AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD

Therapy with robotic tools is a promising way to help improve verbal and nonverbal communication in children. The robotic tools are able to increase aspects such as eye contact and the ability to follow instructions and to empathize with others. This work presents the designmethodology, development,...

Full description

Autores:
Casas Bocanegra, Diego
Gomez Vargas, Daniel
Pinto Bernal, Maria J.
Maldonado, Juan
Munera, Marcela
Villa Moreno, Adriana
Stoelen, Martin F
Belpaeme, Tony
Cifuentes, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3308
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3308
https://repositorio.escuelaing.edu.co/
Palabra clave:
Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Autismo en niños
Autism in children
Niños - Enfermedades - Tratamiento
Children - Diseases - Treatment
Trastorno del espectro autista
Robótica de asistencia social
Diseño de robots
Actuadores elásticos en serie
Mecanismos compatibles
Terapia del autismo
Interacción física
Autism spectrum disorder
Social assistive robotics
Robot design
Series elastic actuators
Compliant mechanisms
Autism therapy
Physical interaction
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_08b8ee9f98363af8c350a63bd6181c98
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3308
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
title AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
spellingShingle AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Autismo en niños
Autism in children
Niños - Enfermedades - Tratamiento
Children - Diseases - Treatment
Trastorno del espectro autista
Robótica de asistencia social
Diseño de robots
Actuadores elásticos en serie
Mecanismos compatibles
Terapia del autismo
Interacción física
Autism spectrum disorder
Social assistive robotics
Robot design
Series elastic actuators
Compliant mechanisms
Autism therapy
Physical interaction
title_short AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
title_full AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
title_fullStr AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
title_full_unstemmed AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
title_sort AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
dc.creator.fl_str_mv Casas Bocanegra, Diego
Gomez Vargas, Daniel
Pinto Bernal, Maria J.
Maldonado, Juan
Munera, Marcela
Villa Moreno, Adriana
Stoelen, Martin F
Belpaeme, Tony
Cifuentes, Carlos A.
dc.contributor.author.none.fl_str_mv Casas Bocanegra, Diego
Gomez Vargas, Daniel
Pinto Bernal, Maria J.
Maldonado, Juan
Munera, Marcela
Villa Moreno, Adriana
Stoelen, Martin F
Belpaeme, Tony
Cifuentes, Carlos A.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Autismo en niños
Autism in children
Niños - Enfermedades - Tratamiento
Children - Diseases - Treatment
topic Robótica médica
Robotics in medicine
Tecnología médica
Medical technology
Autismo en niños
Autism in children
Niños - Enfermedades - Tratamiento
Children - Diseases - Treatment
Trastorno del espectro autista
Robótica de asistencia social
Diseño de robots
Actuadores elásticos en serie
Mecanismos compatibles
Terapia del autismo
Interacción física
Autism spectrum disorder
Social assistive robotics
Robot design
Series elastic actuators
Compliant mechanisms
Autism therapy
Physical interaction
dc.subject.proposal.spa.fl_str_mv Trastorno del espectro autista
Robótica de asistencia social
Diseño de robots
Actuadores elásticos en serie
Mecanismos compatibles
Terapia del autismo
Interacción física
dc.subject.proposal.eng.fl_str_mv Autism spectrum disorder
Social assistive robotics
Robot design
Series elastic actuators
Compliant mechanisms
Autism therapy
Physical interaction
description Therapy with robotic tools is a promising way to help improve verbal and nonverbal communication in children. The robotic tools are able to increase aspects such as eye contact and the ability to follow instructions and to empathize with others. This work presents the designmethodology, development, and experimental validation of a novel social robot based on CompliAnt SofT Robotics called the CASTOR robot, which intends to be used as an open-source platform for the long-term therapy of children with autism spectrum disorder (CwASD). CASTOR integrates the concepts of soft actuators and compliant mechanisms to create a replicable robotic platform aimed at real therapy scenarios involving physical interaction between the children and the robot. The validation shows promisingresults in terms of robustness andthesafetyoftheuserandrobot. Likewise,mechanicaltests assess the robot’s response to blocking conditions for two critical modules (i.e., neck and arm) in interaction scenarios. Future works should focus on the validation of the robot’s effectiveness in the therapy of CwASD.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09
dc.date.accessioned.none.fl_str_mv 2024-10-10T17:15:59Z
dc.date.available.none.fl_str_mv 2024-10-10T17:15:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2076-0825
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3308
dc.identifier.eissn.spa.fl_str_mv 2076-0825
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 2076-0825
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
url https://repositorio.escuelaing.edu.co/handle/001/3308
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 9 No. 91, 2020
dc.relation.citationendpage.spa.fl_str_mv 22
dc.relation.citationissue.spa.fl_str_mv 91
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.ispartofjournal.eng.fl_str_mv Actuators
dc.relation.references.spa.fl_str_mv Cifuentes, C.A.; Pinto, M.J.; Céspedes, N.; Múnera, M. Social Robots in Therapy and Care. Curr. Robot. Rep. 2020, 1, 59–74. [CrossRef]
Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny,W.; Robinson, C.; Rosenberg, C.R.; etal. PrevalenceofAutismSpectrumDisorderAmongChildren Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWRSurveill. Summ. 2018, 67, 1–23. [CrossRef] [PubMed]
World Health Organization. Autism spectrum disorders. In Fact Sheets; WHO: Geneva, Switzerland, 2018.
Eggebrecht, A.T.; Elison, J.T.; Feczko, E.; Todorov, A.; Wolff, J.J.; Kandala, S.; Adams, C.M.; Snyder, A.Z.; Lewis, J.D.; Estes, A.M.; et al. Joint attention and brain functional connectivity in infants and toddlers. Cereb. Cortex 2017, 27, 1709–1720. [CrossRef] [PubMed]
American Psychiatric Association. DSM-5 Diagnostic Classification. In Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [CrossRef]
Belpaeme, T.; Baxter, P.E.; Read, R.; Wood, R.; Cuayáhuitl, H.; Kiefer, B.; Racioppa, S.; Kruijff-Korbayová, I.; Athanasopoulos, G.; Enescu, V.; et al. Multimodal Child-Robot Interaction: Building Social Bonds. J. Hum. Robot. Interact. 2012, 1, 33–53. [CrossRef]
Cabibihan, J.J.; Javed, H.; Ang, M.; Aljunied, S.M. Why Robots? A Survey on the Roles and Benefits of Social Robots in the Therapy of Children with Autism. Int. J. Soc. Robot. 2013, 5, 593–618. [CrossRef]
Pennisi, P.; Tonacci, A.; Tartarisco, G.; Billeci, L.; Ruta, L.; Gangemi, S.; Pioggia, G. Autism and social robotics: Asystematic review. Autism Res. 2016, 9, 165–183. [CrossRef]
Di Nuovo, A.; Conti, D.; Trubia, G.; Buono, S.; Di Nuovo, S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics 2018, 7, 25. [CrossRef]
Ramirez-Duque, A.A.; Frizera-Neto, A.; Bastos, T.F. Robot-Assisted Diagnosis for Children with Autism Spectrum Disorder Based on Automated Analysis of Nonverbal Cues. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 456–461. [CrossRef]
Anzalone, S.M.; Xavier, J.; Boucenna, S.; Billeci, L.; Narzisi, A.; Muratori, F.; Cohen, D.; Chetouani, M. Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recognit. Lett. 2019, 118, 42–50. [CrossRef]
Del Coco, M.; Leo, M.; Carcagni, P.; Fama, F.; Spadaro, L.; Ruta, L.; Pioggia, G.; Distante, C. Study of Mechanisms of Social Interaction Stimulation in Autism Spectrum Disorder by Assisted Humanoid Robot. IEEE Trans. Cogn. Dev. Syst. 2017, 8920, 1. [CrossRef]
Yun, S.S.; Choi, J.; Park, S.K.; Bong, G.Y.; Yoo, H. Social skills training for children with autism spectrum disorder using a robotic behavioural intervention system. Autism Res. 2017, 10, 1306–1323. [CrossRef]
Zheng,Z.; Das, S.; Young, E.M.; Swanson, A.; Warren, Z.E.; Sarkar, N. Autonomous robot-mediated imitation learning for children with autism. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2707–2712. [CrossRef]
Costescu, C.A.; Vanderborght, B.; David, D.O. Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach. J. Autism Dev. Disord. 2014, 45, 3715–3725. [CrossRef] [PubMed]
Kim, E.S.; Berkovits, L.D.; Bernier, E.P.; Leyzberg, D.; Shic, F.; Paul, R.; Scassellati, B. Social robots as embedded reinforcers of social behaviour in children with autism. J. Autism Dev. Disord. 2013, 43, 1038–1049. [CrossRef] [PubMed]
Feil-Seifer, D.; Mataric, M. Automated detection and classification of positive vs. negative robot interactions with children with autism using distance-based features. In Proceedings of the 6th International Conference on Human-Robot Interaction-HRI ’11, Lausanne, Switzerland, 8–11 March 2011; p. 323. [CrossRef]
Vallès-Peris, N.; Angulo, C.; Domènech, M. Children’s imaginaries of human-robot interaction in healthcare. Int. J. Environ. Res. Public Health 2018, 15, 970. [CrossRef] [PubMed]
Randall, N.; Bennett, C.C.; Šabanovi´ c, S.; Nagata, S.; Eldridge, L.; Collins, S.; Piatt, J.A. More than just friends: In-home use and design recommendations for sensing socially assistive robots (SARs) by older adults with depression. Paladyn 2019, 10, 237–255. [CrossRef]
Nakadoi, Y. Usefulness of Animal Type Robot Assisted Therapy for Autism Spectrum Disorder in the Child and Adolescent Psychiatric Ward. In New Frontiers in Artificial Intelligence; Otake, M., Kurahashi, S., Ota, Y., Satoh, K., Bekki, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 478–482.
Bartneck, C.; Belpaeme, T.; Eyssel, F.; Kanda, T.; Keijsers, M.; Šabanovi´c, S. Human-Robot Interaction: AnIntroduction; Cambridge University Press: Cambridge, UK, 2020.
Fletcher-Watson, S.; Adams, J.; Brook, K.; Charman, T.; Crane, L.; Cusack, J.; Leekam, S.; Milton, D.; Parr, J.R.; Pellicano, E. Making the future together: Shaping autism research through meaningful participation. Autism 2018, 1–11. [CrossRef]
Merter, S.; Hasırcı, D. A participatory product design process with children with autism spectrum disorder. CoDesign 2016, 14, 170–187. [CrossRef]
Huijnen, C.A.G.J.; Lexis, M.A.S.; Jansens, R.; de Witte, L.P. Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2016, 1–15. [CrossRef]
Simut, R.; Vanderfaeillie, J.; Peca, A.; Van de Perre, G.; Vanderborght, B. Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study. J. Autism Dev. Disord. 2016, 46, 113–126. [CrossRef]
Wood, L.J.; Robins, B.; Lakatos, G.; Syrdal, D.S.; Zaraki, A.; Dautenhahn, K. Developing a protocol and experimental setup for using a humanoid robot to assist children with autism to develop visual perspective taking skills. Paladyn 2019, 10, 167–179. [CrossRef]
Ramírez-Duque, A.A.; Aycardi, L.F.; Villa, A.; Munera, M.; Bastos, T.; Belpaeme, T.; Frizera-Neto, A.; Cifuentes, C.A. Collaborative and Inclusive Process with the Autism Community: A Case Study in Colombia About Social Robot Design. Int. J. Soc. Robot. 2020. [CrossRef]
Argall, B.D.; Billard, A.G. A survey of Tactile HumanRobot Interactions. Robot. Auton. Syst. 2010, 58, 1159–1176. [CrossRef]
Libin, A.; Libin, E. Person-robot interactions from the robopsychologists’ point of view: The robotic psychology and robotherapy approach. Proc. IEEE 2004, 92, 1789–1803. [CrossRef]
Stiehl, W.; Lieberman, J.; Breazeal, C.; Basel, L.; Lalla, L.; Wolf, M. Design of a therapeutic robotic companion for relational, affective touch. In Proceedings of the ROMAN 2005 IEEE International Workshop on Robot and HumanInteractive Communication, Nashville, TN, USA, 13–15 August 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 408–415. [CrossRef]
Iocchi, L.; L, M.T.; Jeanpierre, L. Interaction for Social Robots Assisting Users in Shopping Malls. Int. Conf. Soc. Robot. 2015, 1, 264–274. [CrossRef]
Srinivasan, S.M.; Eigsti, I.M.; Neelly, L.; Bhat, A.N. The effects of embodied rhythm and robotic interventions on the spontaneous and responsive social attention patterns of children with autism spectrum disorder (ASD): A pilot randomized controlled trial. Res. Autism Spectr. Disord. 2016, 27, 54–72. [CrossRef] [PubMed]
Chevalier, P.; Martin, J.C.; Isableu, B.; Bazile, C.; Iacob, D.O.; Tapus, A. Joint Attention using Human-Robot Interaction: Impact of sensory preferences of children with autism. In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, New York, NY, USA, 26–31 August 2016; pp. 849–854. [CrossRef]
So, W.C.; Wong, M.K.Y.; Lam, C.K.Y.; Lam, W.Y.; Chui, A.T.F.; Lee, T.L.; Ng, H.M.; Chan, C.H.; Fok, D.C.W. Using a social robot to teach gestural recognition and production in children with autism spectrum disorders. Disabil. Rehabil. Assist. Technol. 2018, 13, 527–539. [CrossRef] [PubMed]
David, D.O.; Costescu, C.A.; Matu, S.; Szentagotai, A.; Dobrean, A. Developing Joint Attention for Children with Autism in Robot-Enhanced Therapy. Int. J. Soc. Robot. 2018, 10, 595–605. [CrossRef]
Zheng, Z.; Zhao, H.; Swanson, A.R.; Weitlauf, A.S.; Warren, Z.E.; Sarkar, N. Design, Development, and Evaluation of a Noninvasive Autonomous Robot-Mediated Joint Attention Intervention System for Young Children with ASD. IEEE Trans. Hum. Mach. Syst. 2018, 48, 125–135. [CrossRef]
Ramírez-Duque, A.A.; Bastos, T.; Munera, M.; Cifuentes, C.A.; Frizera-Neto, A. Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening. Robot. Auton. Syst. 2020, 127, 103484. [CrossRef]
Dautenhahn, K.; Nehaniv, C.L.; Walters, M.L.; Robins, B.; Kose-Bagci, H.; Mirza, N.A.; Blow, M. KASPAR—A Minimally Expressive Humanoid Robot for Human–Robot Interaction Research. Appl. Bionics Biomech. 2009, 6, 369–397. [CrossRef]
Robins, B.; Dautenhahn, K. Developing play scenarios for tactile interaction with a humanoid robot: Acase study exploration with children with autism. In International Conference on Social Robotics; Springer: Berlin/Heidelberg, Germany,2010; pp. 243–252.
Wainer,J.; Dautenhahn, K.; Robins, B.; Amirabdollahian, F. Collaborating with Kaspar: Using an autonomous humanoid robot to foster cooperative dyadic play among children with autism. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 631–638, [CrossRef]
Costa, S.; Lehmann, H.; Dautenhahn, K.; Robins, B.; Soares, F. Using a humanoid robot to elicit body awareness and appropriate physical interaction in children with autism. Int. J. Soc. Robot. 2015, 7, 265–278. [CrossRef]
Peca, A.; Simut, R.; Pintea, S.; Vanderborght, B. Are Children with ASD more Prone to Test the Intentions of the Robonova Robot Compared to a Human? Int. J. Soc. Robot. 2015, 7, 629–639. [CrossRef]
Hanson, D.; Mazzei, D.; Garver, C.; Ahluwalia, A.; De Rossi, D.; Stevenson, M.; Reynolds, K. Realistic Humanlike Robots for Treatment of Autism. In proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments PETRA, Corfu, Greece, 26–29 June 2012; pp. 1–7.
Vandevelde, C.; Saldien, J.; Ciocci, M.C.; Vanderborght, B. The use of social robot ono in robot assisted therapy. In Proceedings of the International Conference on Social Robotics, Bristol, UK, 27–29 October 2013.
Vandevelde, C.; Saldien, J.; Ciocci, C.; Vanderborght, B. Ono, a DIY open source platform for social robotics. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, Munich, Germany, 16–19 February 2014.
Goris, K.; Saldien, J.; Vanderborght, B.; Lefeber, D. Mechanical design of the huggable robot Probo. Int. J. Humanoid Robot. 2011, 8, 481–511. [CrossRef]
Saldien, J.; Goris, K.; Yilmazyildiz, S.; Verhelst, W.; Lefeber, D. On the Design of the Huggable Robot Probo. J. Phys. Agents 2008, 2, 3–11. [CrossRef]
Shibata, T.; Mitsui, T.; Wada, K.; Touda, A.; Kumasaka, T.; Tagami, K.; Tanie, K. Mental commit robot and its application to therapy of children. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. AIM 2001, 2, 1053–1058. [CrossRef]
Stiehl, W.D.; Lieberman, J.; Breazeal, C.; Basel, L.; Cooper, R.; Knight, H.; Lalla, L.; Maymin, A.; Purchase, S. The Huggable: A therapeutic robotic companion for relational, affective touch. In Proceedings of the 2006 3rd IEEE Consumer Communications and Networking Conference, CCNC 2006, Las Vegas, NV, USA, 8–10 January 2006; Volume 2, pp. 1290–1291. [CrossRef]
Grunberg, D.; Ellenberg, R.; Kim, Y.E.; Oh, P.Y. From robonova to hubo: Platforms for robot dance. In FIRA RoboWorld Congress; Springer: Berlin/Heidelberg, Germany, 2009; pp. 19–24.
Shamsuddin, S.; Yussof, H.; Ismail, L.I.; Mohamed, S.; Hanapiah, F.A.; Zahari, N.I. Initial Response in HRI-a Case Study on Evaluation of Child with Autism Spectrum Disorders Interacting with a Humanoid Robot NAO. Procedia Eng. 2012, 41, 1448–1455. [CrossRef]
Tapus, A.; Peca, A.; Aly, A.; Pop, C.; Jisa, L.; Pintea, S.; Rusu, A.S.; David, D.O. Children with autism social engagement in interaction with Nao, an imitative robot—A series of single case experiments. Interact. Stud. 2012, 13, 315–347. [CrossRef]
Robins,B.; Dautenhahn,K. Kaspar,thesocialrobotandwaysitmayhelpchildrenwithautism—Anoverview. Enfance 2018, 2018, 91–102. [CrossRef]
Mehrabian, A. Communication without words. Commun. Theory 2008, 6, 193–200.
. Samadiani, N.; Huang, G.; Cai, B.; Luo, W.; Chi, C.-H.; Xiang, Y.; He, J. A Review on Automatic Facial Expression Recognition Systems Assisted by Multimodal Sensor Data. Sensors 2019, 19, 1863. [CrossRef]
Scassellati, B.; Henny Admoni.; Matari´c, M. Robots for Use in Autism Research. Annu. Rev. Biomed. Eng. 2012, 14, 275–294. [CrossRef]
Ricks, D.J.; Colton, M.B. Trends and considerations in robot-assisted autism therapy. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 4354–4359.
Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social robots for education: A review. Sci. Robot. 2018, 3, eaat5954. [CrossRef]
Admoni,H.; Scassellati, B. Social eye gaze in human-robot interaction: A review. J.-Hum.-Robot. Interact. 2017, 6, 25–63. [CrossRef]
Welch, K.C.; Lahiri, U.; Warren, Z.; Sarkar, N. An approach to the design of socially acceptable robots for children with autism spectrum disorders. Int. J. Soc. Robot. 2010, 2, 391–403. [CrossRef]
Marino, F.; Chilà, P.; Sfrazzetto, S.T.; Carrozza, C.; Crimi, I.; Failla, C.; Busà, M.; Bernava, G.; Tartarisco, G.; Vagni, D.; et al. Outcomes of a robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. J. Autism Dev. Disord. 2020, 50, 1973–1987. [CrossRef] [PubMed]
Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft robot review. Int. J. Control. Autom. Syst. 2017, 15, 3–15. [CrossRef]
Pratt, G.A.; Williamson, M.M. Series elastic actuators. IEEE Int. Conf. Intell. Robot. Syst. 1995, 1, 399–406. [CrossRef]
Gomez,R.;Szapiro, D.; Galindo, K.; Nakamura, K. Haru: Hardware design of an experimental tabletop robot assistant. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 233–240.
Hopkins, J.B.; Culpepper, M.L. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)—Part I: Principles. Precis. Eng. 2010, 34, 259–270. [CrossRef]
Ma,X.; Quek, F. Development of a child-oriented social robot for safe and interactive physical interaction. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: Piscataway, NJ, USA, 2010,; pp. 2163–2168.
Stoelen, M.F.; Bonsignorio, F.; Cangelosi, A. Co-exploring actuator antagonism and bio-inspired control in a printable robot arm. In International Conference on Simulation of Adaptive Behavior; Springer: Berlin/Heidelberg, Germany, 2016, pp. 244–255.
Petit, F.; Friedl, W.; Höppner, H.; Grebenstein, M. Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism. IEEE/ASME Trans. Mechatron. 2014, 20, 684–695. [CrossRef]
Casas, J.; Leal-Junior, A.; Díaz, C.R.; Frizera, A.; Múnera, M.; Cifuentes, C.A. Large-range polymer optical-fibre strain-gauge sensor for elastic tendons in wearable assistive robots. Materials 2019, 12, 1443. [CrossRef]
Clayton, H.M.; Lanovaz, J.; Schamhardt, H.; Willemen, M.; Colborne, G. Net joint moments and powers in the equine forelimb during the stance phase of the trot. Equine Vet. J. 1998, 30, 384–389. [CrossRef]
Tronick, E.Z.; Morelli, G.A.; Ivey, P.K. The Efe forager infant and toddler’s pattern of social relationships: Multiple and simultaneous. Dev. Psychol. 1992, 28, 568. [CrossRef]
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 22 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI (Multidisciplinary Digital Publishing Institute)
dc.publisher.place.spa.fl_str_mv S.L.
dc.source.spa.fl_str_mv https://www.mdpi.com/2076-0825/9/3/91
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3308/4/An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3308/3/Portada%20An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3308/5/An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3308/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3308/1/An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.pdf
bitstream.checksum.fl_str_mv be3207b254bc53736e206c921fb6c693
d00fb8dd6a3ae32c929748ef8e95813b
f0be56955e8052f9dd2d892b53aeeb13
5a7ca94c2e5326ee169f979d71d0f06e
19deb9cb018decd2128d0f32e3428baf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355637853749248
spelling Casas Bocanegra, Diego6bc4988bb1cc86abc5767bca3ae6d901Gomez Vargas, Daniel5ff3db3ae07cf9b63849c33c764c6401Pinto Bernal, Maria J.7987b931b6ab9b3d7fbb1bf26e10ae54Maldonado, Juan573b50497fdc5deddb900c728a2061a6Munera, Marcelaad6bfbf95a34697f0011b08cab1ec1cdVilla Moreno, Adriana5591202220929653e04d66a873d02213Stoelen, Martin F64348d30b4c77eb8708c504bbfb91acbBelpaeme, Tonya6dc6cd6c436b85b39cf8a7551413d16Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-10-10T17:15:59Z2024-10-10T17:15:59Z2020-092076-0825https://repositorio.escuelaing.edu.co/handle/001/33082076-0825Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Therapy with robotic tools is a promising way to help improve verbal and nonverbal communication in children. The robotic tools are able to increase aspects such as eye contact and the ability to follow instructions and to empathize with others. This work presents the designmethodology, development, and experimental validation of a novel social robot based on CompliAnt SofT Robotics called the CASTOR robot, which intends to be used as an open-source platform for the long-term therapy of children with autism spectrum disorder (CwASD). CASTOR integrates the concepts of soft actuators and compliant mechanisms to create a replicable robotic platform aimed at real therapy scenarios involving physical interaction between the children and the robot. The validation shows promisingresults in terms of robustness andthesafetyoftheuserandrobot. Likewise,mechanicaltests assess the robot’s response to blocking conditions for two critical modules (i.e., neck and arm) in interaction scenarios. Future works should focus on the validation of the robot’s effectiveness in the therapy of CwASD.La terapia con herramientas robóticas es una forma prometedora de ayudar a mejorar la comunicación verbal y no verbal en los niños. Las herramientas robóticas son capaces de incrementar aspectos como el contacto visual y la capacidad de seguir instrucciones y empatizar con los demás. Este trabajo presenta la metodología de diseño, desarrollo y validación experimental de un novedoso robot social basado en CompliAnt SofT Robotics llamado robot CASTOR, que pretende ser utilizado como una plataforma de código abierto para la terapia a largo plazo de niños con trastorno del espectro autista ( CwASD). CASTOR integra los conceptos de actuadores suaves y mecanismos compatibles para crear una plataforma robótica replicable dirigida a escenarios de terapia reales que involucran la interacción física entre los niños y el robot. La validación muestra resultados prometedores en términos de robustez y seguridad del usuario androbot. Asimismo, las pruebas mecánicas evalúan la respuesta del robot a las condiciones de bloqueo de dos módulos críticos (es decir, el cuello y el brazo) en escenarios de interacción. Los trabajos futuros deberían centrarse en la validación de la eficacia del robot en el tratamiento del CwASD.22 páginasapplication/pdfengMDPI (Multidisciplinary Digital Publishing Institute)S.L.https://www.mdpi.com/2076-0825/9/3/91AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASDArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 9 No. 91, 2020229119ActuatorsCifuentes, C.A.; Pinto, M.J.; Céspedes, N.; Múnera, M. Social Robots in Therapy and Care. Curr. Robot. Rep. 2020, 1, 59–74. [CrossRef]Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny,W.; Robinson, C.; Rosenberg, C.R.; etal. PrevalenceofAutismSpectrumDisorderAmongChildren Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWRSurveill. Summ. 2018, 67, 1–23. [CrossRef] [PubMed]World Health Organization. Autism spectrum disorders. In Fact Sheets; WHO: Geneva, Switzerland, 2018.Eggebrecht, A.T.; Elison, J.T.; Feczko, E.; Todorov, A.; Wolff, J.J.; Kandala, S.; Adams, C.M.; Snyder, A.Z.; Lewis, J.D.; Estes, A.M.; et al. Joint attention and brain functional connectivity in infants and toddlers. Cereb. Cortex 2017, 27, 1709–1720. [CrossRef] [PubMed]American Psychiatric Association. DSM-5 Diagnostic Classification. In Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [CrossRef]Belpaeme, T.; Baxter, P.E.; Read, R.; Wood, R.; Cuayáhuitl, H.; Kiefer, B.; Racioppa, S.; Kruijff-Korbayová, I.; Athanasopoulos, G.; Enescu, V.; et al. Multimodal Child-Robot Interaction: Building Social Bonds. J. Hum. Robot. Interact. 2012, 1, 33–53. [CrossRef]Cabibihan, J.J.; Javed, H.; Ang, M.; Aljunied, S.M. Why Robots? A Survey on the Roles and Benefits of Social Robots in the Therapy of Children with Autism. Int. J. Soc. Robot. 2013, 5, 593–618. [CrossRef]Pennisi, P.; Tonacci, A.; Tartarisco, G.; Billeci, L.; Ruta, L.; Gangemi, S.; Pioggia, G. Autism and social robotics: Asystematic review. Autism Res. 2016, 9, 165–183. [CrossRef]Di Nuovo, A.; Conti, D.; Trubia, G.; Buono, S.; Di Nuovo, S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics 2018, 7, 25. [CrossRef]Ramirez-Duque, A.A.; Frizera-Neto, A.; Bastos, T.F. Robot-Assisted Diagnosis for Children with Autism Spectrum Disorder Based on Automated Analysis of Nonverbal Cues. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 456–461. [CrossRef]Anzalone, S.M.; Xavier, J.; Boucenna, S.; Billeci, L.; Narzisi, A.; Muratori, F.; Cohen, D.; Chetouani, M. Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recognit. Lett. 2019, 118, 42–50. [CrossRef]Del Coco, M.; Leo, M.; Carcagni, P.; Fama, F.; Spadaro, L.; Ruta, L.; Pioggia, G.; Distante, C. Study of Mechanisms of Social Interaction Stimulation in Autism Spectrum Disorder by Assisted Humanoid Robot. IEEE Trans. Cogn. Dev. Syst. 2017, 8920, 1. [CrossRef]Yun, S.S.; Choi, J.; Park, S.K.; Bong, G.Y.; Yoo, H. Social skills training for children with autism spectrum disorder using a robotic behavioural intervention system. Autism Res. 2017, 10, 1306–1323. [CrossRef]Zheng,Z.; Das, S.; Young, E.M.; Swanson, A.; Warren, Z.E.; Sarkar, N. Autonomous robot-mediated imitation learning for children with autism. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2707–2712. [CrossRef]Costescu, C.A.; Vanderborght, B.; David, D.O. Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach. J. Autism Dev. Disord. 2014, 45, 3715–3725. [CrossRef] [PubMed]Kim, E.S.; Berkovits, L.D.; Bernier, E.P.; Leyzberg, D.; Shic, F.; Paul, R.; Scassellati, B. Social robots as embedded reinforcers of social behaviour in children with autism. J. Autism Dev. Disord. 2013, 43, 1038–1049. [CrossRef] [PubMed]Feil-Seifer, D.; Mataric, M. Automated detection and classification of positive vs. negative robot interactions with children with autism using distance-based features. In Proceedings of the 6th International Conference on Human-Robot Interaction-HRI ’11, Lausanne, Switzerland, 8–11 March 2011; p. 323. [CrossRef]Vallès-Peris, N.; Angulo, C.; Domènech, M. Children’s imaginaries of human-robot interaction in healthcare. Int. J. Environ. Res. Public Health 2018, 15, 970. [CrossRef] [PubMed]Randall, N.; Bennett, C.C.; Šabanovi´ c, S.; Nagata, S.; Eldridge, L.; Collins, S.; Piatt, J.A. More than just friends: In-home use and design recommendations for sensing socially assistive robots (SARs) by older adults with depression. Paladyn 2019, 10, 237–255. [CrossRef]Nakadoi, Y. Usefulness of Animal Type Robot Assisted Therapy for Autism Spectrum Disorder in the Child and Adolescent Psychiatric Ward. In New Frontiers in Artificial Intelligence; Otake, M., Kurahashi, S., Ota, Y., Satoh, K., Bekki, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 478–482.Bartneck, C.; Belpaeme, T.; Eyssel, F.; Kanda, T.; Keijsers, M.; Šabanovi´c, S. Human-Robot Interaction: AnIntroduction; Cambridge University Press: Cambridge, UK, 2020.Fletcher-Watson, S.; Adams, J.; Brook, K.; Charman, T.; Crane, L.; Cusack, J.; Leekam, S.; Milton, D.; Parr, J.R.; Pellicano, E. Making the future together: Shaping autism research through meaningful participation. Autism 2018, 1–11. [CrossRef]Merter, S.; Hasırcı, D. A participatory product design process with children with autism spectrum disorder. CoDesign 2016, 14, 170–187. [CrossRef]Huijnen, C.A.G.J.; Lexis, M.A.S.; Jansens, R.; de Witte, L.P. Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2016, 1–15. [CrossRef]Simut, R.; Vanderfaeillie, J.; Peca, A.; Van de Perre, G.; Vanderborght, B. Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study. J. Autism Dev. Disord. 2016, 46, 113–126. [CrossRef]Wood, L.J.; Robins, B.; Lakatos, G.; Syrdal, D.S.; Zaraki, A.; Dautenhahn, K. Developing a protocol and experimental setup for using a humanoid robot to assist children with autism to develop visual perspective taking skills. Paladyn 2019, 10, 167–179. [CrossRef]Ramírez-Duque, A.A.; Aycardi, L.F.; Villa, A.; Munera, M.; Bastos, T.; Belpaeme, T.; Frizera-Neto, A.; Cifuentes, C.A. Collaborative and Inclusive Process with the Autism Community: A Case Study in Colombia About Social Robot Design. Int. J. Soc. Robot. 2020. [CrossRef]Argall, B.D.; Billard, A.G. A survey of Tactile HumanRobot Interactions. Robot. Auton. Syst. 2010, 58, 1159–1176. [CrossRef]Libin, A.; Libin, E. Person-robot interactions from the robopsychologists’ point of view: The robotic psychology and robotherapy approach. Proc. IEEE 2004, 92, 1789–1803. [CrossRef]Stiehl, W.; Lieberman, J.; Breazeal, C.; Basel, L.; Lalla, L.; Wolf, M. Design of a therapeutic robotic companion for relational, affective touch. In Proceedings of the ROMAN 2005 IEEE International Workshop on Robot and HumanInteractive Communication, Nashville, TN, USA, 13–15 August 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 408–415. [CrossRef]Iocchi, L.; L, M.T.; Jeanpierre, L. Interaction for Social Robots Assisting Users in Shopping Malls. Int. Conf. Soc. Robot. 2015, 1, 264–274. [CrossRef]Srinivasan, S.M.; Eigsti, I.M.; Neelly, L.; Bhat, A.N. The effects of embodied rhythm and robotic interventions on the spontaneous and responsive social attention patterns of children with autism spectrum disorder (ASD): A pilot randomized controlled trial. Res. Autism Spectr. Disord. 2016, 27, 54–72. [CrossRef] [PubMed]Chevalier, P.; Martin, J.C.; Isableu, B.; Bazile, C.; Iacob, D.O.; Tapus, A. Joint Attention using Human-Robot Interaction: Impact of sensory preferences of children with autism. In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, New York, NY, USA, 26–31 August 2016; pp. 849–854. [CrossRef]So, W.C.; Wong, M.K.Y.; Lam, C.K.Y.; Lam, W.Y.; Chui, A.T.F.; Lee, T.L.; Ng, H.M.; Chan, C.H.; Fok, D.C.W. Using a social robot to teach gestural recognition and production in children with autism spectrum disorders. Disabil. Rehabil. Assist. Technol. 2018, 13, 527–539. [CrossRef] [PubMed]David, D.O.; Costescu, C.A.; Matu, S.; Szentagotai, A.; Dobrean, A. Developing Joint Attention for Children with Autism in Robot-Enhanced Therapy. Int. J. Soc. Robot. 2018, 10, 595–605. [CrossRef]Zheng, Z.; Zhao, H.; Swanson, A.R.; Weitlauf, A.S.; Warren, Z.E.; Sarkar, N. Design, Development, and Evaluation of a Noninvasive Autonomous Robot-Mediated Joint Attention Intervention System for Young Children with ASD. IEEE Trans. Hum. Mach. Syst. 2018, 48, 125–135. [CrossRef]Ramírez-Duque, A.A.; Bastos, T.; Munera, M.; Cifuentes, C.A.; Frizera-Neto, A. Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening. Robot. Auton. Syst. 2020, 127, 103484. [CrossRef]Dautenhahn, K.; Nehaniv, C.L.; Walters, M.L.; Robins, B.; Kose-Bagci, H.; Mirza, N.A.; Blow, M. KASPAR—A Minimally Expressive Humanoid Robot for Human–Robot Interaction Research. Appl. Bionics Biomech. 2009, 6, 369–397. [CrossRef]Robins, B.; Dautenhahn, K. Developing play scenarios for tactile interaction with a humanoid robot: Acase study exploration with children with autism. In International Conference on Social Robotics; Springer: Berlin/Heidelberg, Germany,2010; pp. 243–252.Wainer,J.; Dautenhahn, K.; Robins, B.; Amirabdollahian, F. Collaborating with Kaspar: Using an autonomous humanoid robot to foster cooperative dyadic play among children with autism. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 631–638, [CrossRef]Costa, S.; Lehmann, H.; Dautenhahn, K.; Robins, B.; Soares, F. Using a humanoid robot to elicit body awareness and appropriate physical interaction in children with autism. Int. J. Soc. Robot. 2015, 7, 265–278. [CrossRef]Peca, A.; Simut, R.; Pintea, S.; Vanderborght, B. Are Children with ASD more Prone to Test the Intentions of the Robonova Robot Compared to a Human? Int. J. Soc. Robot. 2015, 7, 629–639. [CrossRef]Hanson, D.; Mazzei, D.; Garver, C.; Ahluwalia, A.; De Rossi, D.; Stevenson, M.; Reynolds, K. Realistic Humanlike Robots for Treatment of Autism. In proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments PETRA, Corfu, Greece, 26–29 June 2012; pp. 1–7.Vandevelde, C.; Saldien, J.; Ciocci, M.C.; Vanderborght, B. The use of social robot ono in robot assisted therapy. In Proceedings of the International Conference on Social Robotics, Bristol, UK, 27–29 October 2013.Vandevelde, C.; Saldien, J.; Ciocci, C.; Vanderborght, B. Ono, a DIY open source platform for social robotics. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, Munich, Germany, 16–19 February 2014.Goris, K.; Saldien, J.; Vanderborght, B.; Lefeber, D. Mechanical design of the huggable robot Probo. Int. J. Humanoid Robot. 2011, 8, 481–511. [CrossRef]Saldien, J.; Goris, K.; Yilmazyildiz, S.; Verhelst, W.; Lefeber, D. On the Design of the Huggable Robot Probo. J. Phys. Agents 2008, 2, 3–11. [CrossRef]Shibata, T.; Mitsui, T.; Wada, K.; Touda, A.; Kumasaka, T.; Tagami, K.; Tanie, K. Mental commit robot and its application to therapy of children. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. AIM 2001, 2, 1053–1058. [CrossRef]Stiehl, W.D.; Lieberman, J.; Breazeal, C.; Basel, L.; Cooper, R.; Knight, H.; Lalla, L.; Maymin, A.; Purchase, S. The Huggable: A therapeutic robotic companion for relational, affective touch. In Proceedings of the 2006 3rd IEEE Consumer Communications and Networking Conference, CCNC 2006, Las Vegas, NV, USA, 8–10 January 2006; Volume 2, pp. 1290–1291. [CrossRef]Grunberg, D.; Ellenberg, R.; Kim, Y.E.; Oh, P.Y. From robonova to hubo: Platforms for robot dance. In FIRA RoboWorld Congress; Springer: Berlin/Heidelberg, Germany, 2009; pp. 19–24.Shamsuddin, S.; Yussof, H.; Ismail, L.I.; Mohamed, S.; Hanapiah, F.A.; Zahari, N.I. Initial Response in HRI-a Case Study on Evaluation of Child with Autism Spectrum Disorders Interacting with a Humanoid Robot NAO. Procedia Eng. 2012, 41, 1448–1455. [CrossRef]Tapus, A.; Peca, A.; Aly, A.; Pop, C.; Jisa, L.; Pintea, S.; Rusu, A.S.; David, D.O. Children with autism social engagement in interaction with Nao, an imitative robot—A series of single case experiments. Interact. Stud. 2012, 13, 315–347. [CrossRef]Robins,B.; Dautenhahn,K. Kaspar,thesocialrobotandwaysitmayhelpchildrenwithautism—Anoverview. Enfance 2018, 2018, 91–102. [CrossRef]Mehrabian, A. Communication without words. Commun. Theory 2008, 6, 193–200.. Samadiani, N.; Huang, G.; Cai, B.; Luo, W.; Chi, C.-H.; Xiang, Y.; He, J. A Review on Automatic Facial Expression Recognition Systems Assisted by Multimodal Sensor Data. Sensors 2019, 19, 1863. [CrossRef]Scassellati, B.; Henny Admoni.; Matari´c, M. Robots for Use in Autism Research. Annu. Rev. Biomed. Eng. 2012, 14, 275–294. [CrossRef]Ricks, D.J.; Colton, M.B. Trends and considerations in robot-assisted autism therapy. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 4354–4359.Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social robots for education: A review. Sci. Robot. 2018, 3, eaat5954. [CrossRef]Admoni,H.; Scassellati, B. Social eye gaze in human-robot interaction: A review. J.-Hum.-Robot. Interact. 2017, 6, 25–63. [CrossRef]Welch, K.C.; Lahiri, U.; Warren, Z.; Sarkar, N. An approach to the design of socially acceptable robots for children with autism spectrum disorders. Int. J. Soc. Robot. 2010, 2, 391–403. [CrossRef]Marino, F.; Chilà, P.; Sfrazzetto, S.T.; Carrozza, C.; Crimi, I.; Failla, C.; Busà, M.; Bernava, G.; Tartarisco, G.; Vagni, D.; et al. Outcomes of a robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. J. Autism Dev. Disord. 2020, 50, 1973–1987. [CrossRef] [PubMed]Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft robot review. Int. J. Control. Autom. Syst. 2017, 15, 3–15. [CrossRef]Pratt, G.A.; Williamson, M.M. Series elastic actuators. IEEE Int. Conf. Intell. Robot. Syst. 1995, 1, 399–406. [CrossRef]Gomez,R.;Szapiro, D.; Galindo, K.; Nakamura, K. Haru: Hardware design of an experimental tabletop robot assistant. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 233–240.Hopkins, J.B.; Culpepper, M.L. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)—Part I: Principles. Precis. Eng. 2010, 34, 259–270. [CrossRef]Ma,X.; Quek, F. Development of a child-oriented social robot for safe and interactive physical interaction. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: Piscataway, NJ, USA, 2010,; pp. 2163–2168.Stoelen, M.F.; Bonsignorio, F.; Cangelosi, A. Co-exploring actuator antagonism and bio-inspired control in a printable robot arm. In International Conference on Simulation of Adaptive Behavior; Springer: Berlin/Heidelberg, Germany, 2016, pp. 244–255.Petit, F.; Friedl, W.; Höppner, H.; Grebenstein, M. Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism. IEEE/ASME Trans. Mechatron. 2014, 20, 684–695. [CrossRef]Casas, J.; Leal-Junior, A.; Díaz, C.R.; Frizera, A.; Múnera, M.; Cifuentes, C.A. Large-range polymer optical-fibre strain-gauge sensor for elastic tendons in wearable assistive robots. Materials 2019, 12, 1443. [CrossRef]Clayton, H.M.; Lanovaz, J.; Schamhardt, H.; Willemen, M.; Colborne, G. Net joint moments and powers in the equine forelimb during the stance phase of the trot. Equine Vet. J. 1998, 30, 384–389. [CrossRef]Tronick, E.Z.; Morelli, G.A.; Ivey, P.K. The Efe forager infant and toddler’s pattern of social relationships: Multiple and simultaneous. Dev. Psychol. 1992, 28, 568. [CrossRef]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobotics in medicineTecnología médicaMedical technologyAutismo en niñosAutism in childrenNiños - Enfermedades - TratamientoChildren - Diseases - TreatmentTrastorno del espectro autistaRobótica de asistencia socialDiseño de robotsActuadores elásticos en serieMecanismos compatiblesTerapia del autismoInteracción físicaAutism spectrum disorderSocial assistive roboticsRobot designSeries elastic actuatorsCompliant mechanismsAutism therapyPhysical interactionTEXTAn Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.pdf.txtAn Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.pdf.txtExtracted texttext/plain67952https://repositorio.escuelaing.edu.co/bitstream/001/3308/4/An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.pdf.txtbe3207b254bc53736e206c921fb6c693MD54metadata only accessTHUMBNAILPortada An Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.PNGPortada An Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.PNGimage/png173149https://repositorio.escuelaing.edu.co/bitstream/001/3308/3/Portada%20An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.PNGd00fb8dd6a3ae32c929748ef8e95813bMD53open accessAn Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.pdf.jpgAn Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.pdf.jpgGenerated Thumbnailimage/jpeg14946https://repositorio.escuelaing.edu.co/bitstream/001/3308/5/An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.pdf.jpgf0be56955e8052f9dd2d892b53aeeb13MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3308/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALAn Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.pdfAn Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD.pdfapplication/pdf21837926https://repositorio.escuelaing.edu.co/bitstream/001/3308/1/An%20Open-Source%20Social%20Robot%20Based%20on%20Compliant%20Soft%20Robotics%20for%20Therapy%20with%20Children%20with%20ASD.pdf19deb9cb018decd2128d0f32e3428bafMD51metadata only access001/3308oai:repositorio.escuelaing.edu.co:001/33082024-10-11 03:01:44.031metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK