Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We pres...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27916
- Acceso en línea:
- https://doi.org/10.3762/bjnano.3.31
https://repository.urosario.edu.co/handle/10336/27916
- Palabra clave:
- Buffer layer
Cu3BiS3
Kelvin probe force microscopy
Solar cells
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_9158bde694dc2948be813991c0062748 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27916 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
80235742-106c3e3ad-4c91-45cb-99f8-213835b2732c-107382fd3-0f61-4925-8779-1b95358a9d5a-133413300-094f-4fcc-8491-f9cffc147766-1d607027a-b924-46bc-9010-4da9ffa92500-1bd202817-feb0-4d42-a587-de59fc5cf545-1aad7f08c-48a6-49c1-9f8e-57d751a4aba5-1b653a890-e520-4880-9a3e-04d8aef135fb-12020-08-19T14:44:37Z2020-08-19T14:44:37Z2012Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.application/pdfhttps://doi.org/10.3762/bjnano.3.31ISSN: 2190-4286https://repository.urosario.edu.co/handle/10336/27916engInstitute for the Advancement of Chemical Sciences284277Beilstein Journal of NanotechnologyVol. 3Beilstein Journal of Nanotechnology, ISSN: 2190-4286, Vol.3 (2012); pp. 277-284https://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-3-31.pdfAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Beilstein Journal of Nanotechnologyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBuffer layerCu3BiS3Kelvin probe force microscopySolar cellsJunction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurementsFormación de la unión de Cu 3BiS 3 investigada por microscopía de fuerza de sonda Kelvin y mediciones de fotovoltaje de superficiearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Mesa, FredyChamorro, WilliamVallejo, WilliamBaier, RobertDittrich, ThomasGrimm, AlexanderLux Steriner, Martha CSadewasser, SaschaORIGINAL2190-4286-3-31.pdfapplication/pdf2887490https://repository.urosario.edu.co/bitstreams/6648c820-6ac5-4a4e-b888-d4557e340624/download3b1967abff664501c5cf2ee6b4afb80cMD51TEXT2190-4286-3-31.pdf.txt2190-4286-3-31.pdf.txtExtracted texttext/plain31462https://repository.urosario.edu.co/bitstreams/0d4daa04-54f6-45a1-bc11-c12140f351d7/download8878a2f16387b2adc0cf99221bbc8a2eMD52THUMBNAIL2190-4286-3-31.pdf.jpg2190-4286-3-31.pdf.jpgGenerated Thumbnailimage/jpeg4143https://repository.urosario.edu.co/bitstreams/815c0c8a-2d8a-46ab-b33b-64e499a255dd/download5903b1610d6658789de4ccd0d94731edMD5310336/27916oai:repository.urosario.edu.co:10336/279162022-05-02 07:37:15.393737https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
dc.title.TranslatedTitle.spa.fl_str_mv |
Formación de la unión de Cu 3BiS 3 investigada por microscopía de fuerza de sonda Kelvin y mediciones de fotovoltaje de superficie |
title |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
spellingShingle |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements Buffer layer Cu3BiS3 Kelvin probe force microscopy Solar cells |
title_short |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
title_full |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
title_fullStr |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
title_full_unstemmed |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
title_sort |
Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements |
dc.subject.keyword.spa.fl_str_mv |
Buffer layer Cu3BiS3 Kelvin probe force microscopy Solar cells |
topic |
Buffer layer Cu3BiS3 Kelvin probe force microscopy Solar cells |
description |
Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased. |
publishDate |
2012 |
dc.date.created.spa.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:44:37Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:44:37Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3762/bjnano.3.31 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 2190-4286 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27916 |
url |
https://doi.org/10.3762/bjnano.3.31 https://repository.urosario.edu.co/handle/10336/27916 |
identifier_str_mv |
ISSN: 2190-4286 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
284 |
dc.relation.citationStartPage.none.fl_str_mv |
277 |
dc.relation.citationTitle.none.fl_str_mv |
Beilstein Journal of Nanotechnology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 3 |
dc.relation.ispartof.spa.fl_str_mv |
Beilstein Journal of Nanotechnology, ISSN: 2190-4286, Vol.3 (2012); pp. 277-284 |
dc.relation.uri.spa.fl_str_mv |
https://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-3-31.pdf |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Institute for the Advancement of Chemical Sciences |
dc.source.spa.fl_str_mv |
Beilstein Journal of Nanotechnology |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/6648c820-6ac5-4a4e-b888-d4557e340624/download https://repository.urosario.edu.co/bitstreams/0d4daa04-54f6-45a1-bc11-c12140f351d7/download https://repository.urosario.edu.co/bitstreams/815c0c8a-2d8a-46ab-b33b-64e499a255dd/download |
bitstream.checksum.fl_str_mv |
3b1967abff664501c5cf2ee6b4afb80c 8878a2f16387b2adc0cf99221bbc8a2e 5903b1610d6658789de4ccd0d94731ed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167640695898112 |