An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture

This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/42168
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/42168
Palabra clave:
Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International