An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42168
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/42168
- Palabra clave:
- Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_8e28b7a0ce3a447d8fff510f46d72fd2 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42168 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
621cab8c-cace-4dd1-ac96-7825a8a243ff2024-01-31T18:34:49Z2024-01-31T18:34:49Z2023-10-012023This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector.application/pdf10.3390/en161967671996-1073https://repository.urosario.edu.co/handle/10336/42168engUniversidad del Rosariohttps://www.mdpi.com/1996-1073/16/19/6767Attribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Energiesinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURDecision makingDeep learningElectricity price forecasting (EPF)Probabilistic forecastingTime series forecastingAn Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network ArchitecturearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Celeita Rodriguez, David FelipeORIGINALAn Intra Day Electricity Price.pdfapplication/pdf3025208https://repository.urosario.edu.co/bitstreams/6dffa9f2-ab86-4b9d-a3f5-1ee235fba70b/download1b755b5c2ad8bcda401e7e7ba771f714MD51TEXTAn Intra Day Electricity Price.pdf.txtAn Intra Day Electricity Price.pdf.txtExtracted texttext/plain82033https://repository.urosario.edu.co/bitstreams/9ae3d84a-ff90-4b05-821e-720f8e596410/downloadede4b5769b654bc8b41c5e4a0da000c4MD52THUMBNAILAn Intra Day Electricity Price.pdf.jpgAn Intra Day Electricity Price.pdf.jpgGenerated Thumbnailimage/jpeg4816https://repository.urosario.edu.co/bitstreams/dc50e4e9-6725-4d61-aee7-710be74dda26/downloadd96a39255069f30625a43bad2d286985MD5310336/42168oai:repository.urosario.edu.co:10336/421682024-02-01 03:04:45.535https://creativecommons.org/licenses/by/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
title |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
spellingShingle |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture Decision making Deep learning Electricity price forecasting (EPF) Probabilistic forecasting Time series forecasting |
title_short |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
title_full |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
title_fullStr |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
title_full_unstemmed |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
title_sort |
An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture |
dc.subject.spa.fl_str_mv |
Decision making Deep learning Electricity price forecasting (EPF) Probabilistic forecasting Time series forecasting |
topic |
Decision making Deep learning Electricity price forecasting (EPF) Probabilistic forecasting Time series forecasting |
description |
This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector. |
publishDate |
2023 |
dc.date.created.spa.fl_str_mv |
2023-10-01 |
dc.date.issued.spa.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-31T18:34:49Z |
dc.date.available.none.fl_str_mv |
2024-01-31T18:34:49Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.spa.fl_str_mv |
10.3390/en16196767 |
dc.identifier.issn.spa.fl_str_mv |
1996-1073 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42168 |
identifier_str_mv |
10.3390/en16196767 1996-1073 |
url |
https://repository.urosario.edu.co/handle/10336/42168 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.spa.fl_str_mv |
https://www.mdpi.com/1996-1073/16/19/6767 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Abierto (Texto Completo) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.source.spa.fl_str_mv |
Energies |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/6dffa9f2-ab86-4b9d-a3f5-1ee235fba70b/download https://repository.urosario.edu.co/bitstreams/9ae3d84a-ff90-4b05-821e-720f8e596410/download https://repository.urosario.edu.co/bitstreams/dc50e4e9-6725-4d61-aee7-710be74dda26/download |
bitstream.checksum.fl_str_mv |
1b755b5c2ad8bcda401e7e7ba771f714 ede4b5769b654bc8b41c5e4a0da000c4 d96a39255069f30625a43bad2d286985 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167672463556608 |