On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing

The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2002
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26665
Acceso en línea:
https://doi.org/10.1023/A:1019755917873
https://repository.urosario.edu.co/handle/10336/26665
Palabra clave:
Wave quation
Cauchy problem
Random initial data
Mixing condition
Fourier transform
Convergence to a Gaussian measure
Covariance functions and matrices
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_dea0f56cb0e0d52930ebde7cd630d824
oai_identifier_str oai:repository.urosario.edu.co:10336/26665
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling db6f8bf1-1f13-4283-86a3-b489743890d4-1ef156d4b-69c6-49aa-9bae-464a7795865f-19900af24-844b-4712-b9ef-3ed71c35a63c-159580602-5b24-42d8-b968-57666ff4f37b-12020-08-19T14:40:00Z2020-08-19T14:40:00Z2002-09The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and finite expected energy density. We also assume that ? 0 satisfies a Rosenblatt- or Ibragimov–Linnik-type space mixing condition. The main result is the convergence of ? t to a Gaussian measure ? ? as t ? ?, which gives a Central Limit Theorem (CLT) for the wave equation. The proof for the case of constant coefficients is based on an analysis of long-time asymptotics of the solution in the Fourier representation and Bernstein's “room-corridor” argument. The case of variable coefficients is treated by using a version of the scattering theory for infinite energy solutions, based on Vainberg's results on local energy decay.application/pdfhttps://doi.org/10.1023/A:1019755917873ISSN: 0022-4715EISSN: 1572-9613https://repository.urosario.edu.co/handle/10336/26665engSpringer Nature1253No. 5-61219Journal of Statistical PhysicsVol. 108Journal of Statistical Physics, ISSN: 0022-4715;EISSN: 1572-9613, Vol.108 No.5-6 (2002); pp. 1219–1253https://link.springer.com/article/10.1023/A%3A1019755917873Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecJournal of Statistical Physicsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURWave quationCauchy problemRandom initial dataMixing conditionFourier transformConvergence to a Gaussian measureCovariance functions and matricesOn convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixingSobre la convergencia a la distribución de equilibrio, II. La ecuación de onda en dimensiones impares, con mezclaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Dudnikova, T. V.Komech, A. I.Ratanov, N. E.Suhov, Y. M.10336/26665oai:repository.urosario.edu.co:10336/266652021-06-03 00:49:57.149https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
dc.title.TranslatedTitle.spa.fl_str_mv Sobre la convergencia a la distribución de equilibrio, II. La ecuación de onda en dimensiones impares, con mezcla
title On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
spellingShingle On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
Wave quation
Cauchy problem
Random initial data
Mixing condition
Fourier transform
Convergence to a Gaussian measure
Covariance functions and matrices
title_short On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
title_full On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
title_fullStr On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
title_full_unstemmed On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
title_sort On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing
dc.subject.keyword.spa.fl_str_mv Wave quation
Cauchy problem
Random initial data
Mixing condition
Fourier transform
Convergence to a Gaussian measure
Covariance functions and matrices
topic Wave quation
Cauchy problem
Random initial data
Mixing condition
Fourier transform
Convergence to a Gaussian measure
Covariance functions and matrices
description The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and finite expected energy density. We also assume that ? 0 satisfies a Rosenblatt- or Ibragimov–Linnik-type space mixing condition. The main result is the convergence of ? t to a Gaussian measure ? ? as t ? ?, which gives a Central Limit Theorem (CLT) for the wave equation. The proof for the case of constant coefficients is based on an analysis of long-time asymptotics of the solution in the Fourier representation and Bernstein's “room-corridor” argument. The case of variable coefficients is treated by using a version of the scattering theory for infinite energy solutions, based on Vainberg's results on local energy decay.
publishDate 2002
dc.date.created.spa.fl_str_mv 2002-09
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:40:00Z
dc.date.available.none.fl_str_mv 2020-08-19T14:40:00Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1023/A:1019755917873
dc.identifier.issn.none.fl_str_mv ISSN: 0022-4715
EISSN: 1572-9613
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/26665
url https://doi.org/10.1023/A:1019755917873
https://repository.urosario.edu.co/handle/10336/26665
identifier_str_mv ISSN: 0022-4715
EISSN: 1572-9613
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 1253
dc.relation.citationIssue.none.fl_str_mv No. 5-6
dc.relation.citationStartPage.none.fl_str_mv 1219
dc.relation.citationTitle.none.fl_str_mv Journal of Statistical Physics
dc.relation.citationVolume.none.fl_str_mv Vol. 108
dc.relation.ispartof.spa.fl_str_mv Journal of Statistical Physics, ISSN: 0022-4715;EISSN: 1572-9613, Vol.108 No.5-6 (2002); pp. 1219–1253
dc.relation.uri.spa.fl_str_mv https://link.springer.com/article/10.1023/A%3A1019755917873
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
dc.source.spa.fl_str_mv Journal of Statistical Physics
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167601680482304