Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healt...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/24624
- Acceso en línea:
- https://doi.org/10.1080/03091902.2016.1243168
https://repository.urosario.edu.co/handle/10336/24624
- Palabra clave:
- Maintenance
clinical engineering
human resource planning
multiple criteria analysis
OR in health services
- Rights
- License
- Bloqueado (Texto referencial)
id |
EDOCUR2_84157183e06b7348dadc8bdf699d5eb1 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/24624 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
34174360083740cbc-11c4-4234-9afa-854fa5ecd371-12020-06-11T13:20:53Z2020-06-11T13:20:53Z2017To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healthcare organisations. In doing so, we used a cross-sectional exploratory approach by using a multivariate regression model over a secondary source of data information from the AAMI Benchmarking Solutions-Healthcare Technology Management database. Two hundred and one healthcare organisations were included in our study. Our study revealed that on average, there are almost 14 biomedical technicians (BMETs) per clinical engineer and one FTE per 1083.72 devices (SD 545.69). The results of this study also revealed that the total number of devices and the total technology management hours devoted to these devices positively affects the number of FTEs in a CED, whereas the hospital complexity, measured by healthcare organisation patient discharges matters inversely. The most important factor that matters in the number of FTEs in CEDs was the total technology management hours devoted to devices. A value of explained variance (i.e. R2) of 85% was obtained, indicating the strong power of the prediction accuracy of our multivariate regression model.application/pdfhttps://doi.org/10.1080/03091902.2016.12431681464-522Xhttps://repository.urosario.edu.co/handle/10336/24624engTaylor & Francis164No. 2151Journal of medical engineering & technologyVol. 41Journal of medical engineering & technology, ISSN:1464-522X, Vol.41, No.2 (2017); pp. 151-164https://www.tandfonline.com/doi/abs/10.1080/03091902.2016.1243168Bloqueado (Texto referencial)http://purl.org/coar/access_right/c_14cbinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMaintenanceclinical engineeringhuman resource planningmultiple criteria analysisOR in health servicesDeterminants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.Determinantes en la cantidad de personal en los departamentos de mantenimiento de los hospitales: un enfoque de análisis de regresión multivariantearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Miguel-Cruz, AntonioGuarin, Mayra R10336/24624oai:repository.urosario.edu.co:10336/246242021-06-03 00:50:31.195https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
dc.title.TranslatedTitle.spa.fl_str_mv |
Determinantes en la cantidad de personal en los departamentos de mantenimiento de los hospitales: un enfoque de análisis de regresión multivariante |
title |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
spellingShingle |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. Maintenance clinical engineering human resource planning multiple criteria analysis OR in health services |
title_short |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
title_full |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
title_fullStr |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
title_full_unstemmed |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
title_sort |
Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach. |
dc.subject.keyword.spa.fl_str_mv |
Maintenance clinical engineering human resource planning multiple criteria analysis OR in health services |
topic |
Maintenance clinical engineering human resource planning multiple criteria analysis OR in health services |
description |
To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healthcare organisations. In doing so, we used a cross-sectional exploratory approach by using a multivariate regression model over a secondary source of data information from the AAMI Benchmarking Solutions-Healthcare Technology Management database. Two hundred and one healthcare organisations were included in our study. Our study revealed that on average, there are almost 14 biomedical technicians (BMETs) per clinical engineer and one FTE per 1083.72 devices (SD 545.69). The results of this study also revealed that the total number of devices and the total technology management hours devoted to these devices positively affects the number of FTEs in a CED, whereas the hospital complexity, measured by healthcare organisation patient discharges matters inversely. The most important factor that matters in the number of FTEs in CEDs was the total technology management hours devoted to devices. A value of explained variance (i.e. R2) of 85% was obtained, indicating the strong power of the prediction accuracy of our multivariate regression model. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-06-11T13:20:53Z |
dc.date.available.none.fl_str_mv |
2020-06-11T13:20:53Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/03091902.2016.1243168 |
dc.identifier.issn.none.fl_str_mv |
1464-522X |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/24624 |
url |
https://doi.org/10.1080/03091902.2016.1243168 https://repository.urosario.edu.co/handle/10336/24624 |
identifier_str_mv |
1464-522X |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
164 |
dc.relation.citationIssue.none.fl_str_mv |
No. 2 |
dc.relation.citationStartPage.none.fl_str_mv |
151 |
dc.relation.citationTitle.none.fl_str_mv |
Journal of medical engineering & technology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 41 |
dc.relation.ispartof.spa.fl_str_mv |
Journal of medical engineering & technology, ISSN:1464-522X, Vol.41, No.2 (2017); pp. 151-164 |
dc.relation.uri.none.fl_str_mv |
https://www.tandfonline.com/doi/abs/10.1080/03091902.2016.1243168 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.acceso.spa.fl_str_mv |
Bloqueado (Texto referencial) |
rights_invalid_str_mv |
Bloqueado (Texto referencial) http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor & Francis |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167453166469120 |