Pronosticando el volumen del mercado interbancario de divisas: caso colombiano
En este trabajo se estudian las fortalezas y debilidades de los modelos de pronóstico del volumen de transacciones del mercado colombiano interbancario de divisas, generado por un modelo basado en árboles de decisión y dos tipos de redes neuronales, las Long short term memory y las temporal convolut...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/40984
- Acceso en línea:
- https://doi.org/10.48713/10336_40984
https://repository.urosario.edu.co/handle/10336/40984
- Palabra clave:
- Mercado FOREX
Análisis de series de tiempo
XGBOOST
Red LSTM
Red TCN
FOREX Market
Time series analysis
XGBOOST
LSTM network
TCN Network
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_4901b646951993d179b93b93d709e601 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/40984 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
dc.title.TranslatedTitle.none.fl_str_mv |
Forecasting the volume of the forex market: colombian case |
title |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
spellingShingle |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano Mercado FOREX Análisis de series de tiempo XGBOOST Red LSTM Red TCN FOREX Market Time series analysis XGBOOST LSTM network TCN Network |
title_short |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
title_full |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
title_fullStr |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
title_full_unstemmed |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
title_sort |
Pronosticando el volumen del mercado interbancario de divisas: caso colombiano |
dc.contributor.advisor.none.fl_str_mv |
Pérez Castañeda, Gabriel Camilo |
dc.subject.none.fl_str_mv |
Mercado FOREX Análisis de series de tiempo XGBOOST Red LSTM Red TCN |
topic |
Mercado FOREX Análisis de series de tiempo XGBOOST Red LSTM Red TCN FOREX Market Time series analysis XGBOOST LSTM network TCN Network |
dc.subject.keyword.none.fl_str_mv |
FOREX Market Time series analysis XGBOOST LSTM network TCN Network |
description |
En este trabajo se estudian las fortalezas y debilidades de los modelos de pronóstico del volumen de transacciones del mercado colombiano interbancario de divisas, generado por un modelo basado en árboles de decisión y dos tipos de redes neuronales, las Long short term memory y las temporal convolutional nexworks, comparados con los modelos econométricos tradicionales para el estudio de series de tiempo. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-15T21:02:26Z |
dc.date.available.none.fl_str_mv |
2023-09-15T21:02:26Z |
dc.date.created.none.fl_str_mv |
2023-08-25 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_40984 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/40984 |
url |
https://doi.org/10.48713/10336_40984 https://repository.urosario.edu.co/handle/10336/40984 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
51 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería, Ciencia y Tecnología |
dc.publisher.program.spa.fl_str_mv |
Maestría en Matemáticas Aplicadas y Ciencias de la Computación |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Montgomery, Douglas C; Jennings, Cheryl L; Kulahci, Murat (2008) Introduction to time series analysis and forecasting. En: Wiley series in probability and statistics. Hoboken, N.J: Wiley-Interscience; 9780471653974; Hyndman, Rob J; Athanasopoulos, George (2021) Forecasting: Principles and Practice. Melbourne, Australia: OTexts; Bai, Shaojie; Kolter, J Zico; Koltun, Vladlen (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks. : arXiv; Consultado en: 2023/6/10. Disponible en: http://arxiv.org/abs/1803.01271. Chen, Tianqi; Guestrin, Carlos (2016) XGBoost: A Scalable Tree Boosting System. En: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge. pp. 785-794 Consultado en: 2023/6/10. Disponible en: http://arxiv.org/abs/1603.02754; http://dx.doi.org/10.1145/2939672.2939785. Disponible en: 10.1145/2939672.2939785. McCulloch, W S; Pitts, W (1943) A logical calculus of the ideas immanent in nervous activity. En: Bulletin of Mathematical Biophysics 5. pp. 115–133 : Springer; Disponible en: http://dx.doi.org/10.1007/BF02478259. Disponible en: 10.1007/BF02478259. Rosenblatt, F (1958) The perceptron: A probabilistic model for information storage and. En: Psychological Review. Vol. 65; No. 6; pp. 386-408 Disponible en: http://dx.doi.org/10.1037/h0042519. Disponible en: 10.1037/h0042519. Eckerli, Florian (2021) Generative Adversarial Networks in finance: an overview. En: SSRN Electronic Journal. 1556-5068; Consultado en: 2022/10/30. Disponible en: https://www.ssrn.com/abstract=3864965; http://dx.doi.org/10.2139/ssrn.3864965. Disponible en: 10.2139/ssrn.3864965. Brownlees, Christian T; Cipollini, Fabrizio; Gallo, Giampiero M; Intra-daily Volume Modeling and Prediction for Algorithmic Trading. En: Journal of Financial Econometrics. pp. 30 Abu-Mostafa, Yaser S; Atiya, Amir F (1996) Introduction to financial forecasting. En: Applied Intelligence. Vol. 6; No. 3; pp. 205-213 0924-669X; Consultado en: 2022/10/30. Disponible en: http://link.springer.com/10.1007/BF00126626; http://dx.doi.org/10.1007/BF00126626. Disponible en: 10.1007/BF00126626. Sarmiento, Cristian Fabián Ladino; Metodología para pronosticar la Posición Propia de Contado de los. pp. 25 Veenstra, Albert W; Haralambides, Hercules E (2001) Multivariate autoregressive models for forecasting seaborne trade ¯ows. pp. 9 Alford, Andrew W; Berger, Philip G (1999) A Simultaneous Equations Analysis of Forecast Accuracy, Analyst Following,. En: Journal of Accounting, Auditing & Finance. Vol. 14; No. 3; pp. 219-240 0148-558X; Consultado en: 2022/10/30. Disponible en: http://journals.sagepub.com/doi/10.1177/0148558X9901400303; http://dx.doi.org/10.1177/0148558X9901400303. Disponible en: 10.1177/0148558X9901400303. Alford, Andrew W; Berger, Philip G (1999) A Simultaneous Equations Analysis of Forecast Accuracy, Analyst Following,. En: Journal of Accounting, Auditing & Finance. Vol. 14; No. 3; pp. 219-240 0148-558X; Consultado en: 2022/10/30. Disponible en: http://journals.sagepub.com/doi/10.1177/0148558X9901400303; http://dx.doi.org/10.1177/0148558X9901400303. Disponible en: 10.1177/0148558X9901400303. Zhou, Xingyu; Pan, Zhisong; Hu, Guyu; Tang, Siqi; Zhao, Cheng (2018) Stock Market Prediction on High-Frequency Data Using Generative. En: Mathematical Problems in Engineering. Vol. 2018; pp. 1-11 1024-123X; Consultado en: 2022/10/30. Disponible en: https://www.hindawi.com/journals/mpe/2018/4907423/; http://dx.doi.org/10.1155/2018/4907423. Disponible en: 10.1155/2018/4907423. Huang, Yusheng; Gao, Yelin; Gan, Yan; Ye, Mao (2021) A new financial data forecasting model using genetic algorithm and long. En: Neurocomputing. Vol. 425; pp. 207-218 0925-2312; Consultado en: 2022/10/30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0925231220306718; http://dx.doi.org/10.1016/j.neucom.2020.04.086. Disponible en: 10.1016/j.neucom.2020.04.086. Khadjeh Nassirtoussi, Arman; Aghabozorgi, Saeed; Ying Wah, Teh; Ngo, David Chek Ling (2015) Text mining of news-headlines for FOREX market prediction: A Multi-layer. En: Expert Systems with Applications. Vol. 42; No. 1; pp. 306-324 0957-4174; Consultado en: 2022/10/30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0957417414004801; http://dx.doi.org/10.1016/j.eswa.2014.08.004. Disponible en: 10.1016/j.eswa.2014.08.004. Muthukumar, Pratyush; Zhong, Jie (2021) A Stochastic Time Series Model for Predicting Financial Trends using NLP. : arXiv; Consultado en: 2022/10/30. Disponible en: http://arxiv.org/abs/2102.01290. Vui, Chang Sim; Soon, Gan Kim; On, Chin Kim; Alfred, Rayner; Anthony, Patricia (2013) A review of stock market prediction with Artificial neural network (ANN). En: 2013 IEEE International Conference on Control System, Computing and. pp. 477-482 : IEEE; Consultado en: 2022/10/30. Disponible en: http://ieeexplore.ieee.org/document/6720012/; http://dx.doi.org/10.1109/ICCSCE.2013.6720012. Disponible en: 10.1109/ICCSCE.2013.6720012. Galati, Gabriele; Trading volumes, volatility and spreads in FX markets: evidence from. En: BIS Papers. No. 2; pp. 197-229 Srivastava, Sarvagya; Khare, Vishwaas; Vidhya, R; Economic Forecasting using Generative Adversarial Networks. En: International Journal of Engineering Research. Vol. 10; No. 05; pp. 7 Corella, Alejandro Crespo (2016) El gran abanico mundial: “Mercado de divisas”. : Universidad de Zaragoza; Markova, M (2019) Foreign exchange rate forecasting by artificial neural networks. En: APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th. Vol. 2461; Consultado en: 2022/10/30. Disponible en: http://aip.scitation.org/doi/abs/10.1063/1.5130812; http://dx.doi.org/10.1063/1.5130812. Disponible en: 10.1063/1.5130812. Santoro, Domenico; Grilli, Luca (2022) Generative Adversarial Network to evaluate quantity of information in. En: Neural Computing and Applications. Vol. 34; No. 20; pp. 17473-17490 0941-0643; Consultado en: 2022/10/30. Disponible en: https://link.springer.com/10.1007/s00521-022-07401-3; http://dx.doi.org/10.1007/s00521-022-07401-3. Disponible en: 10.1007/s00521-022-07401-3. Gan, Kim Soon; Chin, Kim On; Anthony, Patricia; Chang, Sim Vui (2018) Homogeneous Ensemble FeedForward Neural Network in CIMB Stock Price. En: 2018 IEEE International Conference on Artificial Intelligence in. pp. 1-6 : IEEE; Consultado en: 2022/10/30. Disponible en: https://ieeexplore.ieee.org/document/8638452/; http://dx.doi.org/10.1109/IICAIET.2018.8638452. Disponible en: 10.1109/IICAIET.2018.8638452. Wu, Weijie; Huang, Fang; Kao, Yidi; Chen, Zhou; Wu, Qi (2021) Prediction Method of Multiple Related Time Series Based on Generative. En: Information. Vol. 12; No. 2; pp. 55 2078-2489; Consultado en: 2022/10/30. Disponible en: https://www.mdpi.com/2078-2489/12/2/55; http://dx.doi.org/10.3390/info12020055. Disponible en: 10.3390/info12020055. Sarno, Lucio; Taylor, Mark P; The Economics of Exchange Rates. pp. 331 Ghysels, Eric; Santa- Clara, Pedro; Valkanov, Rossen (2004) The MIDAS Touch: Mixed Data Sampling Regression Models. En: CIRANO working papers. pp. 34 Ghysels, Eric; A., Sinko; Valkanov, Rossen (2007) MIDAS Regressions: Further results and new directions. En: Econometric Reviews. Vol. 26; No. 1; pp. 53-90 Woon-Seng Gan; Kah-Hwa Ng (1995) Multivariate FOREX forecasting using artificial neural networks. En: Proceedings of ICNN'95. Vol. 2; pp. 1018-1022 : IEEE; Consultado en: 2022/10/30. Disponible en: http://ieeexplore.ieee.org/document/487560/; http://dx.doi.org/10.1109/ICNN.1995.487560. Disponible en: 10.1109/ICNN.1995.487560. Lai, Robert K; Fan, Chin-Yuan; Huang, Wei-Hsiu; Chang, Pei-Chann (2009) Evolving and clustering fuzzy decision tree for financial time series data. En: Expert Systems with Applications. Vol. 36; No. 2; pp. 3761-3773 0957-4174; Consultado en: 2022/10/30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0957417408001474; http://dx.doi.org/10.1016/j.eswa.2008.02.025. Disponible en: 10.1016/j.eswa.2008.02.025. Cardozo-Ortiz, Pamela Andrea; Huertas-Campos, Carlos Alfonso; Parra-Polanía, Julián Andrés; Patiño-Echeverri, Lina Vanessa (2011) Mercado interbancario colombiano y manejo de liquidez del Banco de la. Bogotá, Colombia: Banco de la República; Consultado en: 2022/10/30. Disponible en: https://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/5690/be_673.pdf; http://dx.doi.org/10.32468/be.673. Disponible en: 10.32468/be.673. Burgert, Matthias; Dees, Stephane (2009) Forecasting World Trade: Direct Versus “Bottom-Up” Approaches. En: Open Economies Review. Vol. 20; No. 3; pp. 385-402 0923-7992; Consultado en: 2022/10/30. Disponible en: http://link.springer.com/10.1007/s11079-007-9068-y; http://dx.doi.org/10.1007/s11079-007-9068-y. Disponible en: 10.1007/s11079-007-9068-y. Lütkepohl, Helmut (2005) New introduction to multiple time series analysis. Berlin: New York : Springer; 9783540401728; R Development Core Team (2007) R: A Language and Environment for Statistical Computing. Vienna, Austria Disponible en: http://www.R-project.org. Santana, Juan Camilo (2006) Predicción de series temporales con redes neuronales: una aplicación a la. En: Revista Colombiana de Estadistica. Vol. 29; No. 1; pp. 77-92 Box, George E P; Jenkins, Gwilym M (1976) Time series analysis: forecasting and control, revised ed. : Holden-Day; Brockwell, Peter J; Davis, Richard A (2002) Introduction to time seriesand forecasting, second edition. : New York : Springer; 9780387953519; Peña, Daniel (2010) Análisis de series temporales. : Madrid: Alianza Editorial; 9788420669458; Guerrero, Victor M (2003) Análisis estadístico de series de tiempo económicas. : México,D.F. : International Thomson Editores, S. A; Moreno, Juan José Montaño; Pol, Alfonso Palmer; Gracia, Pilar Muñoz (2011) Artificial neural networks applied to forecasting time series. En: Psicothema 2011. Vol. 23; pp. 322-329 Disponible en: https://www.psicothema.com/pdf/3889.pdf. Education, Ibm Cloud (2020) Neural Networks. Disponible en: https://www.ibm.com/cloud/learn/neural-networks. Lässig, Francesco; Temporal Convolutional Networks and Forecasting. Disponible en: https://unit8.com/resources/temporal-convolutional-networks-and-forecasting/. Long, Jonathan; Shelhamer, Evan; Darrell, Trevor (2015) Fully Convolutional Networks for Semantic Segmentation. : arXiv; Consultado en: 2023/6/10. Disponible en: http://arxiv.org/abs/1411.4038. Almosova, Anna; Andresen, Niek (2022) Nonlinear inflation forecasting with recurrent neural networks. En: Journal of Forecasting. pp. for.2901 0277-6693; Consultado en: 2022/11/27. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/for.2901; http://dx.doi.org/10.1002/for.2901. Disponible en: 10.1002/for.2901. Olah, Christian (2015) Understanding LSTM networks. Disponible en: http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua; Ghahramani, Z; Welling, M; Cortes, C; Lawrence, N; Weinberger, K Q (2014) Generative Adversarial Nets. En: Advances in Neural Information Processing Systems. Vol. 27; Curran Associates, Inc.; Disponible en: https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf. Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2020) Generative Adversarial Networks. Vol. 63; pp. 139–144 Wang, Kunfeng; Gou, Chao; Duan, Yanjie; Lin, Yilun; Zheng, Xinhu; Wang, Fei-Yue (2017) Generative adversarial networks: introduction and outlook. En: IEEE/CAA Journal of Automatica Sinica. Vol. 4; No. 4; pp. 588-598 2329-9266; Consultado en: 2022/11/27. Disponible en: https://ieeexplore.ieee.org/document/8039016/; http://dx.doi.org/10.1109/JAS.2017.7510583. Disponible en: 10.1109/JAS.2017.7510583. Creswell, Antonia; White, Tom; Dumoulin, Vincent; Arulkumaran, Kai; Sengupta, Biswa; Bharath, Anil A (2018) Generative Adversarial Networks: An Overview. En: IEEE Signal Processing Magazine. Vol. 35; No. 1; pp. 53-65 1053-5888; Consultado en: 2022/11/27. Disponible en: http://ieeexplore.ieee.org/document/8253599/; http://dx.doi.org/10.1109/MSP.2017.2765202. Disponible en: 10.1109/MSP.2017.2765202. Diebold, Francis X; Mariano, Roberto S (1995) Comparing Predictive Accuracy. En: Journal of business & Economic Statistics. Vol. 13; No. 3; pp. 41 Harvey, D; Leybourne, S; Newbold, P (1997) Testing the equality of prediction mean squared errors. En: International Journal of Forecasting. Vol. 13(2); pp. 281–291 Disponible en: http://dx.doi.org/10.1016/s0169-2070(96)00719-4. Disponible en: 10.1016/s0169-2070(96)00719-4. Ortega G., Eduardo (2016) ¿Los tipos forward pronostican correctamente el tipo de cambio futuro por. : ICADE Business School; Janssen, Paolo (2022) Attention based Temporal Convolutional Network for stock price prediction. : Utrecht University; Disponible en: https://studenttheses.uu.nl/handle/20.500.12932/41588. Dai, Wei; An, Yuan; Long, Wen (2022) Price change prediction of Ultra high frequency financial data based on. En: Procedia Computer Science. Vol. 199; pp. 1177-1183 1877-0509; Consultado en: 2023/6/10. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1877050922001508; http://dx.doi.org/10.1016/j.procs.2022.01.149. Disponible en: 10.1016/j.procs.2022.01.149. of International Settlements (BIS), Bank (2022) OTC foreign exchange turnover in April 2022. Disponible en: https://www.bis.org/statistics/rpfx22_fx.htm. Murphy, John J (2000) Analisis Tecnico de Los Mercados Financieros (Spanish Edition). : Gestion 2000; 9788480884426; |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/a98d4bcd-3dc9-4c10-b31c-dd127f9d06ea/download https://repository.urosario.edu.co/bitstreams/76e5f833-4303-4ee1-8379-87fa71eba35e/download https://repository.urosario.edu.co/bitstreams/c2174506-2de3-4dce-8053-3ccc544afef3/download https://repository.urosario.edu.co/bitstreams/12a1b595-5f2d-48c6-9a90-35980709c14b/download https://repository.urosario.edu.co/bitstreams/2df1e9a3-c8fb-40d0-9a74-f38de6dc9924/download https://repository.urosario.edu.co/bitstreams/bd1388f0-d7dc-4ad2-a601-21793e6825b6/download |
bitstream.checksum.fl_str_mv |
ad837aa03f0796285e2f9b4dfb5ea688 46c4d4d97a39118d25f50af91b6503b1 b2825df9f458e9d5d96ee8b7cd74fde6 3b6ce8e9e36c89875e8cf39962fe8920 2c5d1b8c5952cb290d89607d61b1914b 26def30c93961876488e632b8df6e1c1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106495477219328 |
spelling |
Pérez Castañeda, Gabriel Camilo896180cf-4061-48b3-8a01-28a37f5b6338-1Torres Medina, Paula AndreaMagíster en Matemáticas Aplicadas y Ciencias de la ComputaciónFull time63fd2b4d-5de5-415a-8ea7-dd1178f500d9-12023-09-15T21:02:26Z2023-09-15T21:02:26Z2023-08-25En este trabajo se estudian las fortalezas y debilidades de los modelos de pronóstico del volumen de transacciones del mercado colombiano interbancario de divisas, generado por un modelo basado en árboles de decisión y dos tipos de redes neuronales, las Long short term memory y las temporal convolutional nexworks, comparados con los modelos econométricos tradicionales para el estudio de series de tiempo.This paper studies the strengths and weaknesses of forecast models of the volume of transactions in the Colombian forex market. It analyzes a model based on decision trees and two types of neural networks, namely Long Short-Term Memory (LSTM) and Temporal Convolutional Networks (TCN), comparing them with traditional econometric models for the study of time series.51 ppapplication/pdfhttps://doi.org/10.48713/10336_40984 https://repository.urosario.edu.co/handle/10336/40984spaUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaMaestría en Matemáticas Aplicadas y Ciencias de la ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Montgomery, Douglas C; Jennings, Cheryl L; Kulahci, Murat (2008) Introduction to time series analysis and forecasting. En: Wiley series in probability and statistics. Hoboken, N.J: Wiley-Interscience; 9780471653974;Hyndman, Rob J; Athanasopoulos, George (2021) Forecasting: Principles and Practice. Melbourne, Australia: OTexts;Bai, Shaojie; Kolter, J Zico; Koltun, Vladlen (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks. : arXiv; Consultado en: 2023/6/10. Disponible en: http://arxiv.org/abs/1803.01271.Chen, Tianqi; Guestrin, Carlos (2016) XGBoost: A Scalable Tree Boosting System. En: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge. pp. 785-794 Consultado en: 2023/6/10. Disponible en: http://arxiv.org/abs/1603.02754; http://dx.doi.org/10.1145/2939672.2939785. Disponible en: 10.1145/2939672.2939785.McCulloch, W S; Pitts, W (1943) A logical calculus of the ideas immanent in nervous activity. En: Bulletin of Mathematical Biophysics 5. pp. 115–133 : Springer; Disponible en: http://dx.doi.org/10.1007/BF02478259. Disponible en: 10.1007/BF02478259.Rosenblatt, F (1958) The perceptron: A probabilistic model for information storage and. En: Psychological Review. Vol. 65; No. 6; pp. 386-408 Disponible en: http://dx.doi.org/10.1037/h0042519. Disponible en: 10.1037/h0042519.Eckerli, Florian (2021) Generative Adversarial Networks in finance: an overview. En: SSRN Electronic Journal. 1556-5068; Consultado en: 2022/10/30. Disponible en: https://www.ssrn.com/abstract=3864965; http://dx.doi.org/10.2139/ssrn.3864965. Disponible en: 10.2139/ssrn.3864965.Brownlees, Christian T; Cipollini, Fabrizio; Gallo, Giampiero M; Intra-daily Volume Modeling and Prediction for Algorithmic Trading. En: Journal of Financial Econometrics. pp. 30 Abu-Mostafa, Yaser S; Atiya, Amir F (1996) Introduction to financial forecasting. En: Applied Intelligence. Vol. 6; No. 3; pp. 205-213 0924-669X; Consultado en: 2022/10/30. Disponible en: http://link.springer.com/10.1007/BF00126626; http://dx.doi.org/10.1007/BF00126626. Disponible en: 10.1007/BF00126626.Sarmiento, Cristian Fabián Ladino; Metodología para pronosticar la Posición Propia de Contado de los. pp. 25 Veenstra, Albert W; Haralambides, Hercules E (2001) Multivariate autoregressive models for forecasting seaborne trade ¯ows. pp. 9 Alford, Andrew W; Berger, Philip G (1999) A Simultaneous Equations Analysis of Forecast Accuracy, Analyst Following,. En: Journal of Accounting, Auditing & Finance. Vol. 14; No. 3; pp. 219-240 0148-558X; Consultado en: 2022/10/30. Disponible en: http://journals.sagepub.com/doi/10.1177/0148558X9901400303; http://dx.doi.org/10.1177/0148558X9901400303. Disponible en: 10.1177/0148558X9901400303.Alford, Andrew W; Berger, Philip G (1999) A Simultaneous Equations Analysis of Forecast Accuracy, Analyst Following,. En: Journal of Accounting, Auditing & Finance. Vol. 14; No. 3; pp. 219-240 0148-558X; Consultado en: 2022/10/30. Disponible en: http://journals.sagepub.com/doi/10.1177/0148558X9901400303; http://dx.doi.org/10.1177/0148558X9901400303. Disponible en: 10.1177/0148558X9901400303.Zhou, Xingyu; Pan, Zhisong; Hu, Guyu; Tang, Siqi; Zhao, Cheng (2018) Stock Market Prediction on High-Frequency Data Using Generative. En: Mathematical Problems in Engineering. Vol. 2018; pp. 1-11 1024-123X; Consultado en: 2022/10/30. Disponible en: https://www.hindawi.com/journals/mpe/2018/4907423/; http://dx.doi.org/10.1155/2018/4907423. Disponible en: 10.1155/2018/4907423.Huang, Yusheng; Gao, Yelin; Gan, Yan; Ye, Mao (2021) A new financial data forecasting model using genetic algorithm and long. En: Neurocomputing. Vol. 425; pp. 207-218 0925-2312; Consultado en: 2022/10/30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0925231220306718; http://dx.doi.org/10.1016/j.neucom.2020.04.086. Disponible en: 10.1016/j.neucom.2020.04.086.Khadjeh Nassirtoussi, Arman; Aghabozorgi, Saeed; Ying Wah, Teh; Ngo, David Chek Ling (2015) Text mining of news-headlines for FOREX market prediction: A Multi-layer. En: Expert Systems with Applications. Vol. 42; No. 1; pp. 306-324 0957-4174; Consultado en: 2022/10/30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0957417414004801; http://dx.doi.org/10.1016/j.eswa.2014.08.004. Disponible en: 10.1016/j.eswa.2014.08.004.Muthukumar, Pratyush; Zhong, Jie (2021) A Stochastic Time Series Model for Predicting Financial Trends using NLP. : arXiv; Consultado en: 2022/10/30. Disponible en: http://arxiv.org/abs/2102.01290.Vui, Chang Sim; Soon, Gan Kim; On, Chin Kim; Alfred, Rayner; Anthony, Patricia (2013) A review of stock market prediction with Artificial neural network (ANN). En: 2013 IEEE International Conference on Control System, Computing and. pp. 477-482 : IEEE; Consultado en: 2022/10/30. Disponible en: http://ieeexplore.ieee.org/document/6720012/; http://dx.doi.org/10.1109/ICCSCE.2013.6720012. Disponible en: 10.1109/ICCSCE.2013.6720012.Galati, Gabriele; Trading volumes, volatility and spreads in FX markets: evidence from. En: BIS Papers. No. 2; pp. 197-229 Srivastava, Sarvagya; Khare, Vishwaas; Vidhya, R; Economic Forecasting using Generative Adversarial Networks. En: International Journal of Engineering Research. Vol. 10; No. 05; pp. 7 Corella, Alejandro Crespo (2016) El gran abanico mundial: “Mercado de divisas”. : Universidad de Zaragoza;Markova, M (2019) Foreign exchange rate forecasting by artificial neural networks. En: APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th. Vol. 2461; Consultado en: 2022/10/30. Disponible en: http://aip.scitation.org/doi/abs/10.1063/1.5130812; http://dx.doi.org/10.1063/1.5130812. Disponible en: 10.1063/1.5130812.Santoro, Domenico; Grilli, Luca (2022) Generative Adversarial Network to evaluate quantity of information in. En: Neural Computing and Applications. Vol. 34; No. 20; pp. 17473-17490 0941-0643; Consultado en: 2022/10/30. Disponible en: https://link.springer.com/10.1007/s00521-022-07401-3; http://dx.doi.org/10.1007/s00521-022-07401-3. Disponible en: 10.1007/s00521-022-07401-3.Gan, Kim Soon; Chin, Kim On; Anthony, Patricia; Chang, Sim Vui (2018) Homogeneous Ensemble FeedForward Neural Network in CIMB Stock Price. En: 2018 IEEE International Conference on Artificial Intelligence in. pp. 1-6 : IEEE; Consultado en: 2022/10/30. Disponible en: https://ieeexplore.ieee.org/document/8638452/; http://dx.doi.org/10.1109/IICAIET.2018.8638452. Disponible en: 10.1109/IICAIET.2018.8638452.Wu, Weijie; Huang, Fang; Kao, Yidi; Chen, Zhou; Wu, Qi (2021) Prediction Method of Multiple Related Time Series Based on Generative. En: Information. Vol. 12; No. 2; pp. 55 2078-2489; Consultado en: 2022/10/30. Disponible en: https://www.mdpi.com/2078-2489/12/2/55; http://dx.doi.org/10.3390/info12020055. Disponible en: 10.3390/info12020055.Sarno, Lucio; Taylor, Mark P; The Economics of Exchange Rates. pp. 331 Ghysels, Eric; Santa- Clara, Pedro; Valkanov, Rossen (2004) The MIDAS Touch: Mixed Data Sampling Regression Models. En: CIRANO working papers. pp. 34 Ghysels, Eric; A., Sinko; Valkanov, Rossen (2007) MIDAS Regressions: Further results and new directions. En: Econometric Reviews. Vol. 26; No. 1; pp. 53-90 Woon-Seng Gan; Kah-Hwa Ng (1995) Multivariate FOREX forecasting using artificial neural networks. En: Proceedings of ICNN'95. Vol. 2; pp. 1018-1022 : IEEE; Consultado en: 2022/10/30. Disponible en: http://ieeexplore.ieee.org/document/487560/; http://dx.doi.org/10.1109/ICNN.1995.487560. Disponible en: 10.1109/ICNN.1995.487560.Lai, Robert K; Fan, Chin-Yuan; Huang, Wei-Hsiu; Chang, Pei-Chann (2009) Evolving and clustering fuzzy decision tree for financial time series data. En: Expert Systems with Applications. Vol. 36; No. 2; pp. 3761-3773 0957-4174; Consultado en: 2022/10/30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0957417408001474; http://dx.doi.org/10.1016/j.eswa.2008.02.025. Disponible en: 10.1016/j.eswa.2008.02.025.Cardozo-Ortiz, Pamela Andrea; Huertas-Campos, Carlos Alfonso; Parra-Polanía, Julián Andrés; Patiño-Echeverri, Lina Vanessa (2011) Mercado interbancario colombiano y manejo de liquidez del Banco de la. Bogotá, Colombia: Banco de la República; Consultado en: 2022/10/30. Disponible en: https://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/5690/be_673.pdf; http://dx.doi.org/10.32468/be.673. Disponible en: 10.32468/be.673.Burgert, Matthias; Dees, Stephane (2009) Forecasting World Trade: Direct Versus “Bottom-Up” Approaches. En: Open Economies Review. Vol. 20; No. 3; pp. 385-402 0923-7992; Consultado en: 2022/10/30. Disponible en: http://link.springer.com/10.1007/s11079-007-9068-y; http://dx.doi.org/10.1007/s11079-007-9068-y. Disponible en: 10.1007/s11079-007-9068-y.Lütkepohl, Helmut (2005) New introduction to multiple time series analysis. Berlin: New York : Springer; 9783540401728;R Development Core Team (2007) R: A Language and Environment for Statistical Computing. Vienna, Austria Disponible en: http://www.R-project.org.Santana, Juan Camilo (2006) Predicción de series temporales con redes neuronales: una aplicación a la. En: Revista Colombiana de Estadistica. Vol. 29; No. 1; pp. 77-92 Box, George E P; Jenkins, Gwilym M (1976) Time series analysis: forecasting and control, revised ed. : Holden-Day;Brockwell, Peter J; Davis, Richard A (2002) Introduction to time seriesand forecasting, second edition. : New York : Springer; 9780387953519;Peña, Daniel (2010) Análisis de series temporales. : Madrid: Alianza Editorial; 9788420669458;Guerrero, Victor M (2003) Análisis estadístico de series de tiempo económicas. : México,D.F. : International Thomson Editores, S. A;Moreno, Juan José Montaño; Pol, Alfonso Palmer; Gracia, Pilar Muñoz (2011) Artificial neural networks applied to forecasting time series. En: Psicothema 2011. Vol. 23; pp. 322-329 Disponible en: https://www.psicothema.com/pdf/3889.pdf.Education, Ibm Cloud (2020) Neural Networks. Disponible en: https://www.ibm.com/cloud/learn/neural-networks.Lässig, Francesco; Temporal Convolutional Networks and Forecasting. Disponible en: https://unit8.com/resources/temporal-convolutional-networks-and-forecasting/.Long, Jonathan; Shelhamer, Evan; Darrell, Trevor (2015) Fully Convolutional Networks for Semantic Segmentation. : arXiv; Consultado en: 2023/6/10. Disponible en: http://arxiv.org/abs/1411.4038.Almosova, Anna; Andresen, Niek (2022) Nonlinear inflation forecasting with recurrent neural networks. En: Journal of Forecasting. pp. for.2901 0277-6693; Consultado en: 2022/11/27. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/for.2901; http://dx.doi.org/10.1002/for.2901. Disponible en: 10.1002/for.2901.Olah, Christian (2015) Understanding LSTM networks. Disponible en: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua; Ghahramani, Z; Welling, M; Cortes, C; Lawrence, N; Weinberger, K Q (2014) Generative Adversarial Nets. En: Advances in Neural Information Processing Systems. Vol. 27; Curran Associates, Inc.; Disponible en: https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2020) Generative Adversarial Networks. Vol. 63; pp. 139–144 Wang, Kunfeng; Gou, Chao; Duan, Yanjie; Lin, Yilun; Zheng, Xinhu; Wang, Fei-Yue (2017) Generative adversarial networks: introduction and outlook. En: IEEE/CAA Journal of Automatica Sinica. Vol. 4; No. 4; pp. 588-598 2329-9266; Consultado en: 2022/11/27. Disponible en: https://ieeexplore.ieee.org/document/8039016/; http://dx.doi.org/10.1109/JAS.2017.7510583. Disponible en: 10.1109/JAS.2017.7510583.Creswell, Antonia; White, Tom; Dumoulin, Vincent; Arulkumaran, Kai; Sengupta, Biswa; Bharath, Anil A (2018) Generative Adversarial Networks: An Overview. En: IEEE Signal Processing Magazine. Vol. 35; No. 1; pp. 53-65 1053-5888; Consultado en: 2022/11/27. Disponible en: http://ieeexplore.ieee.org/document/8253599/; http://dx.doi.org/10.1109/MSP.2017.2765202. Disponible en: 10.1109/MSP.2017.2765202.Diebold, Francis X; Mariano, Roberto S (1995) Comparing Predictive Accuracy. En: Journal of business & Economic Statistics. Vol. 13; No. 3; pp. 41 Harvey, D; Leybourne, S; Newbold, P (1997) Testing the equality of prediction mean squared errors. En: International Journal of Forecasting. Vol. 13(2); pp. 281–291 Disponible en: http://dx.doi.org/10.1016/s0169-2070(96)00719-4. Disponible en: 10.1016/s0169-2070(96)00719-4.Ortega G., Eduardo (2016) ¿Los tipos forward pronostican correctamente el tipo de cambio futuro por. : ICADE Business School;Janssen, Paolo (2022) Attention based Temporal Convolutional Network for stock price prediction. : Utrecht University; Disponible en: https://studenttheses.uu.nl/handle/20.500.12932/41588.Dai, Wei; An, Yuan; Long, Wen (2022) Price change prediction of Ultra high frequency financial data based on. En: Procedia Computer Science. Vol. 199; pp. 1177-1183 1877-0509; Consultado en: 2023/6/10. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1877050922001508; http://dx.doi.org/10.1016/j.procs.2022.01.149. Disponible en: 10.1016/j.procs.2022.01.149.of International Settlements (BIS), Bank (2022) OTC foreign exchange turnover in April 2022. Disponible en: https://www.bis.org/statistics/rpfx22_fx.htm.Murphy, John J (2000) Analisis Tecnico de Los Mercados Financieros (Spanish Edition). : Gestion 2000; 9788480884426;instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMercado FOREXAnálisis de series de tiempoXGBOOSTRed LSTMRed TCNFOREX MarketTime series analysisXGBOOSTLSTM networkTCN NetworkPronosticando el volumen del mercado interbancario de divisas: caso colombianoForecasting the volume of the forex market: colombian casebachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Ingeniería, Ciencia y TecnologíaORIGINALPronosticando_el_volumen_del_mercado_interbancario_de_divisas_caso_colombiano.pdfPronosticando_el_volumen_del_mercado_interbancario_de_divisas_caso_colombiano.pdfapplication/pdf1166817https://repository.urosario.edu.co/bitstreams/a98d4bcd-3dc9-4c10-b31c-dd127f9d06ea/downloadad837aa03f0796285e2f9b4dfb5ea688MD51Referencias.risReferencias.risapplication/x-research-info-systems35097https://repository.urosario.edu.co/bitstreams/76e5f833-4303-4ee1-8379-87fa71eba35e/download46c4d4d97a39118d25f50af91b6503b1MD54LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/c2174506-2de3-4dce-8053-3ccc544afef3/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/12a1b595-5f2d-48c6-9a90-35980709c14b/download3b6ce8e9e36c89875e8cf39962fe8920MD55TEXTPronosticando_el_volumen_del_mercado_interbancario_de_divisas_caso_colombiano.pdf.txtPronosticando_el_volumen_del_mercado_interbancario_de_divisas_caso_colombiano.pdf.txtExtracted texttext/plain74902https://repository.urosario.edu.co/bitstreams/2df1e9a3-c8fb-40d0-9a74-f38de6dc9924/download2c5d1b8c5952cb290d89607d61b1914bMD56THUMBNAILPronosticando_el_volumen_del_mercado_interbancario_de_divisas_caso_colombiano.pdf.jpgPronosticando_el_volumen_del_mercado_interbancario_de_divisas_caso_colombiano.pdf.jpgGenerated Thumbnailimage/jpeg2824https://repository.urosario.edu.co/bitstreams/bd1388f0-d7dc-4ad2-a601-21793e6825b6/download26def30c93961876488e632b8df6e1c1MD5710336/40984oai:repository.urosario.edu.co:10336/409842024-08-23 09:10:09.631http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |