Cryptomarket analysis: optimal liquidation and market efficiency study
Esta tesis doctoral presenta una investigación profunda sobre la liquidación óptima de activos en criptomonedas y el análisis de la dinámica del mercado bajo la Hipótesis de Mercado Eficiente Débil (WEMH) en diversas criptomonedas. El primer artículo de la tesis se centra en la liquidación de Binanc...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/43141
- Acceso en línea:
- https://doi.org/10.48713/10336_43141
https://repository.urosario.edu.co/handle/10336/43141
- Palabra clave:
- Análisis de impacto en el precio
Análisis de tendencias
Calibración del impacto en el precio
Comercio de criptomonedas
Criptomoneda
Datos de alta frecuencia
Entropía de Shannon
Eficiencia del mercado
Estrategias óptimas de comercio
Estacionariedad
Índice de Hurst
Impacto Permanente en el Precio (PPI)
Impacto Temporal en el Precio (TPI)
Libro de Órdenes (LOB)
Liquidación de criptomonedas
Liquidación óptima
Métodos de diferencias finitas
Microestructura del libro de órdenes
Modelos analíticos
Modelos de comercio financiero
Modelos estocásticos
Soluciones analíticas
Test de autocorrelación
Analytical solutions
Autocorrelation
Binance Coin (BNB)
Cryptocurrency
Cryptocurrency Liquidation
Cryptocurrency Trading
Finite Difference Methods
Financial Trading Models
High-Frequency Data
Hurst Index
Limit Order Book (LOB) Data
Market Efficiency
Market Scenarios (Underestimation, Overestimation, Average Estimation)
Optimal liquidation
Optimal Trading Strategies
Order Book Microstructure
Permanent Price Impact (PPI)
Price Impact Analysis
Price Impact Calibration
Shannon Entropy
Stochastic Modeling
Temporary Price Impact (TPI)
Trend Analysis
Weak Efficient Market Hypothesis
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_c159365a68021fd9aba4f721ac56f768 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/43141 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Cryptomarket analysis: optimal liquidation and market efficiency study |
dc.title.TranslatedTitle.none.fl_str_mv |
Análisis del criptomercado: liquidación óptima y estudio de la eficiencia del mercado |
title |
Cryptomarket analysis: optimal liquidation and market efficiency study |
spellingShingle |
Cryptomarket analysis: optimal liquidation and market efficiency study Análisis de impacto en el precio Análisis de tendencias Calibración del impacto en el precio Comercio de criptomonedas Criptomoneda Datos de alta frecuencia Entropía de Shannon Eficiencia del mercado Estrategias óptimas de comercio Estacionariedad Índice de Hurst Impacto Permanente en el Precio (PPI) Impacto Temporal en el Precio (TPI) Libro de Órdenes (LOB) Liquidación de criptomonedas Liquidación óptima Métodos de diferencias finitas Microestructura del libro de órdenes Modelos analíticos Modelos de comercio financiero Modelos estocásticos Soluciones analíticas Test de autocorrelación Analytical solutions Autocorrelation Binance Coin (BNB) Cryptocurrency Cryptocurrency Liquidation Cryptocurrency Trading Finite Difference Methods Financial Trading Models High-Frequency Data Hurst Index Limit Order Book (LOB) Data Market Efficiency Market Scenarios (Underestimation, Overestimation, Average Estimation) Optimal liquidation Optimal Trading Strategies Order Book Microstructure Permanent Price Impact (PPI) Price Impact Analysis Price Impact Calibration Shannon Entropy Stochastic Modeling Temporary Price Impact (TPI) Trend Analysis Weak Efficient Market Hypothesis |
title_short |
Cryptomarket analysis: optimal liquidation and market efficiency study |
title_full |
Cryptomarket analysis: optimal liquidation and market efficiency study |
title_fullStr |
Cryptomarket analysis: optimal liquidation and market efficiency study |
title_full_unstemmed |
Cryptomarket analysis: optimal liquidation and market efficiency study |
title_sort |
Cryptomarket analysis: optimal liquidation and market efficiency study |
dc.contributor.advisor.none.fl_str_mv |
Ramírez Jaime, Hugo Eduardo |
dc.contributor.gruplac.none.fl_str_mv |
Grupo de investigaciones. Facultad de Economía. Universidad del Rosario |
dc.subject.none.fl_str_mv |
Análisis de impacto en el precio Análisis de tendencias Calibración del impacto en el precio Comercio de criptomonedas Criptomoneda Datos de alta frecuencia Entropía de Shannon Eficiencia del mercado Estrategias óptimas de comercio Estacionariedad Índice de Hurst Impacto Permanente en el Precio (PPI) Impacto Temporal en el Precio (TPI) Libro de Órdenes (LOB) Liquidación de criptomonedas Liquidación óptima Métodos de diferencias finitas Microestructura del libro de órdenes Modelos analíticos Modelos de comercio financiero Modelos estocásticos Soluciones analíticas Test de autocorrelación |
topic |
Análisis de impacto en el precio Análisis de tendencias Calibración del impacto en el precio Comercio de criptomonedas Criptomoneda Datos de alta frecuencia Entropía de Shannon Eficiencia del mercado Estrategias óptimas de comercio Estacionariedad Índice de Hurst Impacto Permanente en el Precio (PPI) Impacto Temporal en el Precio (TPI) Libro de Órdenes (LOB) Liquidación de criptomonedas Liquidación óptima Métodos de diferencias finitas Microestructura del libro de órdenes Modelos analíticos Modelos de comercio financiero Modelos estocásticos Soluciones analíticas Test de autocorrelación Analytical solutions Autocorrelation Binance Coin (BNB) Cryptocurrency Cryptocurrency Liquidation Cryptocurrency Trading Finite Difference Methods Financial Trading Models High-Frequency Data Hurst Index Limit Order Book (LOB) Data Market Efficiency Market Scenarios (Underestimation, Overestimation, Average Estimation) Optimal liquidation Optimal Trading Strategies Order Book Microstructure Permanent Price Impact (PPI) Price Impact Analysis Price Impact Calibration Shannon Entropy Stochastic Modeling Temporary Price Impact (TPI) Trend Analysis Weak Efficient Market Hypothesis |
dc.subject.keyword.none.fl_str_mv |
Analytical solutions Autocorrelation Binance Coin (BNB) Cryptocurrency Cryptocurrency Liquidation Cryptocurrency Trading Finite Difference Methods Financial Trading Models High-Frequency Data Hurst Index Limit Order Book (LOB) Data Market Efficiency Market Scenarios (Underestimation, Overestimation, Average Estimation) Optimal liquidation Optimal Trading Strategies Order Book Microstructure Permanent Price Impact (PPI) Price Impact Analysis Price Impact Calibration Shannon Entropy Stochastic Modeling Temporary Price Impact (TPI) Trend Analysis Weak Efficient Market Hypothesis |
description |
Esta tesis doctoral presenta una investigación profunda sobre la liquidación óptima de activos en criptomonedas y el análisis de la dinámica del mercado bajo la Hipótesis de Mercado Eficiente Débil (WEMH) en diversas criptomonedas. El primer artículo de la tesis se centra en la liquidación de Binance Coin (BNB), analizando los impactos temporales y permanentes en los precios utilizando datos del Libro de Órdenes (LOB) de la plataforma Binance. Se introducen modelos lineales y cuadráticos para el Impacto Permanente en el Precio (PPI) y se derivan estrategias óptimas de liquidación a través de soluciones en forma cerrada. El estudio encuentra que el modelo cuadrático de PPI supera notablemente a los modelos lineales en la captura de impactos permanentes en los precios en el comercio financiero. El segundo artículo amplía esta investigación aplicando diferencias finitas e iteración de políticas óptimas para resolver numéricamente el problema de liquidación bajo diferentes escenarios de estimación del impacto en el precio. Caracteriza las políticas de liquidación óptima basándose en varias parametrizaciones y compara su rendimiento con estrategias ingenuas y comunes, destacando la importancia de la forma funcional del inventario en la determinación de políticas que maximicen los ingresos. El tercer artículo se desvía para examinar la dinámica del mercado, introduciendo una metodología novedosa para identificar épocas de tendencias alcistas, tendencias bajistas y reversión a la media utilizando técnicas estadísticas. Busca evaluar la eficiencia del mercado dentro de estos períodos bajo la Hipótesis de Mercado Eficiente Débil (WEMH) a través de métodos que incluyen el índice de Hurst, la entropía de Shannon y pruebas de autocorrelación. El análisis concluye que los mercados de criptomonedas no se adhieren uniformemente a los principios de la WEMH. Mientras que ciertos períodos y frecuencias muestran eficiencia, otros exhiben predictibilidad e ineficiencia, resaltando la naturaleza compleja y fluctuante de la eficiencia del mercado a través de diferentes criptomonedas y condiciones del mercado. En general, esta tesis contribuye al campo proporcionando conocimientos matizados sobre estrategias de liquidación de activos en el contexto del comercio de criptomonedas y avanzando en la comprensión de la dinámica de la eficiencia del mercado en estos nuevos mercados financieros. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-29T16:38:34Z |
dc.date.available.none.fl_str_mv |
2024-07-29T16:38:34Z |
dc.date.created.none.fl_str_mv |
2024-06-05 |
dc.type.none.fl_str_mv |
doctoralThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.spa.none.fl_str_mv |
Tesis de doctorado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_43141 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/43141 |
url |
https://doi.org/10.48713/10336_43141 https://repository.urosario.edu.co/handle/10336/43141 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
114 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Facultad de Economía |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Economía |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Davies, R. B.; Harte, D. S. (1987) Tests for Hurst Effect. Vol. 74; No. 1; pp. 95–101 - 95–101; Disponible en: http://www.jstor.org/stable/2336024. Harvey, Andrew C.; Collier, Patrick (1977) Testing for functional misspecification in regression analysis. Vol. 6; No. 1; pp. 103 - 119; Thomas, J. W. (1995) Numerical Partial Differential Equations: Finite Difference Methods. : Springer New York, NY; Noda, Akihiko (2020) On the evolution of cryptocurrency market efficiency. pp. 1 - 7; Ramsey, J. B. (1969) Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. Vol. 31; No. 2; pp. 350 - 371; Pham, H. (2009) Continuous-time Stochastic Control and Optimization with Financial Applications. : Springer; Blanco Encinosa, Lázaro J. (2021) Criptomonedas. Breve análisis desde la perspectiva económica y financiera. Vol. 15; Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2073-60612021000200016&nrm=iso. Cox, Raymond; Alimov, A.; Chakraborty, Debasish; Jain, A. (2004) The Random Walk Hypothesis on the Bombay Stock Exchange. Vol. 18; pp. 1251 - 1258; Huberman, G.; Stanzl, W. (2004) Price manipulation and quasi-arbitrage. Vol. 72; No. 4; pp. 1247 - 1275; Toth, B.; Eisler, Z.; Bouchaud, J. P. (2016) The square-root impact law also holds for option markets. No. 85; pp. 70 - 73; Wei, Wang Chun (2018) Liquidity and market efficiency in cryptocurrencies. Vol. 168; pp. 21 - 24; Disponible en: https://www.sciencedirect.com/science/article/pii/S0165176518301320. Cont, Rama; Das, Purba (2024) Rough Volatility: Fact or Artefact?. Disponible en: https://doi.org/10.1007/s13571-024-00322-2. Watorek, Marcin; Drozdz, Stanislaw; Kwapien, Jaroslaw; Minati, Ludovico; Oswiecimka, Pawel; Stanuszek, Marek (2020) Multiscale characteristics of the emerging global cryptocurrency market. Vol. 901; Lim, Kian-Ping; Brooks, Robert (2011) THE EVOLUTION OF STOCK MARKET EFFICIENCY OVER TIME: A SURVEY OF THE EMPIRICAL LITERATURE. Vol. 25; No. 1; pp. 69 - 108; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6419.2009.00611.x. Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio (2017) Optimal Execution with Nonlinear Transient Market Impact. Vol. 17; No. 1; pp. 41 - 54; Kakinaka, Shinji; Umeno, Ken (2022) Cryptocurrency market efficiency in short- and long-term horizons during COVID-19: An asymmetric multifractal analysis approach. Vol. 46; pp. 102319 - 102319; Disponible en: https://www.sciencedirect.com/science/article/pii/S1544612321003469. Nadarajah, Saralees; Chu, Jeffrey (2017) On the inefficiency of Bitcoin. Vol. 150; pp. 6 - 9; Disponible en: https://www.sciencedirect.com/science/article/pii/S0165176516304426. Brunovský, Pavol; Černý, Aleš; Komadel, Ján (2018) Optimal trade execution under endogenous pressure to liquidate: Theory and numerical solutions. Vol. 264; No. 3; pp. 1159 - 1171; Disponible en: https://www.sciencedirect.com/science/article/pii/S0377221717306975. Gatheral, J. (2010) No-dynamic-arbitrage and market impact. Vol. 10; No. 7; pp. 749 - 759; Barunik, Jozef; Dvorakova, Sylvie (2015) An empirical model of fractionally cointegrated daily high and low stock market prices. Vol. 45; pp. 193 - 206; Almgren, Robert; Thum, Ch.; Hauptmann, Emmanuel; Li, Hong (2005) Direct Estimation of Equity Market Impact. Robert, Christian; Rosenbaum, Mathieu (2012) Volatility and Covariation Estimation When Microstructure Noise and Trading Times are Endogenous. Vol. 22; pp. 133 - 164; Duarte, Juan; Mascareñas Perez-Iñigo, Juan (2013) The efficiency of stock markets: a review. No. 122; pp. 21 - 35; Fama, Eugene F. (1970) Efficient Capital Markets: A Review of Theory and Empirical Work. Vol. 25; No. 2; pp. 383–417 - 383–417; Peaceman, D. W.; Ratchford Jr, H. H. (1955) The Numerical Solution of Parabolic and Elliptic Differential Equations. Vol. 3; No. 1; pp. 28 - 41; Cartea, A.; Jaimungal, S.; Penalva, J. (2015) Algorithmic and high-frequency trading. : Cambridge University Press; Lillo, F.; Farmer, J. D.; Mantegna, R. N. (2003) Master curve for price-impact function. Vol. 421; No. 1; pp. 129 - 130; Ljung, G. M.; Box, G. E. P. (1978) On a measure of lack of fit in time series models. Vol. 65; No. 2; pp. 297 - 303; Disponible en: https://doi.org/10.1093/biomet/65.2.297. Shternshis, Andrey; Mazzarisi, Piero; Marmi, Stefano (2022) Efficiency of the Moscow Stock Exchange before 2022. Vol. 24; No. 1184; Disponible en: https://doi.org/10.3390/e24091184. McAleer, Michael; Medeiros, Marcelo C. (2008) Realized Volatility: A Review. Vol. 27; No. 1-3; pp. 10–45 - 10–45; Chu, Jeffrey; Zhang, Yuanyuan; Chan, Stephen (2019) The adaptive market hypothesis in the high frequency cryptocurrency market. Vol. 64; pp. 221 - 231; Disponible en: https://www.sciencedirect.com/science/article/pii/S1057521919300821. Jegadeesh, Narasimhan; Titman, Sheridan (1993) Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Vol. 48; No. 1; pp. 65 - 91; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1993.tb04702.x. Barles, G.; Souganidis, P. E. (1991) Convergence of approximation schemes for fully nonlinear second order equations. Vol. 4; No. 3; pp. 271 - 283; Alfonsi, A. Fruth; A.; Schied, A. (2010) Optimal execution strategies in limit order books with general shape functions. Cont, Rama (2001) Empirical properties of asset returns: stylized facts and statistical issues. Vol. 1; No. 2; pp. 223–236 - 223–236; Subramanian, A. (2008) Optimal Liquidation by a Large Investor. Vol. 68; pp. 1168 - 1201; Zhang, Yuanyuan; Chan, Stephen; Chu, Jeffrey; Sulieman, Hana (2020) On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market. Vol. 13; No. 8; Bellman, R.; Dreyfus, S. (1962) Applied dynamic programming. Zhang, Yuanyuan; Chan, Stephen; Chu, Jeffrey; Sulieman, Hana (2020) On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market. Vol. 13; pp. 8 - 8; Piñeiro-Chousa, Juan; López-Cabarcos, M. Ángeles; Sevic, Aleksandar; González-López, Isaac (2022) A preliminary assessment of the performance of DeFi cryptocurrencies in relation to other financial assets, volatility, and user-generated content. Vol. 181; pp. 121740 - 121740; Disponible en: https://www.sciencedirect.com/science/article/pii/S0040162522002669. Tavella, D.; Randall, C. (2000) Pricing Financial Instruments: The Finite Difference Method. : John Wiley; Lo, Andrew W.; MacKinlay, A. Craig (1999) A Non-Random Walk Down Wall Street. : Princeton University Press; Barger, W.; Lorig, M. (2018) Optimal Liquidation Under Stochastic Price Impact. Almgren, R.; Chriss, N. (2000) Optimal execution of portfolio transactions. Vol. 3; pp. 5 - 39; Bershova, N.; Rakhlin, D. (2013) The Non-Linear Market Impact of Large Trades: Evidence from Buy-Side Order Flow. Vol. 13; No. 11; pp. 1759 - 1778; Gueant, O. (2014) Permanent market impact can be nonlinear. Disponible en: https://arxiv.org/pdf/1305.0413.pdf. Mitra, S. K.; Bawa, Jaslene (2017) Can trade opportunities and returns be generated in a trend persistent series? Evidence from global indices. Vol. 469; pp. 124 - 135; Disponible en: https://www.sciencedirect.com/science/article/pii/S037843711630869X. Duffy, Daniel J. (2006) Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. : John Wiley; Shannon, Claude E. (1948) A mathematical theory of communication. Vol. 27; No. 3; pp. 379–423 - 379–423; Cartea, A.; Jaimungal, S. (2016) A closed-form execution strategy to target. Vol. 7; No. 1; pp. 760 - 785; Sensoy, Ahmet (2019) The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Vol. 28; pp. 68 - 73; Disponible en: https://www.sciencedirect.com/science/article/pii/S1544612318302320. Bollerslev, Tim (1987) A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. Vol. 69; No. 3; pp. 542–547 - 542–547; Bertsimas, Dimitris; Lo, Andrew W. (1998) Optimal control of execution costs. Vol. 1; pp. 1 - 50; Disponible en: https://api.semanticscholar.org/CorpusID:7277717. Cartea, A.; Jaimungal, S. (2016) Incorporating order-flow into optimal execution. Vol. 10; No. 3; pp. 339 - 364; Reppen, Anders Max Alexander (2018) Singular Control in Financial Economics. Agram, Nacira; Hilbert, Astrid; Øksendal, Bernt (2019) Singular control of SPDEs with space-mean dynamics. Ata, Baris; Harrison, J. Michael; Si, Nian (2023) Singular Control of (Reflected) Brownian Motion: A Computational Method Suitable for Queueing Applications. Archankul, Arnon; Ferrari, Giorgio; Hellmann, Tobias; Thijssen, Jacco J. J. (2023) Singular Control in a Cash Management Model with Ambiguity. Budhiraja, Amarjit; Ross, Kevin (2006) Existence of Optimal Controls for Singular Control Problems with State Constraints. Vol. 16; No. 4; pp. Pages - Pages; Huang, Y.; Forsyth, P. A.; Labahn, G. (2012) Iterative Methods for the Solution of a Singular Control Formulation of a GMWB Pricing Problem. Vol. Volume; No. Number; pp. Pages - Pages; Sánchez, J. F.; Ramírez, H. E. (2024) Cryptomarket Analysis: Optimal Liquidation and Market Efficiency Study. Zhao, Lin (2021) The function and impact of cryptocurrency and data technology in the context of financial technology: introduction to the issue. Vol. 7; No. 84; Urquhart, Andrew; Lucey, Brian (2022) Crypto and digital currencies — nine research priorities. Vol. 604; pp. 36–39 - 36–39; Fang, Fan; Ventre, Carmine; Basios, Michail; Kanthan, Leslie; Martinez‑Rego, David; Wu, Fan; Li, Lingbo (2022) Cryptocurrency trading: a comprehensive survey. Vol. 8; No. 13; Evans, Martin D. D.; Lewis, Karen K. (1992) Trends in Expected Returns in Currency and Bond Markets. Griffith, Todd; Clancey-Shang, Danjue (2023) Cryptocurrency regulation and market quality. Vol. 84; pp. 101744 - 101744; Disponible en: https://www.sciencedirect.com/science/article/pii/S1042443123000124. Barbon, Andrea; Ranaldo, Angelo (2022) On The Quality Of Cryptocurrency Markets: Centralized Versus Decentralized Exchanges. No. 22-38; Disponible en: https://ideas.repec.org/p/chf/rpseri/rp2238.html. Kyle, Albert S. (1985) Continuous Auctions and Insider Trading. Vol. 53; No. 6; pp. 1315–1335 - 1315–1335; Peaceman, D. W.; Rachford, H. H. (1955) The numerical solution of parabolic and elliptic differential equations. Vol. 3; No. 1; pp. 28 - 41; Duffy, D. J. (2004) Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. : John Wiley & Sons; Thomas, J. W. (1998) Numerical Partial Differential Equations: Finite Difference Methods. : Springer; Scaillet, Olivier; Treccani, Adrien; Trevisan, Christopher (2017) High-Frequency Jump Analysis of the Bitcoin Market. No. 17-19; Disponible en: https://ssrn.com/abstract=2982298. Aït-Sahalia, Yacine; Yu, Jialin (2009) High frequency market microstructure noise estimates and liquidity measures. Vol. 3; No. 1; pp. 422–457 - 422–457; OpenAI (2024) ChatGPT: A large language model trained by OpenAI. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/f2a6d827-adaa-48d3-9eac-e09acf64ffe5/download https://repository.urosario.edu.co/bitstreams/d0a75c7f-8b35-4d19-96d0-0a56946ec438/download https://repository.urosario.edu.co/bitstreams/c8e4aa89-a490-48df-8595-76b36c624c80/download https://repository.urosario.edu.co/bitstreams/b2536561-0bb3-4dc3-a17c-7e87bcf4ae53/download https://repository.urosario.edu.co/bitstreams/7105a9db-fb85-4c4f-9e65-f48af24bc3d4/download https://repository.urosario.edu.co/bitstreams/1c134c8a-9a3a-460d-bb9c-de3e012d9781/download |
bitstream.checksum.fl_str_mv |
9726142f8f11f1cd96fbe14cfb8e9ee0 b0a0b1cc6e266388b10d61795ed7d709 b2825df9f458e9d5d96ee8b7cd74fde6 3b6ce8e9e36c89875e8cf39962fe8920 2a31700b753c10dd85dfd9aa2ce73d21 5215e7ea252c0048ee95077add0bba4e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106571308138496 |
spelling |
Ramírez Jaime, Hugo Eduardo79913523600Grupo de investigaciones. Facultad de Economía. Universidad del RosarioSánchez López, Julián Fernando, Julián Fernando Sánchez LópezDoctor en EconomíaDoctoradoFull timeddf19092-0690-4e99-8f73-e11a92e29668-12024-07-29T16:38:34Z2024-07-29T16:38:34Z2024-06-05Esta tesis doctoral presenta una investigación profunda sobre la liquidación óptima de activos en criptomonedas y el análisis de la dinámica del mercado bajo la Hipótesis de Mercado Eficiente Débil (WEMH) en diversas criptomonedas. El primer artículo de la tesis se centra en la liquidación de Binance Coin (BNB), analizando los impactos temporales y permanentes en los precios utilizando datos del Libro de Órdenes (LOB) de la plataforma Binance. Se introducen modelos lineales y cuadráticos para el Impacto Permanente en el Precio (PPI) y se derivan estrategias óptimas de liquidación a través de soluciones en forma cerrada. El estudio encuentra que el modelo cuadrático de PPI supera notablemente a los modelos lineales en la captura de impactos permanentes en los precios en el comercio financiero. El segundo artículo amplía esta investigación aplicando diferencias finitas e iteración de políticas óptimas para resolver numéricamente el problema de liquidación bajo diferentes escenarios de estimación del impacto en el precio. Caracteriza las políticas de liquidación óptima basándose en varias parametrizaciones y compara su rendimiento con estrategias ingenuas y comunes, destacando la importancia de la forma funcional del inventario en la determinación de políticas que maximicen los ingresos. El tercer artículo se desvía para examinar la dinámica del mercado, introduciendo una metodología novedosa para identificar épocas de tendencias alcistas, tendencias bajistas y reversión a la media utilizando técnicas estadísticas. Busca evaluar la eficiencia del mercado dentro de estos períodos bajo la Hipótesis de Mercado Eficiente Débil (WEMH) a través de métodos que incluyen el índice de Hurst, la entropía de Shannon y pruebas de autocorrelación. El análisis concluye que los mercados de criptomonedas no se adhieren uniformemente a los principios de la WEMH. Mientras que ciertos períodos y frecuencias muestran eficiencia, otros exhiben predictibilidad e ineficiencia, resaltando la naturaleza compleja y fluctuante de la eficiencia del mercado a través de diferentes criptomonedas y condiciones del mercado. En general, esta tesis contribuye al campo proporcionando conocimientos matizados sobre estrategias de liquidación de activos en el contexto del comercio de criptomonedas y avanzando en la comprensión de la dinámica de la eficiencia del mercado en estos nuevos mercados financieros.This doctoral thesis presents an in-depth investigation into the optimal liquidation of cryptocurrency assets and the analysis of market dynamics under the Weak Efficient Market Hypothesis (WEMH) across various cryptocurrencies. The first paper of the thesis focuses on the liquidation of Binance Coin (BNB), analyzing temporary and permanent price impacts using Limit Order Book (LOB) data from Binance exchange. It introduces linear and quadratic models for Permanent Price Impact (PPI) and derives optimal liquidation strategies through closed-form solutions. The study finds that the quadratic PPI model notably outperforms linear models in capturing permanent price impacts in financial trading. The second paper extends this investigation by applying finite differences and optimal policy iteration to numerically solve the liquidation problem under different scenarios of price impact estimation. It characterizes optimal liquidation policies based on various parametrizations and compares their performance with naive and common strategies, highlighting the importance of the inventory's functional form in determining revenue-maximizing policies. The third paper diverges to examine market dynamics, introducing a novel methodology for identifying epochs of upward trends, downward trends, and mean reversion using statistical techniques. It seeks to evaluate market efficiency within these periods under the Weak Efficient Market Hypothesis (WEMH) through methods including the Hurst index, Shannon entropy, and autocorrelation tests. The analysis concludes that cryptocurrency markets do not uniformly adhere to WEMH principles. While certain periods and frequencies display efficiency, others exhibit predictability and inefficiency, highlighting the complex and fluctuating nature of market efficiency across different cryptocurrencies and market conditions. Overall, this thesis contributes to the field by providing nuanced insights into asset liquidation strategies in the context of cryptocurrency trading and advancing the understanding of market efficiency dynamics in these novel financial markets.114 ppapplication/pdfhttps://doi.org/10.48713/10336_43141 https://repository.urosario.edu.co/handle/10336/43141engUniversidad del RosarioFacultad de EconomíaDoctorado en EconomíaAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Davies, R. B.; Harte, D. S. (1987) Tests for Hurst Effect. Vol. 74; No. 1; pp. 95–101 - 95–101; Disponible en: http://www.jstor.org/stable/2336024.Harvey, Andrew C.; Collier, Patrick (1977) Testing for functional misspecification in regression analysis. Vol. 6; No. 1; pp. 103 - 119;Thomas, J. W. (1995) Numerical Partial Differential Equations: Finite Difference Methods. : Springer New York, NY;Noda, Akihiko (2020) On the evolution of cryptocurrency market efficiency. pp. 1 - 7;Ramsey, J. B. (1969) Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. Vol. 31; No. 2; pp. 350 - 371;Pham, H. (2009) Continuous-time Stochastic Control and Optimization with Financial Applications. : Springer;Blanco Encinosa, Lázaro J. (2021) Criptomonedas. Breve análisis desde la perspectiva económica y financiera. Vol. 15; Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2073-60612021000200016&nrm=iso.Cox, Raymond; Alimov, A.; Chakraborty, Debasish; Jain, A. (2004) The Random Walk Hypothesis on the Bombay Stock Exchange. Vol. 18; pp. 1251 - 1258;Huberman, G.; Stanzl, W. (2004) Price manipulation and quasi-arbitrage. Vol. 72; No. 4; pp. 1247 - 1275;Toth, B.; Eisler, Z.; Bouchaud, J. P. (2016) The square-root impact law also holds for option markets. No. 85; pp. 70 - 73;Wei, Wang Chun (2018) Liquidity and market efficiency in cryptocurrencies. Vol. 168; pp. 21 - 24; Disponible en: https://www.sciencedirect.com/science/article/pii/S0165176518301320.Cont, Rama; Das, Purba (2024) Rough Volatility: Fact or Artefact?. Disponible en: https://doi.org/10.1007/s13571-024-00322-2.Watorek, Marcin; Drozdz, Stanislaw; Kwapien, Jaroslaw; Minati, Ludovico; Oswiecimka, Pawel; Stanuszek, Marek (2020) Multiscale characteristics of the emerging global cryptocurrency market. Vol. 901;Lim, Kian-Ping; Brooks, Robert (2011) THE EVOLUTION OF STOCK MARKET EFFICIENCY OVER TIME: A SURVEY OF THE EMPIRICAL LITERATURE. Vol. 25; No. 1; pp. 69 - 108; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6419.2009.00611.x.Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio (2017) Optimal Execution with Nonlinear Transient Market Impact. Vol. 17; No. 1; pp. 41 - 54;Kakinaka, Shinji; Umeno, Ken (2022) Cryptocurrency market efficiency in short- and long-term horizons during COVID-19: An asymmetric multifractal analysis approach. Vol. 46; pp. 102319 - 102319; Disponible en: https://www.sciencedirect.com/science/article/pii/S1544612321003469.Nadarajah, Saralees; Chu, Jeffrey (2017) On the inefficiency of Bitcoin. Vol. 150; pp. 6 - 9; Disponible en: https://www.sciencedirect.com/science/article/pii/S0165176516304426.Brunovský, Pavol; Černý, Aleš; Komadel, Ján (2018) Optimal trade execution under endogenous pressure to liquidate: Theory and numerical solutions. Vol. 264; No. 3; pp. 1159 - 1171; Disponible en: https://www.sciencedirect.com/science/article/pii/S0377221717306975.Gatheral, J. (2010) No-dynamic-arbitrage and market impact. Vol. 10; No. 7; pp. 749 - 759;Barunik, Jozef; Dvorakova, Sylvie (2015) An empirical model of fractionally cointegrated daily high and low stock market prices. Vol. 45; pp. 193 - 206;Almgren, Robert; Thum, Ch.; Hauptmann, Emmanuel; Li, Hong (2005) Direct Estimation of Equity Market Impact. Robert, Christian; Rosenbaum, Mathieu (2012) Volatility and Covariation Estimation When Microstructure Noise and Trading Times are Endogenous. Vol. 22; pp. 133 - 164;Duarte, Juan; Mascareñas Perez-Iñigo, Juan (2013) The efficiency of stock markets: a review. No. 122; pp. 21 - 35;Fama, Eugene F. (1970) Efficient Capital Markets: A Review of Theory and Empirical Work. Vol. 25; No. 2; pp. 383–417 - 383–417;Peaceman, D. W.; Ratchford Jr, H. H. (1955) The Numerical Solution of Parabolic and Elliptic Differential Equations. Vol. 3; No. 1; pp. 28 - 41;Cartea, A.; Jaimungal, S.; Penalva, J. (2015) Algorithmic and high-frequency trading. : Cambridge University Press;Lillo, F.; Farmer, J. D.; Mantegna, R. N. (2003) Master curve for price-impact function. Vol. 421; No. 1; pp. 129 - 130;Ljung, G. M.; Box, G. E. P. (1978) On a measure of lack of fit in time series models. Vol. 65; No. 2; pp. 297 - 303; Disponible en: https://doi.org/10.1093/biomet/65.2.297.Shternshis, Andrey; Mazzarisi, Piero; Marmi, Stefano (2022) Efficiency of the Moscow Stock Exchange before 2022. Vol. 24; No. 1184; Disponible en: https://doi.org/10.3390/e24091184.McAleer, Michael; Medeiros, Marcelo C. (2008) Realized Volatility: A Review. Vol. 27; No. 1-3; pp. 10–45 - 10–45;Chu, Jeffrey; Zhang, Yuanyuan; Chan, Stephen (2019) The adaptive market hypothesis in the high frequency cryptocurrency market. Vol. 64; pp. 221 - 231; Disponible en: https://www.sciencedirect.com/science/article/pii/S1057521919300821.Jegadeesh, Narasimhan; Titman, Sheridan (1993) Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Vol. 48; No. 1; pp. 65 - 91; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1993.tb04702.x.Barles, G.; Souganidis, P. E. (1991) Convergence of approximation schemes for fully nonlinear second order equations. Vol. 4; No. 3; pp. 271 - 283;Alfonsi, A. Fruth; A.; Schied, A. (2010) Optimal execution strategies in limit order books with general shape functions. Cont, Rama (2001) Empirical properties of asset returns: stylized facts and statistical issues. Vol. 1; No. 2; pp. 223–236 - 223–236;Subramanian, A. (2008) Optimal Liquidation by a Large Investor. Vol. 68; pp. 1168 - 1201;Zhang, Yuanyuan; Chan, Stephen; Chu, Jeffrey; Sulieman, Hana (2020) On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market. Vol. 13; No. 8;Bellman, R.; Dreyfus, S. (1962) Applied dynamic programming. Zhang, Yuanyuan; Chan, Stephen; Chu, Jeffrey; Sulieman, Hana (2020) On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market. Vol. 13; pp. 8 - 8;Piñeiro-Chousa, Juan; López-Cabarcos, M. Ángeles; Sevic, Aleksandar; González-López, Isaac (2022) A preliminary assessment of the performance of DeFi cryptocurrencies in relation to other financial assets, volatility, and user-generated content. Vol. 181; pp. 121740 - 121740; Disponible en: https://www.sciencedirect.com/science/article/pii/S0040162522002669.Tavella, D.; Randall, C. (2000) Pricing Financial Instruments: The Finite Difference Method. : John Wiley;Lo, Andrew W.; MacKinlay, A. Craig (1999) A Non-Random Walk Down Wall Street. : Princeton University Press;Barger, W.; Lorig, M. (2018) Optimal Liquidation Under Stochastic Price Impact. Almgren, R.; Chriss, N. (2000) Optimal execution of portfolio transactions. Vol. 3; pp. 5 - 39;Bershova, N.; Rakhlin, D. (2013) The Non-Linear Market Impact of Large Trades: Evidence from Buy-Side Order Flow. Vol. 13; No. 11; pp. 1759 - 1778;Gueant, O. (2014) Permanent market impact can be nonlinear. Disponible en: https://arxiv.org/pdf/1305.0413.pdf.Mitra, S. K.; Bawa, Jaslene (2017) Can trade opportunities and returns be generated in a trend persistent series? Evidence from global indices. Vol. 469; pp. 124 - 135; Disponible en: https://www.sciencedirect.com/science/article/pii/S037843711630869X.Duffy, Daniel J. (2006) Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. : John Wiley;Shannon, Claude E. (1948) A mathematical theory of communication. Vol. 27; No. 3; pp. 379–423 - 379–423;Cartea, A.; Jaimungal, S. (2016) A closed-form execution strategy to target. Vol. 7; No. 1; pp. 760 - 785;Sensoy, Ahmet (2019) The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Vol. 28; pp. 68 - 73; Disponible en: https://www.sciencedirect.com/science/article/pii/S1544612318302320.Bollerslev, Tim (1987) A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. Vol. 69; No. 3; pp. 542–547 - 542–547;Bertsimas, Dimitris; Lo, Andrew W. (1998) Optimal control of execution costs. Vol. 1; pp. 1 - 50; Disponible en: https://api.semanticscholar.org/CorpusID:7277717.Cartea, A.; Jaimungal, S. (2016) Incorporating order-flow into optimal execution. Vol. 10; No. 3; pp. 339 - 364;Reppen, Anders Max Alexander (2018) Singular Control in Financial Economics. Agram, Nacira; Hilbert, Astrid; Øksendal, Bernt (2019) Singular control of SPDEs with space-mean dynamics. Ata, Baris; Harrison, J. Michael; Si, Nian (2023) Singular Control of (Reflected) Brownian Motion: A Computational Method Suitable for Queueing Applications. Archankul, Arnon; Ferrari, Giorgio; Hellmann, Tobias; Thijssen, Jacco J. J. (2023) Singular Control in a Cash Management Model with Ambiguity. Budhiraja, Amarjit; Ross, Kevin (2006) Existence of Optimal Controls for Singular Control Problems with State Constraints. Vol. 16; No. 4; pp. Pages - Pages;Huang, Y.; Forsyth, P. A.; Labahn, G. (2012) Iterative Methods for the Solution of a Singular Control Formulation of a GMWB Pricing Problem. Vol. Volume; No. Number; pp. Pages - Pages;Sánchez, J. F.; Ramírez, H. E. (2024) Cryptomarket Analysis: Optimal Liquidation and Market Efficiency Study. Zhao, Lin (2021) The function and impact of cryptocurrency and data technology in the context of financial technology: introduction to the issue. Vol. 7; No. 84;Urquhart, Andrew; Lucey, Brian (2022) Crypto and digital currencies — nine research priorities. Vol. 604; pp. 36–39 - 36–39;Fang, Fan; Ventre, Carmine; Basios, Michail; Kanthan, Leslie; Martinez‑Rego, David; Wu, Fan; Li, Lingbo (2022) Cryptocurrency trading: a comprehensive survey. Vol. 8; No. 13;Evans, Martin D. D.; Lewis, Karen K. (1992) Trends in Expected Returns in Currency and Bond Markets. Griffith, Todd; Clancey-Shang, Danjue (2023) Cryptocurrency regulation and market quality. Vol. 84; pp. 101744 - 101744; Disponible en: https://www.sciencedirect.com/science/article/pii/S1042443123000124.Barbon, Andrea; Ranaldo, Angelo (2022) On The Quality Of Cryptocurrency Markets: Centralized Versus Decentralized Exchanges. No. 22-38; Disponible en: https://ideas.repec.org/p/chf/rpseri/rp2238.html.Kyle, Albert S. (1985) Continuous Auctions and Insider Trading. Vol. 53; No. 6; pp. 1315–1335 - 1315–1335;Peaceman, D. W.; Rachford, H. H. (1955) The numerical solution of parabolic and elliptic differential equations. Vol. 3; No. 1; pp. 28 - 41;Duffy, D. J. (2004) Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. : John Wiley & Sons;Thomas, J. W. (1998) Numerical Partial Differential Equations: Finite Difference Methods. : Springer;Scaillet, Olivier; Treccani, Adrien; Trevisan, Christopher (2017) High-Frequency Jump Analysis of the Bitcoin Market. No. 17-19; Disponible en: https://ssrn.com/abstract=2982298.Aït-Sahalia, Yacine; Yu, Jialin (2009) High frequency market microstructure noise estimates and liquidity measures. Vol. 3; No. 1; pp. 422–457 - 422–457;OpenAI (2024) ChatGPT: A large language model trained by OpenAI. instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAnálisis de impacto en el precioAnálisis de tendenciasCalibración del impacto en el precioComercio de criptomonedasCriptomonedaDatos de alta frecuenciaEntropía de ShannonEficiencia del mercadoEstrategias óptimas de comercioEstacionariedadÍndice de HurstImpacto Permanente en el Precio (PPI)Impacto Temporal en el Precio (TPI)Libro de Órdenes (LOB)Liquidación de criptomonedasLiquidación óptimaMétodos de diferencias finitasMicroestructura del libro de órdenesModelos analíticosModelos de comercio financieroModelos estocásticosSoluciones analíticasTest de autocorrelaciónAnalytical solutionsAutocorrelationBinance Coin (BNB)CryptocurrencyCryptocurrency LiquidationCryptocurrency TradingFinite Difference MethodsFinancial Trading ModelsHigh-Frequency DataHurst IndexLimit Order Book (LOB) DataMarket EfficiencyMarket Scenarios (Underestimation, Overestimation, Average Estimation)Optimal liquidationOptimal Trading StrategiesOrder Book MicrostructurePermanent Price Impact (PPI)Price Impact AnalysisPrice Impact CalibrationShannon EntropyStochastic ModelingTemporary Price Impact (TPI)Trend AnalysisWeak Efficient Market HypothesisCryptomarket analysis: optimal liquidation and market efficiency studyAnálisis del criptomercado: liquidación óptima y estudio de la eficiencia del mercadodoctoralThesisTesis de doctoradohttp://purl.org/coar/resource_type/c_db06Facultad de EconomíaBogotáORIGINALCryptomarket_analysis_optimal_liquidation_and.pdfCryptomarket_analysis_optimal_liquidation_and.pdfapplication/pdf1885306https://repository.urosario.edu.co/bitstreams/f2a6d827-adaa-48d3-9eac-e09acf64ffe5/download9726142f8f11f1cd96fbe14cfb8e9ee0MD52References.risReferences.risapplication/x-research-info-systems18563https://repository.urosario.edu.co/bitstreams/d0a75c7f-8b35-4d19-96d0-0a56946ec438/downloadb0a0b1cc6e266388b10d61795ed7d709MD53LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/c8e4aa89-a490-48df-8595-76b36c624c80/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/b2536561-0bb3-4dc3-a17c-7e87bcf4ae53/download3b6ce8e9e36c89875e8cf39962fe8920MD55TEXTCryptomarket_analysis_optimal_liquidation_and.pdf.txtCryptomarket_analysis_optimal_liquidation_and.pdf.txtExtracted texttext/plain101057https://repository.urosario.edu.co/bitstreams/7105a9db-fb85-4c4f-9e65-f48af24bc3d4/download2a31700b753c10dd85dfd9aa2ce73d21MD56THUMBNAILCryptomarket_analysis_optimal_liquidation_and.pdf.jpgCryptomarket_analysis_optimal_liquidation_and.pdf.jpgGenerated Thumbnailimage/jpeg3057https://repository.urosario.edu.co/bitstreams/1c134c8a-9a3a-460d-bb9c-de3e012d9781/download5215e7ea252c0048ee95077add0bba4eMD5710336/43141oai:repository.urosario.edu.co:10336/431412024-09-05 22:13:49.169http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |