An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42168
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/42168
- Palabra clave:
- Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International