGINALPérez Ospino, Camilo Andrés-2022.pdfPérez Ospino, Camilo Andrés-2022.pdfapplication/pdf4112753https://repositorio.escuelaing.edu.co/bitstream/001/2151/1/P%c3%a9rez%20Ospino%2c%20Camilo%20Andr%c3%a9s-2022.pdf2f857c52d3bf75ed0b188cf46b509828MD51open accessAutorización.pdfAutorización.pdfapplication/pdf713046https://repositorio.escuelaing.edu.co/bitstream/001/2151/2/Autorizaci%c3%b3n.pdf89fe9346c62411be40108596605f8dc7MD52metadata only access001/2151oai:repositorio.escuelaing.edu.co:001/21512024-03-04 16:11:35.623open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |