Modelo de toma de decisiones utilizando aprendizaje por refuerzo cuántico
El aprendizaje por refuerzo clásico (CRL, por sus siglas en inglés), ha sido utilizado ampliamente en aplicaciones para la psicología y neurociencia. Sin embargo, el aprendizaje por refuerzo cuántico (QRL, por sus siglas en inglés) ha demostrado mejor desempeño en simulaciones por computadora. Para...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/31624
- Acceso en línea:
- https://doi.org/10.48713/10336_31624
https://repository.urosario.edu.co/handle/10336/31624
- Palabra clave:
- Aprendizaje por refuerzo cuántico
Toma de decisiones
Aprendizaje por refuerzo
Ingeniería & operaciones afines
Quantum reinforcement learning
Value-based decision-making
Iowa Gambling
Task
Reinforcement learning
Diseño en ingeniería
- Rights
- License
- Abierto (Texto Completo)
Summary: | El aprendizaje por refuerzo clásico (CRL, por sus siglas en inglés), ha sido utilizado ampliamente en aplicaciones para la psicología y neurociencia. Sin embargo, el aprendizaje por refuerzo cuántico (QRL, por sus siglas en inglés) ha demostrado mejor desempeño en simulaciones por computadora. Para poder analizar la toma de decisiones basada en el valor utilizando estos modelos, se diseñó un protocolo experimental que consiste en dos grupos sanos de diferentes edades realizando la prueba Iowa Gambling Task. Con esta base de datos se comparó el desempeño de cuatro modelos de CRL y uno de QRL, los resultados demostraron que la toma de decisiones basadas en el valor se puede modelar utilizando aprendizaje por refuerzo cuántico y esto sugiere que el enfoque cuántico a la toma de decisiones aporta nuevas perspectivas y herramientas que permiten entender nuevos aspectos del proceso de toma de decisiones humano. |
---|