Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We pres...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27916
Acceso en línea:
https://doi.org/10.3762/bjnano.3.31
https://repository.urosario.edu.co/handle/10336/27916
Palabra clave:
Buffer layer
Cu3BiS3
Kelvin probe force microscopy
Solar cells
Rights
License
Abierto (Texto Completo)
id EDOCUR2_9158bde694dc2948be813991c0062748
oai_identifier_str oai:repository.urosario.edu.co:10336/27916
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 80235742-106c3e3ad-4c91-45cb-99f8-213835b2732c-107382fd3-0f61-4925-8779-1b95358a9d5a-133413300-094f-4fcc-8491-f9cffc147766-1d607027a-b924-46bc-9010-4da9ffa92500-1bd202817-feb0-4d42-a587-de59fc5cf545-1aad7f08c-48a6-49c1-9f8e-57d751a4aba5-1b653a890-e520-4880-9a3e-04d8aef135fb-12020-08-19T14:44:37Z2020-08-19T14:44:37Z2012Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.application/pdfhttps://doi.org/10.3762/bjnano.3.31ISSN: 2190-4286https://repository.urosario.edu.co/handle/10336/27916engInstitute for the Advancement of Chemical Sciences284277Beilstein Journal of NanotechnologyVol. 3Beilstein Journal of Nanotechnology, ISSN: 2190-4286, Vol.3 (2012); pp. 277-284https://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-3-31.pdfAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Beilstein Journal of Nanotechnologyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBuffer layerCu3BiS3Kelvin probe force microscopySolar cellsJunction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurementsFormación de la unión de Cu 3BiS 3 investigada por microscopía de fuerza de sonda Kelvin y mediciones de fotovoltaje de superficiearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Mesa, FredyChamorro, WilliamVallejo, WilliamBaier, RobertDittrich, ThomasGrimm, AlexanderLux Steriner, Martha CSadewasser, SaschaORIGINAL2190-4286-3-31.pdfapplication/pdf2887490https://repository.urosario.edu.co/bitstreams/6648c820-6ac5-4a4e-b888-d4557e340624/download3b1967abff664501c5cf2ee6b4afb80cMD51TEXT2190-4286-3-31.pdf.txt2190-4286-3-31.pdf.txtExtracted texttext/plain31462https://repository.urosario.edu.co/bitstreams/0d4daa04-54f6-45a1-bc11-c12140f351d7/download8878a2f16387b2adc0cf99221bbc8a2eMD52THUMBNAIL2190-4286-3-31.pdf.jpg2190-4286-3-31.pdf.jpgGenerated Thumbnailimage/jpeg4143https://repository.urosario.edu.co/bitstreams/815c0c8a-2d8a-46ab-b33b-64e499a255dd/download5903b1610d6658789de4ccd0d94731edMD5310336/27916oai:repository.urosario.edu.co:10336/279162022-05-02 07:37:15.393737https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
dc.title.TranslatedTitle.spa.fl_str_mv Formación de la unión de Cu 3BiS 3 investigada por microscopía de fuerza de sonda Kelvin y mediciones de fotovoltaje de superficie
title Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
spellingShingle Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
Buffer layer
Cu3BiS3
Kelvin probe force microscopy
Solar cells
title_short Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
title_full Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
title_fullStr Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
title_full_unstemmed Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
title_sort Junction formation of Cu 3BiS 3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
dc.subject.keyword.spa.fl_str_mv Buffer layer
Cu3BiS3
Kelvin probe force microscopy
Solar cells
topic Buffer layer
Cu3BiS3
Kelvin probe force microscopy
Solar cells
description Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.
publishDate 2012
dc.date.created.spa.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:44:37Z
dc.date.available.none.fl_str_mv 2020-08-19T14:44:37Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3762/bjnano.3.31
dc.identifier.issn.none.fl_str_mv ISSN: 2190-4286
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27916
url https://doi.org/10.3762/bjnano.3.31
https://repository.urosario.edu.co/handle/10336/27916
identifier_str_mv ISSN: 2190-4286
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 284
dc.relation.citationStartPage.none.fl_str_mv 277
dc.relation.citationTitle.none.fl_str_mv Beilstein Journal of Nanotechnology
dc.relation.citationVolume.none.fl_str_mv Vol. 3
dc.relation.ispartof.spa.fl_str_mv Beilstein Journal of Nanotechnology, ISSN: 2190-4286, Vol.3 (2012); pp. 277-284
dc.relation.uri.spa.fl_str_mv https://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-3-31.pdf
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute for the Advancement of Chemical Sciences
dc.source.spa.fl_str_mv Beilstein Journal of Nanotechnology
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/6648c820-6ac5-4a4e-b888-d4557e340624/download
https://repository.urosario.edu.co/bitstreams/0d4daa04-54f6-45a1-bc11-c12140f351d7/download
https://repository.urosario.edu.co/bitstreams/815c0c8a-2d8a-46ab-b33b-64e499a255dd/download
bitstream.checksum.fl_str_mv 3b1967abff664501c5cf2ee6b4afb80c
8878a2f16387b2adc0cf99221bbc8a2e
5903b1610d6658789de4ccd0d94731ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167640695898112