Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.

To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healt...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/24624
Acceso en línea:
https://doi.org/10.1080/03091902.2016.1243168
https://repository.urosario.edu.co/handle/10336/24624
Palabra clave:
Maintenance
clinical engineering
human resource planning
multiple criteria analysis
OR in health services
Rights
License
Bloqueado (Texto referencial)
id EDOCUR2_84157183e06b7348dadc8bdf699d5eb1
oai_identifier_str oai:repository.urosario.edu.co:10336/24624
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 34174360083740cbc-11c4-4234-9afa-854fa5ecd371-12020-06-11T13:20:53Z2020-06-11T13:20:53Z2017To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healthcare organisations. In doing so, we used a cross-sectional exploratory approach by using a multivariate regression model over a secondary source of data information from the AAMI Benchmarking Solutions-Healthcare Technology Management database. Two hundred and one healthcare organisations were included in our study. Our study revealed that on average, there are almost 14 biomedical technicians (BMETs) per clinical engineer and one FTE per 1083.72 devices (SD 545.69). The results of this study also revealed that the total number of devices and the total technology management hours devoted to these devices positively affects the number of FTEs in a CED, whereas the hospital complexity, measured by healthcare organisation patient discharges matters inversely. The most important factor that matters in the number of FTEs in CEDs was the total technology management hours devoted to devices. A value of explained variance (i.e. R2) of 85% was obtained, indicating the strong power of the prediction accuracy of our multivariate regression model.application/pdfhttps://doi.org/10.1080/03091902.2016.12431681464-522Xhttps://repository.urosario.edu.co/handle/10336/24624engTaylor & Francis164No. 2151Journal of medical engineering & technologyVol. 41Journal of medical engineering & technology, ISSN:1464-522X, Vol.41, No.2 (2017); pp. 151-164https://www.tandfonline.com/doi/abs/10.1080/03091902.2016.1243168Bloqueado (Texto referencial)http://purl.org/coar/access_right/c_14cbinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMaintenanceclinical engineeringhuman resource planningmultiple criteria analysisOR in health servicesDeterminants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.Determinantes en la cantidad de personal en los departamentos de mantenimiento de los hospitales: un enfoque de análisis de regresión multivariantearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Miguel-Cruz, AntonioGuarin, Mayra R10336/24624oai:repository.urosario.edu.co:10336/246242021-06-03 00:50:31.195https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
dc.title.TranslatedTitle.spa.fl_str_mv Determinantes en la cantidad de personal en los departamentos de mantenimiento de los hospitales: un enfoque de análisis de regresión multivariante
title Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
spellingShingle Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
Maintenance
clinical engineering
human resource planning
multiple criteria analysis
OR in health services
title_short Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
title_full Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
title_fullStr Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
title_full_unstemmed Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
title_sort Determinants in the number of staff in hospitals' maintenance departments: a multivariate regression analysis approach.
dc.subject.keyword.spa.fl_str_mv Maintenance
clinical engineering
human resource planning
multiple criteria analysis
OR in health services
topic Maintenance
clinical engineering
human resource planning
multiple criteria analysis
OR in health services
description To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healthcare organisations. In doing so, we used a cross-sectional exploratory approach by using a multivariate regression model over a secondary source of data information from the AAMI Benchmarking Solutions-Healthcare Technology Management database. Two hundred and one healthcare organisations were included in our study. Our study revealed that on average, there are almost 14 biomedical technicians (BMETs) per clinical engineer and one FTE per 1083.72 devices (SD 545.69). The results of this study also revealed that the total number of devices and the total technology management hours devoted to these devices positively affects the number of FTEs in a CED, whereas the hospital complexity, measured by healthcare organisation patient discharges matters inversely. The most important factor that matters in the number of FTEs in CEDs was the total technology management hours devoted to devices. A value of explained variance (i.e. R2) of 85% was obtained, indicating the strong power of the prediction accuracy of our multivariate regression model.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-06-11T13:20:53Z
dc.date.available.none.fl_str_mv 2020-06-11T13:20:53Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/03091902.2016.1243168
dc.identifier.issn.none.fl_str_mv 1464-522X
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/24624
url https://doi.org/10.1080/03091902.2016.1243168
https://repository.urosario.edu.co/handle/10336/24624
identifier_str_mv 1464-522X
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 164
dc.relation.citationIssue.none.fl_str_mv No. 2
dc.relation.citationStartPage.none.fl_str_mv 151
dc.relation.citationTitle.none.fl_str_mv Journal of medical engineering & technology
dc.relation.citationVolume.none.fl_str_mv Vol. 41
dc.relation.ispartof.spa.fl_str_mv Journal of medical engineering & technology, ISSN:1464-522X, Vol.41, No.2 (2017); pp. 151-164
dc.relation.uri.none.fl_str_mv https://www.tandfonline.com/doi/abs/10.1080/03091902.2016.1243168
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.acceso.spa.fl_str_mv Bloqueado (Texto referencial)
rights_invalid_str_mv Bloqueado (Texto referencial)
http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor & Francis
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167453166469120