Analysis of non-linear respiratory influences on sleep apnea classification
In this paper we propose the use of Kernel Principal Component Regression (KPCR) in order to model the nonlinear interaction between heart rate (HR) and respiration. We used wavelets in order to decompose the respiratory signal in 2 different frequency bands; namely, the low frequency band (LF) 0-0....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28432
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/28432
- Palabra clave:
- Computational modeling
Heart rate
Matrix decomposition
Abstracts
Monitoring
Biomedical monitoring
Couplings
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_ece2ffb94eb0ab04b402ad5494f1d503 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28432 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
1413951260026c827fb-524d-4c98-829a-5c9a9c9c6127-194f23f75-02c2-4bdf-be25-b1e6c9a34047-12020-08-28T15:48:11Z2020-08-28T15:48:11Z2014-09-01In this paper we propose the use of Kernel Principal Component Regression (KPCR) in order to model the nonlinear interaction between heart rate (HR) and respiration. We used wavelets in order to decompose the respiratory signal in 2 different frequency bands; namely, the low frequency band (LF) 0-0.078Hz, and the high frequency band (HF) 0.078-2.5Hz. We used the decomposed respiration as regressors in the KPCR model. Using the results provided by KPCR we computed the coupling between HR and the respiration in the LF and HF bands, separately. We evaluated the predictive power of these scores using the Physionet Sleep Apnea Dataset. In addition, we compare these results with the ones previously reported in our group, where we used a linear model based on orthogonal subspace projections and wavelet regression. We found that the features extracted using the nonlinear model improved the classification rate for apneic episodes when compared to the linear model, AUC =92.36 vs AUC = 88.29%.application/pdfISSN: 0276-6574EISSN: 2325-8853https://repository.urosario.edu.co/handle/10336/28432engEngineering in Medicine and Biology SocietyComputing in CardiologyComputing in Cardiology,ISSN: 0276-6574; EISSN: 2325-8853 (2014)https://ieeexplore.ieee.org/abstract/document/7043112Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecComputing in Cardiologyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURComputational modelingHeart rateMatrix decompositionAbstractsMonitoringBiomedical monitoringCouplingsAnalysis of non-linear respiratory influences on sleep apnea classificationAnálisis de las influencias respiratorias no lineales en la clasificación de la apnea del sueñoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Caicedo Dorado, AlexanderVaron, CarolinaVan Huffel10336/28432oai:repository.urosario.edu.co:10336/284322021-06-03 00:49:48.161https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Analysis of non-linear respiratory influences on sleep apnea classification |
dc.title.TranslatedTitle.spa.fl_str_mv |
Análisis de las influencias respiratorias no lineales en la clasificación de la apnea del sueño |
title |
Analysis of non-linear respiratory influences on sleep apnea classification |
spellingShingle |
Analysis of non-linear respiratory influences on sleep apnea classification Computational modeling Heart rate Matrix decomposition Abstracts Monitoring Biomedical monitoring Couplings |
title_short |
Analysis of non-linear respiratory influences on sleep apnea classification |
title_full |
Analysis of non-linear respiratory influences on sleep apnea classification |
title_fullStr |
Analysis of non-linear respiratory influences on sleep apnea classification |
title_full_unstemmed |
Analysis of non-linear respiratory influences on sleep apnea classification |
title_sort |
Analysis of non-linear respiratory influences on sleep apnea classification |
dc.subject.keyword.spa.fl_str_mv |
Computational modeling Heart rate Matrix decomposition Abstracts Monitoring Biomedical monitoring Couplings |
topic |
Computational modeling Heart rate Matrix decomposition Abstracts Monitoring Biomedical monitoring Couplings |
description |
In this paper we propose the use of Kernel Principal Component Regression (KPCR) in order to model the nonlinear interaction between heart rate (HR) and respiration. We used wavelets in order to decompose the respiratory signal in 2 different frequency bands; namely, the low frequency band (LF) 0-0.078Hz, and the high frequency band (HF) 0.078-2.5Hz. We used the decomposed respiration as regressors in the KPCR model. Using the results provided by KPCR we computed the coupling between HR and the respiration in the LF and HF bands, separately. We evaluated the predictive power of these scores using the Physionet Sleep Apnea Dataset. In addition, we compare these results with the ones previously reported in our group, where we used a linear model based on orthogonal subspace projections and wavelet regression. We found that the features extracted using the nonlinear model improved the classification rate for apneic episodes when compared to the linear model, AUC =92.36 vs AUC = 88.29%. |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014-09-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:48:11Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:48:11Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0276-6574 EISSN: 2325-8853 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28432 |
identifier_str_mv |
ISSN: 0276-6574 EISSN: 2325-8853 |
url |
https://repository.urosario.edu.co/handle/10336/28432 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationTitle.none.fl_str_mv |
Computing in Cardiology |
dc.relation.ispartof.spa.fl_str_mv |
Computing in Cardiology,ISSN: 0276-6574; EISSN: 2325-8853 (2014) |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/abstract/document/7043112 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Engineering in Medicine and Biology Society |
dc.source.spa.fl_str_mv |
Computing in Cardiology |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106479560884224 |