The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke

Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamen...

Full description

Autores:
Gomez Vargas, Daniel
Ballen Moreno, Felipe
Barria, Patricio
Aguilar, Rolando
Azorín, José M.
Múnera, Marcela
Cifuentes, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3251
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3251
https://repositorio.escuelaing.edu.co/
Palabra clave:
Robótica médica
Robotics in medicine
Biomecánica
Biomechanics
Accidente cerebrovascular
Stroke
Rehabilitación médica
Medical rehabilitation
Ortesis de tobillo y pie motorizada (PAFO)
Marcha sobre el suelo
Exoesqueleto de tobillo
Análisis biomecánico
Índice de desviación de la marcha (GDI)
Perfil de análisis del movimiento (MAP)
Puntuación del perfil de la marcha (GPS)
Powered Ankle-Foot Orthosis (PAFO)
Overground gait
Ankle exoskeleton
Biomechanical analysis
Gait Deviation Index (GDI)
Movement Analysis Profile (MAP)
Gait Profile Score (GPS)
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_08913f5e254a8a41992d67f36b03abcc
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3251
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
title The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
spellingShingle The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
Robótica médica
Robotics in medicine
Biomecánica
Biomechanics
Accidente cerebrovascular
Stroke
Rehabilitación médica
Medical rehabilitation
Ortesis de tobillo y pie motorizada (PAFO)
Marcha sobre el suelo
Exoesqueleto de tobillo
Análisis biomecánico
Índice de desviación de la marcha (GDI)
Perfil de análisis del movimiento (MAP)
Puntuación del perfil de la marcha (GPS)
Powered Ankle-Foot Orthosis (PAFO)
Overground gait
Ankle exoskeleton
Biomechanical analysis
Gait Deviation Index (GDI)
Movement Analysis Profile (MAP)
Gait Profile Score (GPS)
title_short The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
title_full The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
title_fullStr The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
title_full_unstemmed The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
title_sort The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke
dc.creator.fl_str_mv Gomez Vargas, Daniel
Ballen Moreno, Felipe
Barria, Patricio
Aguilar, Rolando
Azorín, José M.
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.author.none.fl_str_mv Gomez Vargas, Daniel
Ballen Moreno, Felipe
Barria, Patricio
Aguilar, Rolando
Azorín, José M.
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Robótica médica
Robotics in medicine
Biomecánica
Biomechanics
Accidente cerebrovascular
Stroke
Rehabilitación médica
Medical rehabilitation
topic Robótica médica
Robotics in medicine
Biomecánica
Biomechanics
Accidente cerebrovascular
Stroke
Rehabilitación médica
Medical rehabilitation
Ortesis de tobillo y pie motorizada (PAFO)
Marcha sobre el suelo
Exoesqueleto de tobillo
Análisis biomecánico
Índice de desviación de la marcha (GDI)
Perfil de análisis del movimiento (MAP)
Puntuación del perfil de la marcha (GPS)
Powered Ankle-Foot Orthosis (PAFO)
Overground gait
Ankle exoskeleton
Biomechanical analysis
Gait Deviation Index (GDI)
Movement Analysis Profile (MAP)
Gait Profile Score (GPS)
dc.subject.proposal.spa.fl_str_mv Ortesis de tobillo y pie motorizada (PAFO)
Marcha sobre el suelo
Exoesqueleto de tobillo
Análisis biomecánico
Índice de desviación de la marcha (GDI)
Perfil de análisis del movimiento (MAP)
Puntuación del perfil de la marcha (GPS)
dc.subject.proposal.eng.fl_str_mv Powered Ankle-Foot Orthosis (PAFO)
Overground gait
Ankle exoskeleton
Biomechanical analysis
Gait Deviation Index (GDI)
Movement Analysis Profile (MAP)
Gait Profile Score (GPS)
description Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-09-06T19:54:24Z
dc.date.available.none.fl_str_mv 2024-09-06T19:54:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3251
dc.identifier.eissn.spa.fl_str_mv 2076-3425
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
url https://repositorio.escuelaing.edu.co/handle/001/3251
https://repositorio.escuelaing.edu.co/
identifier_str_mv 2076-3425
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 11 No. 412, 2021
dc.relation.citationendpage.spa.fl_str_mv 20
dc.relation.citationissue.spa.fl_str_mv 412
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.eng.fl_str_mv Brain Sciences
dc.relation.references.spa.fl_str_mv Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Fischer, F.; Murray, C.J.L.; Zhang, Y.; Violante, F.S.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [CrossRef]
Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [CrossRef]
Wissel, J.; Manack, A.; Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology 2013, 80, S13–S19. [CrossRef] [PubMed]
Dubin, A. Gait: The role of the ankle and foot in walking. Med. Clin. N. Am. 2014, 98, 205–211. [CrossRef]
Nadeau, S.; Duclos, C.; Bouyer, L.; Richards, C.L. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog. Brain Res. 2011, 192, 161–180. [PubMed
Carolus, A.E.; Becker, M.; Cuny, J.; Smektala, R.; Schmieder, K.; Brenke, C. The interdisciplinary management of foot drop. Dtsch. ÄRzteblatt Int. 2019, 116, 347. [CrossRef]
Chen, C.L.; Chen, H.C.; Tang, S.F.T.; Wu, C.Y.; Cheng, P.T.; Hong, W.H. Gait performance with compensatory adaptations in stroke patients with different degrees of motor recovery. Am. J. Phys. Med. Rehabil. 2003, 82, 925–935. [CrossRef]
Wutzke, C.J.; Sawicki, G.S.; Lewek, M.D. The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J. Biomech. 2012, 45, 2405–2410. [CrossRef]
Gorst, T.; Lyddon, A.; Marsden, J.; Paton, J.; Morrison, S.C.; Cramp, M.; Freeman, J. Foot and ankle impairments affect balance and mobility in stroke (FAiMiS): The views and experiences of people with stroke. Disabil. Rehabil. 2016, 38, 589–596. [CrossRef]
Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.A.; Laureys, S.; Gosseries, O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013, 27, 1093–1105. [CrossRef]
Latham, N.K.; Jette, D.U.; Slavin, M.; Richards, L.G.; Procino, A.; Smout, R.J.; Horn, S.D. Physical therapy during stroke rehabilitation for people with different walking abilities. Arch. Phys. Med. Rehabil. 2005, 86, 41–50. [CrossRef]
DeJong, G.; Hsieh, C.H.; Putman, K.; Smout, R.J.; Horn, S.D.; Tian, W. Physical Therapy Activities in Stroke, Knee Arthroplasty, and Traumatic Brain Injury Rehabilitation: Their Variation, Similarities, and Association With Functional Outcomes. Phys. Ther. 2011, 91, 1826–1837. [CrossRef]
Chang, W.H.; Kim, Y.H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174. [CrossRef
Dobkin, B.H.; Dorsch, A. New Evidence for Therapies in Stroke Rehabilitation. Curr. Atheroscler. Rep. 2013, 15, 331. [CrossRef]
Tyson, S.; Sadeghi-Demneh, E.; Nester, C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin. Rehabil. 2013, 27, 879–891. [CrossRef]
Yamamoto, S.; Ebina, M.; Iwasaki, M.; Kubo, S.; Kawai, H.; Hayashi, T. Comparative study of mechanical characteristics of plastic AFOs. JPO J. Prosthetics Orthot. 1993, 5, 59. [CrossRef]
Boes, M.K.; Bollaert, R.E.; Kesler, R.M.; Learmonth, Y.C.; Islam, M.; Petrucci, M.N.; Motl, R.W.; Hsiao-Wecksler, E.T. Six-minute walk test performance in persons with multiple sclerosis while using passive or powered ankle-foot orthoses. Arch. Phys. Med. Rehabil. 2018, 99, 484–490. [CrossRef] [PubMed]
Sanchez-Villamañan, M.; Gonzalez-Vargas, J.; Torricelli, D.; Moreno, J.C.; Pons, J.L. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. J. Neuroeng. Rehabil. 2019, 16, 55. [CrossRef] [PubMed]
Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [CrossRef] [PubMed]
Sheffler, L.R.; Chae, J. Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 305–323. [CrossRef]
Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]
Moltedo, M.; Baˇcek, T.; Verstraten, T.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Powered ankle-foot orthoses: The effects of the assistance on healthy and impaired users while walking. J. Neuroeng. Rehabil. 2018, 15, 86. [CrossRef] [PubMed]
Manchola, M.; Serrano, D.; Gómez, D.; Ballen, F.; Casas, D.; Munera, M.; Cifuentes, C.A. T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance. In Wearable Robotics: Challenges and Trends; Springer: Berlin/Heidelberg, Germany, 2018; Volume 16, pp. 160–164
Sánchez Manchola, M.D.S.; Pinto Bernal, M.J.P.; Munera, M.; Cifuentes, C.A. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sensors 2019, 19, 2988. [CrossRef]
Gomez-Vargas, D.; Pinto-Bernal, M.J.; Ballen-Moreno, F.; Munera, M.; Cifuentes, C.A. Therapy with T-FLEX Ankle-Exoskeleton for Motor Recovery: A Case Study with a Stroke Survivor. In Proceedings of the 8th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020
Nair, S.P.; Gibbs, S.; Arnold, G.; Abboud, R.; Wang, W. A method to calculate the centre of the ankle joint: A comparison with the Vicon® Plug-in-Gait model. Clin. Biomech. 2010, 25, 582–587. [CrossRef]
Schwartz, M.H.; Rozumalski, A. The Gait Deviation Index: A new comprehensive index of gait pathology. Gait Posture 2008, 28, 351–357. [CrossRef]
Guzik, A.; Druzbicki, M. Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait. ˙ J. Biomech. 2020, 99, 109575. [CrossRef]
Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The Gait Profile Score and Movement Analysis Profile. Gait Posture 2009, 30, 265–269. [CrossRef] [PubMed]
Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons: Hoboken, NJ, USA, 2008.
Demers, L.; Weiss-Lambrou, R.; Ska, B. Development of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST). Assist. Technol. 1996, 8, 3–13. [CrossRef]
Dormans, J.P. Orthopedic management of children with cerebral palsy. Pediatr. Clin. N. Am. 1993, 40, 645–657. [CrossRef]
Burpee, J.L.; Lewek, M.D. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke. Clin. Biomech. 2015, 30, 1102–1107. [CrossRef]
Takahashi, K.Z.; Lewek, M.D.; Sawicki, G.S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: A feasibility study. J. Neuroeng. Rehabil. 2015, 12, 23. [CrossRef] [PubMed]
Kim, J.; Hwang, S.; Sohn, R.; Lee, Y.; Kim, Y. Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: A preliminary study. Appl. Bionics Biomech. 2011, 8, 377–384. [CrossRef]
Yeung, L.F.; Ockenfeld, C.; Pang, M.K.; Wai, H.W.; Soo, O.Y.; Li, S.W.; Tong, K.Y. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 211–215.
Ward, J.; Sugar, T.; Boehler, A.; Standeven, J.; Engsberg, J.R. Stroke survivors’ gait adaptations to a powered ankle-foot orthosis. Adv. Robot. 2011, 25, 1879–1901. [CrossRef] [PubMed]
Shakti, D.; Mathew, L.; Kumar, N.; Kataria, C. Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: A systematic review. Biosens. Bioelectron. 2018, 117, 403–415. [CrossRef]
Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 171–182. [CrossRef]
Schrade, S.O.; Dätwyler, K.; Stücheli, M.; Studer, K.; Türk, D.A.; Meboldt, M.; Gassert, R.; Lambercy, O. Development of VariLeg, an exoskeleton with variable stiffness actuation: First results and user evaluation from the CYBATHLON 2016. J. Neuroeng. Rehabil. 2018, 15, 18. [CrossRef]
Ries, A.J.; Novacheck, T.F.; Schwartz, M.H. The Efficacy of Ankle-Foot Orthoses on Improving the Gait of Children With Diplegic Cerebral Palsy: A Multiple Outcome Analysis. PM&R 2015, 7, 922–929.
Ries, A.J.; Novacheck, T.F.; Schwartz, M.H. Gait & Posture A data driven model for optimal orthosis selection in children with cerebral palsy. Gait Posture 2014, 40, 539–544.
Schwarze, M.; Block, J.; Kunz, T.; Alimusaj, M.; Heitzmann, D.W.W.; Putz, C.; Dreher, T.; Wolf, S.I. Gait & Posture The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture 2019, 68, 525–530.
Galli, M.; Cimolin, V.; Rigoldi, C.; Albertini, G. Quantitative Evaluation of the Effects of Ankle Foot Orthosis on Gait in Children with Cerebral Palsy Using the Gait Profile Score and Gait Variable Scores. J. Dev. Phys. Disabil. 2016, 28, 367–379. [CrossRef]
Skaaret, I.; Steen, H.; Huse, A.B.; Holm, I. Comparison of gait with and without ankle-foot orthoses after lower limb surgery in children with unilateral cerebral palsy. J. Child. Orthop. 2019, 13, 180–189. [CrossRef] [PubMed]
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.spa.fl_str_mv Basel (Suiza)
dc.source.spa.fl_str_mv https://www.mdpi.com/journal/brainsci
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3251/4/The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3251/3/Portada%20The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3251/5/The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3251/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3251/1/The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.pdf
bitstream.checksum.fl_str_mv 68ec92e8277be9b0bd0472df6371a4ac
02044192ec788cb44447d1493fa6462c
03263a0bbef0bc87eed7798f9655f297
5a7ca94c2e5326ee169f979d71d0f06e
93d3c9ffbee452d3b36c2b63e9bf6508
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1811575274730422272
spelling Gomez Vargas, Daniel5ff3db3ae07cf9b63849c33c764c6401Ballen Moreno, Felipe51a18e4b37fb7d7c986144c5638728ddBarria, Patriciofcc8e4d03ad1f2b10cfb1691fcf950d7Aguilar, Rolando6967e3a62c9c2449364e77582e50b45fAzorín, José M.8295183c067aeb344b008795648b4f54Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-09-06T19:54:24Z2024-09-06T19:54:24Z2021https://repositorio.escuelaing.edu.co/handle/001/32512076-3425Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of trainingLos dispositivos robóticos pueden proporcionar asistencia física a personas que han sufrido discapacidades neurológicas como un accidente cerebrovascular. Los trastornos neurológicos relacionados con esta afección inducen patrones de marcha anormales, que impiden la independencia para ejecutar diferentes actividades de la vida diaria (AVD). A partir del papel fundamental del tobillo en la marcha, se han desarrollado ortesis de tobillo y pie motorizadas (PAFO) para mejorar los patrones de marcha de los usuarios y, por lo tanto, su calidad de vida. Diez pacientes que sufrieron un accidente cerebrovascular utilizaron el sistema de actuación del exoesqueleto T-FLEX activado por un sensor inercial en la punta del pie. El sistema de captura VICONmotion registró la cinemática de los usuarios para las modalidades de marcha asistida y no asistida. El análisis biomecánico y la evaluación de usabilidad midieron el rendimiento de la actuación del sistema para los participantes en la marcha sobre el suelo. La evaluación biomecánica mostró cambios en el rango de movimiento de las articulaciones inferiores en el 70% de los sujetos. Además, la cinemática del tobillo mostró una correlación con la variación de otros movimientos analizados. Esta variación tuvo efectos positivos en el 70% de los participantes en al menos una articulación. El Índice de Desviación de la Marcha (GDI) presentó cambios significativos para el 30% de los miembros paréticos y el 40% de los no paréticos, donde la tendencia fue a disminuir. Los parámetros espacio-temporales no mostraron variaciones significativas entre modalidades, aunque la cadencia de los usuarios tuvo una disminución del 70% de los voluntarios. Por último, la satisfacción con el dispositivo fue positiva, siendo la comodidad el aspecto más seleccionado por los usuarios. En este artículo se presenta la evaluación del sistema de actuación T-FLEX en personas que sufrieron un ictus. Los resultados biomecánicos muestran una mejoría en la cinemática del tobillo y variaciones en el resto de articulaciones. En términos generales, el GDI no presenta incrementos significativos y el Perfil de Análisis del Movimiento (MAP) registra alteraciones en la marcha asistida con el dispositivo. Futuros trabajos deberían centrarse en evaluar la ortesis T-FLEX completa en una muestra más amplia de pacientes, incluyendo una etapa de entrenamiento.20 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Basel (Suiza)https://www.mdpi.com/journal/brainsciThe Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with StrokeArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 11 No. 412, 202120412111Brain SciencesFeigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Fischer, F.; Murray, C.J.L.; Zhang, Y.; Violante, F.S.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [CrossRef]Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [CrossRef]Wissel, J.; Manack, A.; Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology 2013, 80, S13–S19. [CrossRef] [PubMed]Dubin, A. Gait: The role of the ankle and foot in walking. Med. Clin. N. Am. 2014, 98, 205–211. [CrossRef]Nadeau, S.; Duclos, C.; Bouyer, L.; Richards, C.L. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog. Brain Res. 2011, 192, 161–180. [PubMedCarolus, A.E.; Becker, M.; Cuny, J.; Smektala, R.; Schmieder, K.; Brenke, C. The interdisciplinary management of foot drop. Dtsch. ÄRzteblatt Int. 2019, 116, 347. [CrossRef]Chen, C.L.; Chen, H.C.; Tang, S.F.T.; Wu, C.Y.; Cheng, P.T.; Hong, W.H. Gait performance with compensatory adaptations in stroke patients with different degrees of motor recovery. Am. J. Phys. Med. Rehabil. 2003, 82, 925–935. [CrossRef]Wutzke, C.J.; Sawicki, G.S.; Lewek, M.D. The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J. Biomech. 2012, 45, 2405–2410. [CrossRef]Gorst, T.; Lyddon, A.; Marsden, J.; Paton, J.; Morrison, S.C.; Cramp, M.; Freeman, J. Foot and ankle impairments affect balance and mobility in stroke (FAiMiS): The views and experiences of people with stroke. Disabil. Rehabil. 2016, 38, 589–596. [CrossRef]Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.A.; Laureys, S.; Gosseries, O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013, 27, 1093–1105. [CrossRef]Latham, N.K.; Jette, D.U.; Slavin, M.; Richards, L.G.; Procino, A.; Smout, R.J.; Horn, S.D. Physical therapy during stroke rehabilitation for people with different walking abilities. Arch. Phys. Med. Rehabil. 2005, 86, 41–50. [CrossRef]DeJong, G.; Hsieh, C.H.; Putman, K.; Smout, R.J.; Horn, S.D.; Tian, W. Physical Therapy Activities in Stroke, Knee Arthroplasty, and Traumatic Brain Injury Rehabilitation: Their Variation, Similarities, and Association With Functional Outcomes. Phys. Ther. 2011, 91, 1826–1837. [CrossRef]Chang, W.H.; Kim, Y.H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174. [CrossRefDobkin, B.H.; Dorsch, A. New Evidence for Therapies in Stroke Rehabilitation. Curr. Atheroscler. Rep. 2013, 15, 331. [CrossRef]Tyson, S.; Sadeghi-Demneh, E.; Nester, C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin. Rehabil. 2013, 27, 879–891. [CrossRef]Yamamoto, S.; Ebina, M.; Iwasaki, M.; Kubo, S.; Kawai, H.; Hayashi, T. Comparative study of mechanical characteristics of plastic AFOs. JPO J. Prosthetics Orthot. 1993, 5, 59. [CrossRef]Boes, M.K.; Bollaert, R.E.; Kesler, R.M.; Learmonth, Y.C.; Islam, M.; Petrucci, M.N.; Motl, R.W.; Hsiao-Wecksler, E.T. Six-minute walk test performance in persons with multiple sclerosis while using passive or powered ankle-foot orthoses. Arch. Phys. Med. Rehabil. 2018, 99, 484–490. [CrossRef] [PubMed]Sanchez-Villamañan, M.; Gonzalez-Vargas, J.; Torricelli, D.; Moreno, J.C.; Pons, J.L. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. J. Neuroeng. Rehabil. 2019, 16, 55. [CrossRef] [PubMed]Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [CrossRef] [PubMed]Sheffler, L.R.; Chae, J. Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 305–323. [CrossRef]Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]Moltedo, M.; Baˇcek, T.; Verstraten, T.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Powered ankle-foot orthoses: The effects of the assistance on healthy and impaired users while walking. J. Neuroeng. Rehabil. 2018, 15, 86. [CrossRef] [PubMed]Manchola, M.; Serrano, D.; Gómez, D.; Ballen, F.; Casas, D.; Munera, M.; Cifuentes, C.A. T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance. In Wearable Robotics: Challenges and Trends; Springer: Berlin/Heidelberg, Germany, 2018; Volume 16, pp. 160–164Sánchez Manchola, M.D.S.; Pinto Bernal, M.J.P.; Munera, M.; Cifuentes, C.A. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sensors 2019, 19, 2988. [CrossRef]Gomez-Vargas, D.; Pinto-Bernal, M.J.; Ballen-Moreno, F.; Munera, M.; Cifuentes, C.A. Therapy with T-FLEX Ankle-Exoskeleton for Motor Recovery: A Case Study with a Stroke Survivor. In Proceedings of the 8th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020Nair, S.P.; Gibbs, S.; Arnold, G.; Abboud, R.; Wang, W. A method to calculate the centre of the ankle joint: A comparison with the Vicon® Plug-in-Gait model. Clin. Biomech. 2010, 25, 582–587. [CrossRef]Schwartz, M.H.; Rozumalski, A. The Gait Deviation Index: A new comprehensive index of gait pathology. Gait Posture 2008, 28, 351–357. [CrossRef]Guzik, A.; Druzbicki, M. Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait. ˙ J. Biomech. 2020, 99, 109575. [CrossRef]Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The Gait Profile Score and Movement Analysis Profile. Gait Posture 2009, 30, 265–269. [CrossRef] [PubMed]Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons: Hoboken, NJ, USA, 2008.Demers, L.; Weiss-Lambrou, R.; Ska, B. Development of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST). Assist. Technol. 1996, 8, 3–13. [CrossRef]Dormans, J.P. Orthopedic management of children with cerebral palsy. Pediatr. Clin. N. Am. 1993, 40, 645–657. [CrossRef]Burpee, J.L.; Lewek, M.D. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke. Clin. Biomech. 2015, 30, 1102–1107. [CrossRef]Takahashi, K.Z.; Lewek, M.D.; Sawicki, G.S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: A feasibility study. J. Neuroeng. Rehabil. 2015, 12, 23. [CrossRef] [PubMed]Kim, J.; Hwang, S.; Sohn, R.; Lee, Y.; Kim, Y. Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: A preliminary study. Appl. Bionics Biomech. 2011, 8, 377–384. [CrossRef]Yeung, L.F.; Ockenfeld, C.; Pang, M.K.; Wai, H.W.; Soo, O.Y.; Li, S.W.; Tong, K.Y. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 211–215.Ward, J.; Sugar, T.; Boehler, A.; Standeven, J.; Engsberg, J.R. Stroke survivors’ gait adaptations to a powered ankle-foot orthosis. Adv. Robot. 2011, 25, 1879–1901. [CrossRef] [PubMed]Shakti, D.; Mathew, L.; Kumar, N.; Kataria, C. Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: A systematic review. Biosens. Bioelectron. 2018, 117, 403–415. [CrossRef]Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 171–182. [CrossRef]Schrade, S.O.; Dätwyler, K.; Stücheli, M.; Studer, K.; Türk, D.A.; Meboldt, M.; Gassert, R.; Lambercy, O. Development of VariLeg, an exoskeleton with variable stiffness actuation: First results and user evaluation from the CYBATHLON 2016. J. Neuroeng. Rehabil. 2018, 15, 18. [CrossRef]Ries, A.J.; Novacheck, T.F.; Schwartz, M.H. The Efficacy of Ankle-Foot Orthoses on Improving the Gait of Children With Diplegic Cerebral Palsy: A Multiple Outcome Analysis. PM&R 2015, 7, 922–929.Ries, A.J.; Novacheck, T.F.; Schwartz, M.H. Gait & Posture A data driven model for optimal orthosis selection in children with cerebral palsy. Gait Posture 2014, 40, 539–544.Schwarze, M.; Block, J.; Kunz, T.; Alimusaj, M.; Heitzmann, D.W.W.; Putz, C.; Dreher, T.; Wolf, S.I. Gait & Posture The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture 2019, 68, 525–530.Galli, M.; Cimolin, V.; Rigoldi, C.; Albertini, G. Quantitative Evaluation of the Effects of Ankle Foot Orthosis on Gait in Children with Cerebral Palsy Using the Gait Profile Score and Gait Variable Scores. J. Dev. Phys. Disabil. 2016, 28, 367–379. [CrossRef]Skaaret, I.; Steen, H.; Huse, A.B.; Holm, I. Comparison of gait with and without ankle-foot orthoses after lower limb surgery in children with unilateral cerebral palsy. J. Child. Orthop. 2019, 13, 180–189. [CrossRef] [PubMed]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobotics in medicineBiomecánicaBiomechanicsAccidente cerebrovascularStrokeRehabilitación médicaMedical rehabilitationOrtesis de tobillo y pie motorizada (PAFO)Marcha sobre el sueloExoesqueleto de tobilloAnálisis biomecánicoÍndice de desviación de la marcha (GDI)Perfil de análisis del movimiento (MAP)Puntuación del perfil de la marcha (GPS)Powered Ankle-Foot Orthosis (PAFO)Overground gaitAnkle exoskeletonBiomechanical analysisGait Deviation Index (GDI)Movement Analysis Profile (MAP)Gait Profile Score (GPS)TEXTThe Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.pdf.txtThe Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.pdf.txtExtracted texttext/plain64910https://repositorio.escuelaing.edu.co/bitstream/001/3251/4/The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.pdf.txt68ec92e8277be9b0bd0472df6371a4acMD54metadata only accessTHUMBNAILPortada The Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.PNGPortada The Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.PNGimage/png143166https://repositorio.escuelaing.edu.co/bitstream/001/3251/3/Portada%20The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.PNG02044192ec788cb44447d1493fa6462cMD53open accessThe Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.pdf.jpgThe Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.pdf.jpgGenerated Thumbnailimage/jpeg15990https://repositorio.escuelaing.edu.co/bitstream/001/3251/5/The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.pdf.jpg03263a0bbef0bc87eed7798f9655f297MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3251/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALThe Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.pdfThe Actuation System of the Ankle Exoskeleton T-FLEX First Use Experimental Validation in People with Stroke.pdfapplication/pdf1535810https://repositorio.escuelaing.edu.co/bitstream/001/3251/1/The%20Actuation%20System%20of%20the%20Ankle%20Exoskeleton%20T-FLEX%20First%20Use%20Experimental%20Validation%20in%20People%20with%20Stroke.pdf93d3c9ffbee452d3b36c2b63e9bf6508MD51metadata only access001/3251oai:repositorio.escuelaing.edu.co:001/32512024-09-07 03:02:43.861metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK