On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing

The paper considers the wave equation, with constant or variable coefficients in ?n, with odd n?3. We study the asymptotics of the distribution ? t of the random solution at time t ? ? as t ? ?. It is assumed that the initial measure ? 0 has zero mean, translation-invariant covariance matrices, and...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2002
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26665
Acceso en línea:
https://doi.org/10.1023/A:1019755917873
https://repository.urosario.edu.co/handle/10336/26665
Palabra clave:
Wave quation
Cauchy problem
Random initial data
Mixing condition
Fourier transform
Convergence to a Gaussian measure
Covariance functions and matrices
Rights
License
Restringido (Acceso a grupos específicos)