An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture

This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/42168
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/42168
Palabra clave:
Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id EDOCUR2_8e28b7a0ce3a447d8fff510f46d72fd2
oai_identifier_str oai:repository.urosario.edu.co:10336/42168
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 621cab8c-cace-4dd1-ac96-7825a8a243ff2024-01-31T18:34:49Z2024-01-31T18:34:49Z2023-10-012023This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector.application/pdf10.3390/en161967671996-1073https://repository.urosario.edu.co/handle/10336/42168engUniversidad del Rosariohttps://www.mdpi.com/1996-1073/16/19/6767Attribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Energiesinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURDecision makingDeep learningElectricity price forecasting (EPF)Probabilistic forecastingTime series forecastingAn Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network ArchitecturearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Celeita Rodriguez, David FelipeORIGINALAn Intra Day Electricity Price.pdfapplication/pdf3025208https://repository.urosario.edu.co/bitstreams/6dffa9f2-ab86-4b9d-a3f5-1ee235fba70b/download1b755b5c2ad8bcda401e7e7ba771f714MD51TEXTAn Intra Day Electricity Price.pdf.txtAn Intra Day Electricity Price.pdf.txtExtracted texttext/plain82033https://repository.urosario.edu.co/bitstreams/9ae3d84a-ff90-4b05-821e-720f8e596410/downloadede4b5769b654bc8b41c5e4a0da000c4MD52THUMBNAILAn Intra Day Electricity Price.pdf.jpgAn Intra Day Electricity Price.pdf.jpgGenerated Thumbnailimage/jpeg4816https://repository.urosario.edu.co/bitstreams/dc50e4e9-6725-4d61-aee7-710be74dda26/downloadd96a39255069f30625a43bad2d286985MD5310336/42168oai:repository.urosario.edu.co:10336/421682024-02-01 03:04:45.535https://creativecommons.org/licenses/by/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
spellingShingle An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
title_short An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_full An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_fullStr An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_full_unstemmed An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_sort An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
dc.subject.spa.fl_str_mv Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
topic Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
description This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector.
publishDate 2023
dc.date.created.spa.fl_str_mv 2023-10-01
dc.date.issued.spa.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-31T18:34:49Z
dc.date.available.none.fl_str_mv 2024-01-31T18:34:49Z
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.spa.fl_str_mv 10.3390/en16196767
dc.identifier.issn.spa.fl_str_mv 1996-1073
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/42168
identifier_str_mv 10.3390/en16196767
1996-1073
url https://repository.urosario.edu.co/handle/10336/42168
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.uri.spa.fl_str_mv https://www.mdpi.com/1996-1073/16/19/6767
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
Abierto (Texto Completo)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.source.spa.fl_str_mv Energies
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/6dffa9f2-ab86-4b9d-a3f5-1ee235fba70b/download
https://repository.urosario.edu.co/bitstreams/9ae3d84a-ff90-4b05-821e-720f8e596410/download
https://repository.urosario.edu.co/bitstreams/dc50e4e9-6725-4d61-aee7-710be74dda26/download
bitstream.checksum.fl_str_mv 1b755b5c2ad8bcda401e7e7ba771f714
ede4b5769b654bc8b41c5e4a0da000c4
d96a39255069f30625a43bad2d286985
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167672463556608