Analysis of non-linear respiratory influences on sleep apnea classification

In this paper we propose the use of Kernel Principal Component Regression (KPCR) in order to model the nonlinear interaction between heart rate (HR) and respiration. We used wavelets in order to decompose the respiratory signal in 2 different frequency bands; namely, the low frequency band (LF) 0-0....

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28432
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/28432
Palabra clave:
Computational modeling
Heart rate
Matrix decomposition
Abstracts
Monitoring
Biomedical monitoring
Couplings
Rights
License
Restringido (Acceso a grupos específicos)