From Data-Driven to Data-Feeling: Sentiment Analysis in Real-Time of Messages in Spanish about Scientific Communication Using Machine Learning Techniques
Los cambios producidos en los últimos años en cuanto a modelos de comunicación social han llevado a todos los sectores a adaptarse a los nuevos medios para alcanzar a su público. La comunicación de la ciencia no es una excepción. La manera en que se distribuyen contenidos sobre ciencia está cambiand...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/29119
- Acceso en línea:
- https://doi.org/10.12804/revistas.urosario.edu.co/disertaciones/a.7691
https://repository.urosario.edu.co/handle/10336/29119
- Palabra clave:
- Análisis de sentimiento
aprendizaje automático supervisado
Twitter
comunicación científica
Sentiment analysis
Twitter
supervised machine learning
scientific communication
Análise de Sentimento
aprendizagem automática supervisada
Twitter
comunicação científica
- Rights
- License
- Abierto (Texto Completo)
Summary: | Los cambios producidos en los últimos años en cuanto a modelos de comunicación social han llevado a todos los sectores a adaptarse a los nuevos medios para alcanzar a su público. La comunicación de la ciencia no es una excepción. La manera en que se distribuyen contenidos sobre ciencia está cambiando debido a la presencia creciente de tecnologías, y la red social Twitter se ha convertido en un importante aliado debido a su gran volumen de usuarios. En el presente trabajo, se utilizan técnicas de aprendizaje automático para desarrollar un clasificador -que funciona en tiempo real- de sentimiento relacionados con mensajes publicados en Twitter. Para ello, se descargaron 200 000 tweets destinados a construir un corpus de entrenamiento limpio y procesado de 10 000 textos etiquetados, la mitad positivos y la mitad negativos, sobre ciencia en español. El corpus permite entrenar el modelo de aprendizaje automático y construir un prototipo OpScience, capaz de determinar el sentimiento de mensajes publicados en Twitter en tiempo real. Los resultados relacionados con la exactitud del clasificador corresponden al 72 %. Estos resultados pueden ayudar a darle mayor valor a temas de la comunicación científica en un espacio de debate social y predecir intereses o tendencias futuras, como se pudo comprobar en una prueba en enero de 2019. |
---|