Multimodal Human–Robot Interaction for Walker-Assisted Gait

Human mobility is affected by different types of pathologies and also decreases gradually with age. In this context, Smart Walkers may offer important benefits for human assisted-gait in rehabilitation and functional compensation scenarios. This paper proposes a new interaction strategy for human-wa...

Full description

Autores:
Cifuentes, Carlos A.
Rodríguez, Camilo
Frizera Neto, Anselmo
Bastos Filho, Teodiano Freire
Carelli, Ricardo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1577
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1577
https://doi.org/10.1109/JSYST.2014.2318698
Palabra clave:
Robótica médica
Robots Moviles
Tecnología médica
Medical technology
Interacción humano-robot
Sensor de unidades de medida inercial (IMU)
Telémetro láser (LRF)
Interfaz multimodal
Marcha asistida por andador
Inertial Measurement Unit (IMU) Sensor
Human-robot interaction
Multimodal interface
Laser Range Finder (LRF)
Walker-assisted gait
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_0dd4cb3c9ac142fd1b8a5e6cb8cdbdf5
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1577
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Multimodal Human–Robot Interaction for Walker-Assisted Gait
title Multimodal Human–Robot Interaction for Walker-Assisted Gait
spellingShingle Multimodal Human–Robot Interaction for Walker-Assisted Gait
Robótica médica
Robots Moviles
Tecnología médica
Medical technology
Interacción humano-robot
Sensor de unidades de medida inercial (IMU)
Telémetro láser (LRF)
Interfaz multimodal
Marcha asistida por andador
Inertial Measurement Unit (IMU) Sensor
Human-robot interaction
Multimodal interface
Laser Range Finder (LRF)
Walker-assisted gait
title_short Multimodal Human–Robot Interaction for Walker-Assisted Gait
title_full Multimodal Human–Robot Interaction for Walker-Assisted Gait
title_fullStr Multimodal Human–Robot Interaction for Walker-Assisted Gait
title_full_unstemmed Multimodal Human–Robot Interaction for Walker-Assisted Gait
title_sort Multimodal Human–Robot Interaction for Walker-Assisted Gait
dc.creator.fl_str_mv Cifuentes, Carlos A.
Rodríguez, Camilo
Frizera Neto, Anselmo
Bastos Filho, Teodiano Freire
Carelli, Ricardo
dc.contributor.author.none.fl_str_mv Cifuentes, Carlos A.
Rodríguez, Camilo
Frizera Neto, Anselmo
Bastos Filho, Teodiano Freire
Carelli, Ricardo
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Robótica médica
Robots Moviles
topic Robótica médica
Robots Moviles
Tecnología médica
Medical technology
Interacción humano-robot
Sensor de unidades de medida inercial (IMU)
Telémetro láser (LRF)
Interfaz multimodal
Marcha asistida por andador
Inertial Measurement Unit (IMU) Sensor
Human-robot interaction
Multimodal interface
Laser Range Finder (LRF)
Walker-assisted gait
dc.subject.armarc.spa.fl_str_mv Tecnología médica
dc.subject.armarc.eng.fl_str_mv Medical technology
dc.subject.proposal.spa.fl_str_mv Interacción humano-robot
Sensor de unidades de medida inercial (IMU)
Telémetro láser (LRF)
Interfaz multimodal
Marcha asistida por andador
Inertial Measurement Unit (IMU) Sensor
Human-robot interaction
Multimodal interface
Laser Range Finder (LRF)
Walker-assisted gait
description Human mobility is affected by different types of pathologies and also decreases gradually with age. In this context, Smart Walkers may offer important benefits for human assisted-gait in rehabilitation and functional compensation scenarios. This paper proposes a new interaction strategy for human-walker cooperation. The presented strategy is based on the acquisition of human gait parameters by means of data fusion from inertial measurement units and a laser range finder. This paper includes the mathematical formulation of the controller, simulations, and practical experimentation of the interaction strategy, in order to show the performance of the control system, including the parameter detection methodology. In the experimental study, despite the continuous oscillation during the walking, the parameter estimation was suitable for assisted ambulation, showing an appropriate adaptive behavior with changes in human linear velocity. Finally, the controller keeps the walker continuously following in front of the human gait, and it is shown how the walker orientation follows the human orientation during the real experiments.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-06-15T21:27:56Z
2021-10-01T17:16:52Z
dc.date.available.none.fl_str_mv 2021-06-15T21:27:56Z
2021-10-01T17:16:52Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1932-8184
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1577
dc.identifier.doi.none.fl_str_mv 10.1109/JSYST.2014.2318698
dc.identifier.url.none.fl_str_mv https://doi.org/10.1109/JSYST.2014.2318698
identifier_str_mv 1932-8184
10.1109/JSYST.2014.2318698
url https://repositorio.escuelaing.edu.co/handle/001/1577
https://doi.org/10.1109/JSYST.2014.2318698
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv IEEE Systems Journal ( Volumen: 10 , Número: 3 , septiembre de 2016.
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 10
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv IEEE Systems
dc.relation.references.spa.fl_str_mv Service Robot Statistics, Oct. 2013.
L. Bueno, F. Brunetti, A. Frizera and J. L. Pons, "Human–robot cognitive interaction" in Wearable Robots: Biomechatronic Exoskeletons, Wiley, vol. 1, pp. 87-126, 2008.
A. Frizera-Neto, R. Ceres, E. Rocon and J. L. Pons, "Empowering and assisting natural human mobility: The Simbiosis Walker", Intl. J. Adv. Robot. Syst., vol. 8, no. 3, pp. 34-50, 2011.
M. M. Martins, C. P. Santos, A. Frizera-Neto and R. Ceres, "Assistive mobility devices focusing on Smart Walkers: Classification and review", Robot. Autonom. Syst., vol. 60, no. 4, pp. 548-562, Apr. 2012.
G. Lee, T. Ohnuma and N. Y. Chong, "Design and control of JAIST active robotic walker", Intell. Serv. Robot., vol. 3, no. 3, pp. 125-135, Jul. 2010.
G. Lacey and S. MacNamara, "User involvement in the design and evaluation of a smart mobility aid", J. Rehab. Res. Develop., vol. 37, no. 6, pp. 709-723, Nov./Dec. 2000.
A. J. Rentschler, R. A. Cooper, B. Blasch and M. L. Boninger, "Intelligent walkers for the elderly: Performance and safety testing of VA-PAMAID robotic walker", J. Rehab. Res. Develop., vol. 40, no. 5, pp. 423-432, Sep./Oct. 2003.
H. Hashimoto, A. Sasaki, Y. Ohyama and C. Ishii, "Walker with hand haptic interface for spatial recognition", Proc. 9th IEEE Intl. Workshop Adv. Motion Control, pp. 311-316, 2006.
B. Graf, M. Hans and R. D. Schraft, "Care-O-bot II-development of a next generation robotic home assistant", Autonom. Robots, vol. 16, no. 2, pp. 193-205, Mar. 2004.
G. Lacey and D. Rodriguez-Losada, "The evolution of Guido", IEEE Robotics Autom. Mag., vol. 15, no. 4, pp. 75-83, Dec. 2008.
K. T. Yu et al., "An interactive robotic walker for assisting elderly mobility in senior care unit", Proc. IEEE Workshop Adv. Robotics Social Impacts, pp. 24-29, 2010.
M. F. Chang, W. H. Mou, C. K. Liao and L. C. Fu, "Design and implementation of an active robotic walker for Parkinson's patients", Proc. SICE Annu. Conf., pp. 2068-2073, 2012.
M. Martins, C. Santos and A. Frizera, "Online control of a mobility assistance Smart Walker", Proc. 2nd Portuguese Meet. Bioeng., pp. 1-6, 2012.
O. Chuy, Y. Hirata, W. Zhidong and K. Kosuge, "Motion control algorithms for a new intelligent robotic walker in emulating ambulatory device function", Proc. IEEE Intl. Conf. Mechatron. Autom., pp. 1509-1514, 2005.
G. Lee, E. J. Jung, T. Ohnuma, N. Y. Chong and B. J. Yi, "JAIST Robotic Walker control based on a two-layered Kalman filter", Proc. IEEE Int. Conf. Robotics Autom., pp. 3682-3687, 2011.
T. Ohnuma, G. Lee and N. Y. Chong, "Particle filter based feedback control of JAIST Active Robotic Walker", Proc. 20th IEEE Intl. Symp. Robot Human Interactive Commun., pp. 264-269, 2011.
C. L. Vaughan, B. L. Davis and J. C. O'Connor, Dynamics of Human Gait, Cape Town, South Africa:Kiboho Publishers, 1999.
J. Perry and J. Burnfield, Gait Analysis: Normal and Pathological Function, Thorofare, NJ, USA:Slack Incorporated, 1992.
M. W. Whittle, Gait Analysis: An Introduction, Oxford, U.K.:Butterworth-Heinemann Elsevier, 2007.
M. W. Whittle and D. Levine, "Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait", Hum. Movement Sci., vol. 18, no. 5, pp. 681-692, Oct. 1999.
Laser Range Finder URG04LX Specifications, Oct. 2013.
C. Cifuentes et al., "Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics", Proc. 4th IEEE RAS EMBS Intl. Conf. Biomed. Robot. Biomechatron., pp. 1989-1994, 2012.
T. Pallejà, M. Teixidó, M. Tresanchez and J. Palacín, "Measuring gait using a ground laser range sensor", Sensors, vol. 9, no. 11, pp. 9133-9146, Nov. 2009.
N. Bellotto and H. Hu, "Multisensor-based human detection and tracking for mobile service robots", IEEE Trans. Systems Man Cybernetics, vol. 39, no. 1, pp. 167-181, Feb. 2009.
B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ, USA:Prentice-Hall, 1985.
C. N. Riviere and N. V. Thakor, "Modeling and canceling tremor in human-machine interfaces", IEEE Eng. Med. Biol., vol. 15, no. 3, pp. 29-36, May/Jun. 1996.
A. Frizera, A. Elias, A. J. del-Ama, R. Ceres and T. F. Bastos, "Characterization of spatio-temporal parameters of human gait assisted by a robotic walker", Proc. 4th IEEE RAS EMBS Intl. Conf. Biomed. Robot. Biomechatron., pp. 1087-1091, 2012.
A. Frizera-Neto, J. A. Gallego, E. Rocon, J. L Pons and R. Ceres, "Extraction of user's navigation commands from upper body force interaction in walker assisted gait", BioMed. Eng. OnLine, vol. 9, pp. 37, 2010.
A. Frizera, C. A. Cifuentes and T. Bastos, "Motion capture system based on the integration of 3D accelerometer in a wireless inertial measurement unit" in Accelerometers Principles Structure and Applications, New York, NY, USA:Nova Science Publishers Inc., vol. 1, pp. 57-77, 2013.
J. Fang, H. Sun, J. Cao, X. Zhang and Y. Tao, "A novel calibration method of magnetic compass based on ellipsoid fitting", IEEE Trans. Instrum. Meas., vol. 60, no. 6, pp. 2053-2061, Jun. 2011.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://ieeexplore.ieee.org/document/6818390/authors#authors
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1577/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1577/2/Multimodal%20Human%e2%80%93Robot%20Interaction%20for%20Walker-Assisted%20Gait.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1577/3/Multimodal%20Human%e2%80%93Robot%20Interaction%20for%20Walker-Assisted%20Gait.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1577/4/Multimodal%20Human%e2%80%93Robot%20Interaction%20for%20Walker-Assisted%20Gait.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
83cac149a30fe1013114be8ca9b3c5b5
010845330ff5c8439e0a9b24de156554
025672a058a4d77beb684dc3b3e80cdb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355619004547072
spelling Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4600Rodríguez, Camilo76c7f151daf98e9286be7ab1166a7b45600Frizera Neto, Anselmob4f92b73ce43fbc600e56a7251934589600Bastos Filho, Teodiano Freire648b519659fbd65d008037313e7a5801600Carelli, Ricardo0126fce1e119ceae816d354195cd8a1e600GiBiome2021-06-15T21:27:56Z2021-10-01T17:16:52Z2021-06-15T21:27:56Z2021-10-01T17:16:52Z20161932-8184https://repositorio.escuelaing.edu.co/handle/001/157710.1109/JSYST.2014.2318698https://doi.org/10.1109/JSYST.2014.2318698Human mobility is affected by different types of pathologies and also decreases gradually with age. In this context, Smart Walkers may offer important benefits for human assisted-gait in rehabilitation and functional compensation scenarios. This paper proposes a new interaction strategy for human-walker cooperation. The presented strategy is based on the acquisition of human gait parameters by means of data fusion from inertial measurement units and a laser range finder. This paper includes the mathematical formulation of the controller, simulations, and practical experimentation of the interaction strategy, in order to show the performance of the control system, including the parameter detection methodology. In the experimental study, despite the continuous oscillation during the walking, the parameter estimation was suitable for assisted ambulation, showing an appropriate adaptive behavior with changes in human linear velocity. Finally, the controller keeps the walker continuously following in front of the human gait, and it is shown how the walker orientation follows the human orientation during the real experiments.La movilidad humana se ve afectada por diferentes tipos de patologías y también disminuye paulatinamente con la edad. En este contexto, los Smart Walkers pueden ofrecer importantes beneficios para la marcha asistida por humanos en escenarios de rehabilitación y compensación funcional. Este artículo propone una nueva estrategia de interacción para la cooperación entre humanos y caminantes. La estrategia presentada se basa en la adquisición de parámetros de la marcha humana mediante la fusión de datos de unidades de medición inerciales y un telémetro láser. Este trabajo incluye la formulación matemática del controlador, simulaciones y experimentación práctica de la estrategia de interacción, con el fin de mostrar el desempeño del sistema de control, incluyendo la metodología de detección de parámetros. En el estudio experimental, a pesar de la continua oscilación durante la marcha, la estimación del parámetro fue adecuada para la deambulación asistida, mostrando un comportamiento adaptativo apropiado con cambios en la velocidad lineal humana. Finalmente, el controlador mantiene al caminante siguiendo continuamente el paso del ser humano, y se muestra cómo la orientación del caminante sigue la orientación humana durante los experimentos reales.application/pdfengInstitute of Electrical and Electronics Engineers Inc.Estados Unidoshttps://ieeexplore.ieee.org/document/6818390/authors#authorsMultimodal Human–Robot Interaction for Walker-Assisted GaitArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85IEEE Systems Journal ( Volumen: 10 , Número: 3 , septiembre de 2016.113110N/AIEEE SystemsService Robot Statistics, Oct. 2013.L. Bueno, F. Brunetti, A. Frizera and J. L. Pons, "Human–robot cognitive interaction" in Wearable Robots: Biomechatronic Exoskeletons, Wiley, vol. 1, pp. 87-126, 2008.A. Frizera-Neto, R. Ceres, E. Rocon and J. L. Pons, "Empowering and assisting natural human mobility: The Simbiosis Walker", Intl. J. Adv. Robot. Syst., vol. 8, no. 3, pp. 34-50, 2011.M. M. Martins, C. P. Santos, A. Frizera-Neto and R. Ceres, "Assistive mobility devices focusing on Smart Walkers: Classification and review", Robot. Autonom. Syst., vol. 60, no. 4, pp. 548-562, Apr. 2012.G. Lee, T. Ohnuma and N. Y. Chong, "Design and control of JAIST active robotic walker", Intell. Serv. Robot., vol. 3, no. 3, pp. 125-135, Jul. 2010.G. Lacey and S. MacNamara, "User involvement in the design and evaluation of a smart mobility aid", J. Rehab. Res. Develop., vol. 37, no. 6, pp. 709-723, Nov./Dec. 2000.A. J. Rentschler, R. A. Cooper, B. Blasch and M. L. Boninger, "Intelligent walkers for the elderly: Performance and safety testing of VA-PAMAID robotic walker", J. Rehab. Res. Develop., vol. 40, no. 5, pp. 423-432, Sep./Oct. 2003.H. Hashimoto, A. Sasaki, Y. Ohyama and C. Ishii, "Walker with hand haptic interface for spatial recognition", Proc. 9th IEEE Intl. Workshop Adv. Motion Control, pp. 311-316, 2006.B. Graf, M. Hans and R. D. Schraft, "Care-O-bot II-development of a next generation robotic home assistant", Autonom. Robots, vol. 16, no. 2, pp. 193-205, Mar. 2004.G. Lacey and D. Rodriguez-Losada, "The evolution of Guido", IEEE Robotics Autom. Mag., vol. 15, no. 4, pp. 75-83, Dec. 2008.K. T. Yu et al., "An interactive robotic walker for assisting elderly mobility in senior care unit", Proc. IEEE Workshop Adv. Robotics Social Impacts, pp. 24-29, 2010.M. F. Chang, W. H. Mou, C. K. Liao and L. C. Fu, "Design and implementation of an active robotic walker for Parkinson's patients", Proc. SICE Annu. Conf., pp. 2068-2073, 2012.M. Martins, C. Santos and A. Frizera, "Online control of a mobility assistance Smart Walker", Proc. 2nd Portuguese Meet. Bioeng., pp. 1-6, 2012.O. Chuy, Y. Hirata, W. Zhidong and K. Kosuge, "Motion control algorithms for a new intelligent robotic walker in emulating ambulatory device function", Proc. IEEE Intl. Conf. Mechatron. Autom., pp. 1509-1514, 2005.G. Lee, E. J. Jung, T. Ohnuma, N. Y. Chong and B. J. Yi, "JAIST Robotic Walker control based on a two-layered Kalman filter", Proc. IEEE Int. Conf. Robotics Autom., pp. 3682-3687, 2011.T. Ohnuma, G. Lee and N. Y. Chong, "Particle filter based feedback control of JAIST Active Robotic Walker", Proc. 20th IEEE Intl. Symp. Robot Human Interactive Commun., pp. 264-269, 2011.C. L. Vaughan, B. L. Davis and J. C. O'Connor, Dynamics of Human Gait, Cape Town, South Africa:Kiboho Publishers, 1999.J. Perry and J. Burnfield, Gait Analysis: Normal and Pathological Function, Thorofare, NJ, USA:Slack Incorporated, 1992.M. W. Whittle, Gait Analysis: An Introduction, Oxford, U.K.:Butterworth-Heinemann Elsevier, 2007.M. W. Whittle and D. Levine, "Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait", Hum. Movement Sci., vol. 18, no. 5, pp. 681-692, Oct. 1999.Laser Range Finder URG04LX Specifications, Oct. 2013.C. Cifuentes et al., "Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics", Proc. 4th IEEE RAS EMBS Intl. Conf. Biomed. Robot. Biomechatron., pp. 1989-1994, 2012.T. Pallejà, M. Teixidó, M. Tresanchez and J. Palacín, "Measuring gait using a ground laser range sensor", Sensors, vol. 9, no. 11, pp. 9133-9146, Nov. 2009.N. Bellotto and H. Hu, "Multisensor-based human detection and tracking for mobile service robots", IEEE Trans. Systems Man Cybernetics, vol. 39, no. 1, pp. 167-181, Feb. 2009.B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ, USA:Prentice-Hall, 1985.C. N. Riviere and N. V. Thakor, "Modeling and canceling tremor in human-machine interfaces", IEEE Eng. Med. Biol., vol. 15, no. 3, pp. 29-36, May/Jun. 1996.A. Frizera, A. Elias, A. J. del-Ama, R. Ceres and T. F. Bastos, "Characterization of spatio-temporal parameters of human gait assisted by a robotic walker", Proc. 4th IEEE RAS EMBS Intl. Conf. Biomed. Robot. Biomechatron., pp. 1087-1091, 2012.A. Frizera-Neto, J. A. Gallego, E. Rocon, J. L Pons and R. Ceres, "Extraction of user's navigation commands from upper body force interaction in walker assisted gait", BioMed. Eng. OnLine, vol. 9, pp. 37, 2010.A. Frizera, C. A. Cifuentes and T. Bastos, "Motion capture system based on the integration of 3D accelerometer in a wireless inertial measurement unit" in Accelerometers Principles Structure and Applications, New York, NY, USA:Nova Science Publishers Inc., vol. 1, pp. 57-77, 2013.J. Fang, H. Sun, J. Cao, X. Zhang and Y. Tao, "A novel calibration method of magnetic compass based on ellipsoid fitting", IEEE Trans. Instrum. Meas., vol. 60, no. 6, pp. 2053-2061, Jun. 2011.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobots MovilesTecnología médicaMedical technologyInteracción humano-robotSensor de unidades de medida inercial (IMU)Telémetro láser (LRF)Interfaz multimodalMarcha asistida por andadorInertial Measurement Unit (IMU) SensorHuman-robot interactionMultimodal interfaceLaser Range Finder (LRF)Walker-assisted gaitLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1577/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALMultimodal Human–Robot Interaction for Walker-Assisted Gait.pdfapplication/pdf197426https://repositorio.escuelaing.edu.co/bitstream/001/1577/2/Multimodal%20Human%e2%80%93Robot%20Interaction%20for%20Walker-Assisted%20Gait.pdf83cac149a30fe1013114be8ca9b3c5b5MD52open accessTEXTMultimodal Human–Robot Interaction for Walker-Assisted Gait.pdf.txtMultimodal Human–Robot Interaction for Walker-Assisted Gait.pdf.txtExtracted texttext/plain6https://repositorio.escuelaing.edu.co/bitstream/001/1577/3/Multimodal%20Human%e2%80%93Robot%20Interaction%20for%20Walker-Assisted%20Gait.pdf.txt010845330ff5c8439e0a9b24de156554MD53open accessTHUMBNAILMultimodal Human–Robot Interaction for Walker-Assisted Gait.pdf.jpgMultimodal Human–Robot Interaction for Walker-Assisted Gait.pdf.jpgGenerated Thumbnailimage/jpeg8127https://repositorio.escuelaing.edu.co/bitstream/001/1577/4/Multimodal%20Human%e2%80%93Robot%20Interaction%20for%20Walker-Assisted%20Gait.pdf.jpg025672a058a4d77beb684dc3b3e80cdbMD54open access001/1577oai:repositorio.escuelaing.edu.co:001/15772022-09-30 11:23:23.435open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK