On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2002
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/26665
- Acceso en línea:
- https://doi.org/10.1023/A:1019755917873
https://repository.urosario.edu.co/handle/10336/26665
- Palabra clave:
- Wave quation
Cauchy problem
Random initial data
Mixing condition
Fourier transform
Convergence to a Gaussian measure
Covariance functions and matrices
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_dea0f56cb0e0d52930ebde7cd630d824 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/26665 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
db6f8bf1-1f13-4283-86a3-b489743890d4-1ef156d4b-69c6-49aa-9bae-464a7795865f-19900af24-844b-4712-b9ef-3ed71c35a63c-159580602-5b24-42d8-b968-57666ff4f37b-12020-08-19T14:40:00Z2020-08-19T14:40:00Z2002-09The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and finite expected energy density. We also assume that ? 0 satisfies a Rosenblatt- or Ibragimov–Linnik-type space mixing condition. The main result is the convergence of ? t to a Gaussian measure ? ? as t ? ?, which gives a Central Limit Theorem (CLT) for the wave equation. The proof for the case of constant coefficients is based on an analysis of long-time asymptotics of the solution in the Fourier representation and Bernstein's “room-corridor” argument. The case of variable coefficients is treated by using a version of the scattering theory for infinite energy solutions, based on Vainberg's results on local energy decay.application/pdfhttps://doi.org/10.1023/A:1019755917873ISSN: 0022-4715EISSN: 1572-9613https://repository.urosario.edu.co/handle/10336/26665engSpringer Nature1253No. 5-61219Journal of Statistical PhysicsVol. 108Journal of Statistical Physics, ISSN: 0022-4715;EISSN: 1572-9613, Vol.108 No.5-6 (2002); pp. 1219–1253https://link.springer.com/article/10.1023/A%3A1019755917873Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecJournal of Statistical Physicsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURWave quationCauchy problemRandom initial dataMixing conditionFourier transformConvergence to a Gaussian measureCovariance functions and matricesOn convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixingSobre la convergencia a la distribución de equilibrio, II. La ecuación de onda en dimensiones impares, con mezclaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Dudnikova, T. V.Komech, A. I.Ratanov, N. E.Suhov, Y. M.10336/26665oai:repository.urosario.edu.co:10336/266652021-06-03 00:49:57.149https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
dc.title.TranslatedTitle.spa.fl_str_mv |
Sobre la convergencia a la distribución de equilibrio, II. La ecuación de onda en dimensiones impares, con mezcla |
title |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
spellingShingle |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing Wave quation Cauchy problem Random initial data Mixing condition Fourier transform Convergence to a Gaussian measure Covariance functions and matrices |
title_short |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
title_full |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
title_fullStr |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
title_full_unstemmed |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
title_sort |
On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing |
dc.subject.keyword.spa.fl_str_mv |
Wave quation Cauchy problem Random initial data Mixing condition Fourier transform Convergence to a Gaussian measure Covariance functions and matrices |
topic |
Wave quation Cauchy problem Random initial data Mixing condition Fourier transform Convergence to a Gaussian measure Covariance functions and matrices |
description |
The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and finite expected energy density. We also assume that ? 0 satisfies a Rosenblatt- or Ibragimov–Linnik-type space mixing condition. The main result is the convergence of ? t to a Gaussian measure ? ? as t ? ?, which gives a Central Limit Theorem (CLT) for the wave equation. The proof for the case of constant coefficients is based on an analysis of long-time asymptotics of the solution in the Fourier representation and Bernstein's “room-corridor” argument. The case of variable coefficients is treated by using a version of the scattering theory for infinite energy solutions, based on Vainberg's results on local energy decay. |
publishDate |
2002 |
dc.date.created.spa.fl_str_mv |
2002-09 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:40:00Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:40:00Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1023/A:1019755917873 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0022-4715 EISSN: 1572-9613 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/26665 |
url |
https://doi.org/10.1023/A:1019755917873 https://repository.urosario.edu.co/handle/10336/26665 |
identifier_str_mv |
ISSN: 0022-4715 EISSN: 1572-9613 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
1253 |
dc.relation.citationIssue.none.fl_str_mv |
No. 5-6 |
dc.relation.citationStartPage.none.fl_str_mv |
1219 |
dc.relation.citationTitle.none.fl_str_mv |
Journal of Statistical Physics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 108 |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Statistical Physics, ISSN: 0022-4715;EISSN: 1572-9613, Vol.108 No.5-6 (2002); pp. 1219–1253 |
dc.relation.uri.spa.fl_str_mv |
https://link.springer.com/article/10.1023/A%3A1019755917873 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Nature |
dc.source.spa.fl_str_mv |
Journal of Statistical Physics |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167601680482304 |