Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I
El presente trabajo propone una comparación de modelos de aprendizaje automático para la detección de células cancerígenas a partir de los antígenos del complejo MHC I. Utilizando protocolos de extracción de características físico-químicas de las proteínas y un proceso comparativo de las medidas de...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/24401
- Acceso en línea:
- https://doi.org/10.48713/10336_24401
https://repository.urosario.edu.co/handle/10336/24401
- Palabra clave:
- Antígenos
Aprendizaje automático
Cáncer
Incidencia & prevención de la enfermedad
Sistemas
Antigen
Cancer
Machine Learning
- Rights
- License
- Atribución 2.5 Colombia
id |
EDOCUR2_4715defe5d99cec2848a97736138cd68 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/24401 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
dc.title.TranslatedTitle.eng.fl_str_mv |
Comparison of machine learning models for the prediction of cancer cells from the MHC I complex |
dc.title.alternative.spa.fl_str_mv |
Predicción de células cancerígenas |
title |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
spellingShingle |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I Antígenos Aprendizaje automático Cáncer Incidencia & prevención de la enfermedad Sistemas Antigen Cancer Machine Learning |
title_short |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
title_full |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
title_fullStr |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
title_full_unstemmed |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
title_sort |
Comparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC I |
dc.contributor.advisor.none.fl_str_mv |
Orjuela Cañón, Alvaro David |
dc.subject.spa.fl_str_mv |
Antígenos Aprendizaje automático Cáncer |
topic |
Antígenos Aprendizaje automático Cáncer Incidencia & prevención de la enfermedad Sistemas Antigen Cancer Machine Learning |
dc.subject.ddc.spa.fl_str_mv |
Incidencia & prevención de la enfermedad Sistemas |
dc.subject.keyword.spa.fl_str_mv |
Antigen Cancer Machine Learning |
description |
El presente trabajo propone una comparación de modelos de aprendizaje automático para la detección de células cancerígenas a partir de los antígenos del complejo MHC I. Utilizando protocolos de extracción de características físico-químicas de las proteínas y un proceso comparativo de las medidas de desempeño en la fase de validación y prueba de los modelos. Con este procedimiento se pretende determinar cuál modelo de aprendizaje automático presenta el mejor desempeño en la predicción de antígenos cancerígenos, utilizando propiedades fisicoquímicas como marcadores de entrada. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-05-27T21:38:23Z |
dc.date.available.none.fl_str_mv |
2020-05-27T21:38:23Z |
dc.date.created.none.fl_str_mv |
2020-05-22 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Análisis de caso |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_24401 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/24401 |
url |
https://doi.org/10.48713/10336_24401 https://repository.urosario.edu.co/handle/10336/24401 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Atribución 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
rights_invalid_str_mv |
Atribución 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Escuela de Medicina y Ciencias de la Salud |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
OMS, «Cáncer,» 12 septiembre 2018. [En línea]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancerH ASCO, «American Society of Clinical Oncology,» Journal of Clinical Oncology, pp. 212-222, 20 Febrero 2017 DANE, «Boletín Técnico,» 20 Diciembre 2019. [En línea]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/bt_estadisticasvitales_IIItr im_2019pr-20-diciembre-2019.pdf MinSalud, «PLAN DECENAL PARA EL CONTROL EN COLOMBIA,» 17 Marzo 2012. [En línea]. Available: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INCA/plannacional-control-cancer.pdf MinSalud, «Cáncer,» Enero 25 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Prevenciondelcancer.aspx A. L. L. T. G. Óscar, «Costos directos de la atención del cáncer,» Cancerol, vol. XX, nº 2, pp. 52-60, 2016 J. Greening, «The peptidome comes of age: Mass spectrometry-based characterization of the circulating cancer peptidome,» Enzymes, vol. 42, pp. 27-64, 2017 S. Lou, «Automated detection of radiology reports that require follow-up imaging using natural language processing feature engineering and machine learning classification,» Journal of Digital Imaging, vol. 33, nº 1, pp. 131-136, 2020 G. M. H. R. E. &. W. N. Cooper, La célula: Geoffrey M. Cooper y Robert E. Hausman, Madrid: Madrid: Marbán, 2014 B. S. D. Lodish, Biología Celular y Molecular, 5 ed., Madrid: Panamericana, 2016, pp. 590-630 S. I. Fox, FISIOLOGÍA HUMANA, vol. XII, New York: Pierce College, 2011, pp. 50- 90 V. M. Saikumar P., Apoptosis and Cell Death. In: Allen T., vol. II, Boston: Molecular Pathology Library, 2009 C. W. K. Murphy, ImmunBiology, 9 ed., vol. I, Bostom: Garlad Science, 2017, pp. 3-35 W. R. Hanahan D, «Review: Hallmarks of Cancer,» 11 Junio 2011. [En línea]. Available: http://ez.urosario.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct= true&db=ed selp&AN=S0092867411001279&lang=es&site=eds-live&scope=site S. Gortzak-Uzan, «A Proteome Resource of Ovarian Cancer Ascites: Integrated Proteomic and Bioinformatic Analyses To Identify Putative Biomarkers,» Journal of Proteome Research, vol. VII, nº 1, p. 339–351, 2013 H. Mattsson, «Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy,» HLA Inmune Response Genetics, pp. 1-6, 2016 R. J. A. N. M. N. H. V. I. Jurtz, «An introduction to Deep learning on biological sequence data – Examples and solutions,» Oxford University Press, 2017 J. &. V. A. &. C. S. &. D. N. Gauthier, «A Brief History of Bioinformatics. Briefings in Bioinformatics,» pp. 11-34, 2018 B. C. R. S. C. B. J. G. I. I. Pedro Larrañaga, «Machine learning in bioinformatics,» p. 86–112, 2006 S. R. J. Y. H. J. L. H. J. L. E. J. L. Kim, «Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer,» Cancer Letters, vol. II, nº 357, p. 488–497, 2015 G. B. V. C. D. F. &. S. S. Musumarra, «A Bioinformatic Approach to the Identification of Candidate Genes for the Development of New Cancer Diagnostics,» Biological Chemistry, vol. II, nº 384, pp. 391-398, 2004 C. G. B. T. Y. C. S. Zhou. J, «Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library,» Medical Genomic, vol. V, nº 1, pp. 5-12, 2012 J. F. H. B. L. &. F. J. G. Beltrán Lissabet, «TTAgP 1.0: A computational tool for the specific prediction of tumor T cell antigens,» Computational Biology and Chemistry, nº 83, 2019 D. Chicco, «Ten quick tips for machine learning in computational biology,» BioMed Central, vol. I, nº 10, pp. 1-17, 2017 C. Bishop, PATTERN RECOGNITION AND MACHINE LEARNING, Primera ed., 2006, pp. 5-15 O. Theobald, Machine Learning for Absolute Beginners, vol. 2, Independently Published, 2018, pp. 10-12 A. M. D. A. A. L. Swan, «Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology,» OMICS : a Journal of Integrative Biology, vol. XVII, nº 12, pp. 595-610, 2010 J. Ulintz, «Improved Classification of Mass Spectrometry Database Search Results Using Newer Machine Learning Approaches,» Molecular & Cellular Proteomics, vol. V, nº 3, pp. 97-509, 2005 S. Jeet, «Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model Choice By Simulation-Trained Discriminant Analysis,» Systematic Biology, vol. 65, nº 3, pp. 525-55, 2016 S. Zhang, «PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules,» Journal of Immunological Methods, pp. 476-489, 2020 K. D. R. N. Tomar, «Immunoinformatics: an integrated scenario,» British Society of Immunology, vol. 131, nº 2, p. 153–168, 2010 K. D. H. Youngmahn, «Deep convolutional neural networks for pan-specific peptideMHC class I binding prediction,» BMC Bioinformatics, 2017 E. Loan, «Building MHC Class II Epitope Predictor Using Machine Learning Approaches,» Springer, vol. 1268, pp. 67-73, 2015 T. Alvarez, «NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitode,» Molecular and Cellular Proteomic, vol. 18, nº 12, pp. 2459-2477, 2019 M. M. H. &. B. M. Nosrati, «Introducing of an integrated artificial neural network and chou's pseudo amino acid composition approach for computational epitopemapping of crimean-congo haemorrhagic fever virus antigens,» International Immunopharmacology, nº 78, 2020 S. X. Z. Weilong, «Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes,» Computacional Biology, pp. 1-28, 2018 R. D. A.D. Irini, «VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines,» BMC Bioinformatics, pp. 22-26, 2007 F. F. W. J. T. Elias, «TIminer: NGS data mining pipeline for cancer immunology and immunotherapy,» Bioinformatics, vol. 33, nº 19, p. 3140–3141, 2017 L. T. S. L. H. Olsen, «TANTIGEN: a comprehensive database of tumor T cell antigens,» Cancer Immunol Immunother, nº 66, 2017 C. L. S. S. R. L. G. a. L. Pommié, «IMGT standardized criteria for statistical analysis of immunoglobulin V‐REGION amino acid properties,» IMGT, nº 17, pp. 17-32, 2004 J.-L. C. M. K. L. B. V. A. &. P. V. FAUCHÈRE, «Amino acid side chain parameters for correlation studies in biology and pharmacology,» International Journal of Peptide and Protein Research, nº 32(4), p. 269–278, 2009 ImMunoGeneTics, «Amino acids,» 20 04 2004. [En línea]. Available: http://www.imgt.org/IMGTeducation/Aidememoire/_UK/aminoacids/IMGTclasses.html Q. B. A. G. K. Maricel, «Optimization of a new score function for the detection of remote homologs,» Proteins: Structure, Function, and Bioinformatics, vol. XLI, nº 4, pp. 498-503, 2000 k. S.-H. T. H. D. G. Eleni, «Verification and validation of bioinformatics software without a gold standard: a case study of BWA and Bowtie,» BMC Bioinformatics, vol. XV, nº 16, 2014 R. T. J. F. T. Hastie, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Segunda ed., Stanford, California: Springer, 2008 G. Thomas, «Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms,» 5 1995. [En línea]. Available: http://www.cems.uwe.ac.uk/~irjohnso/coursenotes/uqc832/tr-bias.pdf SciKit Learn, «sklearn.ensemble.RandomForestClassifier,» 2019. [En línea]. Available: https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.ht ml S. Haykin, Neural Network and Learning Machines, Tercera ed., Boston: Person, 2009 F. J. &. P.-M. C. Valverde-Albacete, «100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.,» Plos One, vol. IX, nº 1, 2014 Scikit Learn, «GridSearchCV,» 2 Enero 2020. [En línea]. Available: https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html# sklearn.model_selection.GridSearchCV C. C. H. S. M. S. Ciampi A., «Recursive Partition: A Versatile Method for Exploratory-Data Analysis in Biostatistics,» Springer, vol. XXXVII, 1999 B. Y. B. James, «Random Search for Hyper-Parameter Optimization,» Journal of Machine Learning Research, vol. XIII, pp. 281-305, 2012 T. S. H. T. A. ENDO, «Comparison of Seven Algorithms to Predict Breast Cancer Survival,» International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association, vol. XIII, nº 2, pp. 11-16, 2008 M. J. D. A. F.F. João, «PLEURAL TUBERCULOSIS DIAGNOSIS BASED ON ARTIFICIAL,» Sociedade Brasileira de Inteligência Computacional, 2011 Kakau, «ROC curves,» 17 06 2010. [En línea]. Available: http://creativecommons.org/licenses/by-sa/3.0/ SciKit Learn, «sklearn.neural_network.MLPClassifier,» 20 Enero 2020. [En línea]. Available: https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#s klearn.neural_network.MLPClassifier.predict_proba C. L. D. I. Seixas JM, «Relevance criteria for variable selection in classifier design. In: International conference on engineering applications of neural networks,» de International conference on engineering applications of neural networks, London, 1996 F. S. T. R. C. P. J. V. K. A. L. S. J. M. &. M. F. C. Aguiar, «Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized patients in Rio de Janeiro,» Medical & biological engineering & computing, vol. 54, nº 11, pp. 1751-1759, 2016 M. L. F. W. N.A Obuchowski, «ROC curves in clinical chemistry: uses, misuses, and possible solutions.,» Clenecal Chemistry, vol. L, nº 7, pp. 18-25, 2004 N. Tkachev, «Flexible data trimming improves performance of global machine learning methods in omics-based personalized oncology,» International Journal of Molecular Sciences, vol. XXI, nº 3, 2020 L. Breiman, «Random forests,» Springer Netherlands, vol. XLV, nº 1, pp. 5-32, 2001 |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/68a9cb11-989f-4953-9647-565f4fcd96d0/download https://repository.urosario.edu.co/bitstreams/5888938f-5f3b-4248-b3af-ce2461ce8e64/download https://repository.urosario.edu.co/bitstreams/a502df63-c42e-4997-9aa6-b097b9cdc73d/download https://repository.urosario.edu.co/bitstreams/75e6b7a2-0576-42d8-8c11-b4b244c5e116/download https://repository.urosario.edu.co/bitstreams/19db9097-e69d-4773-8708-a514c80b9cb4/download |
bitstream.checksum.fl_str_mv |
03b9a815cf54af2016505b936abb07ba fab9d9ed61d64f6ac005dee3306ae77e 1608e658af296c3febc577e957e919bf 8cdbfc8bc9393dd841b99b50e865dd0d e32d180ac8ec5439fc1290af5158d9da |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167478096363520 |
spelling |
Orjuela Cañón, Alvaro David80030377600Navas Luquez, MateoIngeniero BiomédicoFull time8f89d8cf-6380-43a6-9a75-557ce7072d936002020-05-27T21:38:23Z2020-05-27T21:38:23Z2020-05-22El presente trabajo propone una comparación de modelos de aprendizaje automático para la detección de células cancerígenas a partir de los antígenos del complejo MHC I. Utilizando protocolos de extracción de características físico-químicas de las proteínas y un proceso comparativo de las medidas de desempeño en la fase de validación y prueba de los modelos. Con este procedimiento se pretende determinar cuál modelo de aprendizaje automático presenta el mejor desempeño en la predicción de antígenos cancerígenos, utilizando propiedades fisicoquímicas como marcadores de entrada.The present work proposes a comparison of machine learning models for the detection of cancer cells from the MHC I complex antigens. Using protocols for the extraction of physical-chemical characteristics of proteins and a comparative process of performance measurements in the model validation and testing phase. This procedure aims to determine the machine learning model presenting the best performance in the prediction of carcinogenic antigens, using physicochemical properties as input markers.application/pdfhttps://doi.org/10.48713/10336_24401 https://repository.urosario.edu.co/handle/10336/24401spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludIngeniería BiomédicaAtribución 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2OMS, «Cáncer,» 12 septiembre 2018. [En línea]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancerHASCO, «American Society of Clinical Oncology,» Journal of Clinical Oncology, pp. 212-222, 20 Febrero 2017DANE, «Boletín Técnico,» 20 Diciembre 2019. [En línea]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/bt_estadisticasvitales_IIItr im_2019pr-20-diciembre-2019.pdfMinSalud, «PLAN DECENAL PARA EL CONTROL EN COLOMBIA,» 17 Marzo 2012. [En línea]. Available: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INCA/plannacional-control-cancer.pdfMinSalud, «Cáncer,» Enero 25 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Prevenciondelcancer.aspxA. L. L. T. G. Óscar, «Costos directos de la atención del cáncer,» Cancerol, vol. XX, nº 2, pp. 52-60, 2016J. Greening, «The peptidome comes of age: Mass spectrometry-based characterization of the circulating cancer peptidome,» Enzymes, vol. 42, pp. 27-64, 2017S. Lou, «Automated detection of radiology reports that require follow-up imaging using natural language processing feature engineering and machine learning classification,» Journal of Digital Imaging, vol. 33, nº 1, pp. 131-136, 2020G. M. H. R. E. &. W. N. Cooper, La célula: Geoffrey M. Cooper y Robert E. Hausman, Madrid: Madrid: Marbán, 2014B. S. D. Lodish, Biología Celular y Molecular, 5 ed., Madrid: Panamericana, 2016, pp. 590-630S. I. Fox, FISIOLOGÍA HUMANA, vol. XII, New York: Pierce College, 2011, pp. 50- 90V. M. Saikumar P., Apoptosis and Cell Death. In: Allen T., vol. II, Boston: Molecular Pathology Library, 2009C. W. K. Murphy, ImmunBiology, 9 ed., vol. I, Bostom: Garlad Science, 2017, pp. 3-35W. R. Hanahan D, «Review: Hallmarks of Cancer,» 11 Junio 2011. [En línea]. Available: http://ez.urosario.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct= true&db=ed selp&AN=S0092867411001279&lang=es&site=eds-live&scope=siteS. Gortzak-Uzan, «A Proteome Resource of Ovarian Cancer Ascites: Integrated Proteomic and Bioinformatic Analyses To Identify Putative Biomarkers,» Journal of Proteome Research, vol. VII, nº 1, p. 339–351, 2013H. Mattsson, «Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy,» HLA Inmune Response Genetics, pp. 1-6, 2016R. J. A. N. M. N. H. V. I. Jurtz, «An introduction to Deep learning on biological sequence data – Examples and solutions,» Oxford University Press, 2017J. &. V. A. &. C. S. &. D. N. Gauthier, «A Brief History of Bioinformatics. Briefings in Bioinformatics,» pp. 11-34, 2018B. C. R. S. C. B. J. G. I. I. Pedro Larrañaga, «Machine learning in bioinformatics,» p. 86–112, 2006S. R. J. Y. H. J. L. H. J. L. E. J. L. Kim, «Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer,» Cancer Letters, vol. II, nº 357, p. 488–497, 2015G. B. V. C. D. F. &. S. S. Musumarra, «A Bioinformatic Approach to the Identification of Candidate Genes for the Development of New Cancer Diagnostics,» Biological Chemistry, vol. II, nº 384, pp. 391-398, 2004C. G. B. T. Y. C. S. Zhou. J, «Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library,» Medical Genomic, vol. V, nº 1, pp. 5-12, 2012J. F. H. B. L. &. F. J. G. Beltrán Lissabet, «TTAgP 1.0: A computational tool for the specific prediction of tumor T cell antigens,» Computational Biology and Chemistry, nº 83, 2019D. Chicco, «Ten quick tips for machine learning in computational biology,» BioMed Central, vol. I, nº 10, pp. 1-17, 2017C. Bishop, PATTERN RECOGNITION AND MACHINE LEARNING, Primera ed., 2006, pp. 5-15O. Theobald, Machine Learning for Absolute Beginners, vol. 2, Independently Published, 2018, pp. 10-12A. M. D. A. A. L. Swan, «Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology,» OMICS : a Journal of Integrative Biology, vol. XVII, nº 12, pp. 595-610, 2010J. Ulintz, «Improved Classification of Mass Spectrometry Database Search Results Using Newer Machine Learning Approaches,» Molecular & Cellular Proteomics, vol. V, nº 3, pp. 97-509, 2005S. Jeet, «Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model Choice By Simulation-Trained Discriminant Analysis,» Systematic Biology, vol. 65, nº 3, pp. 525-55, 2016S. Zhang, «PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules,» Journal of Immunological Methods, pp. 476-489, 2020K. D. R. N. Tomar, «Immunoinformatics: an integrated scenario,» British Society of Immunology, vol. 131, nº 2, p. 153–168, 2010K. D. H. Youngmahn, «Deep convolutional neural networks for pan-specific peptideMHC class I binding prediction,» BMC Bioinformatics, 2017E. Loan, «Building MHC Class II Epitope Predictor Using Machine Learning Approaches,» Springer, vol. 1268, pp. 67-73, 2015T. Alvarez, «NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitode,» Molecular and Cellular Proteomic, vol. 18, nº 12, pp. 2459-2477, 2019M. M. H. &. B. M. Nosrati, «Introducing of an integrated artificial neural network and chou's pseudo amino acid composition approach for computational epitopemapping of crimean-congo haemorrhagic fever virus antigens,» International Immunopharmacology, nº 78, 2020S. X. Z. Weilong, «Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes,» Computacional Biology, pp. 1-28, 2018R. D. A.D. Irini, «VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines,» BMC Bioinformatics, pp. 22-26, 2007F. F. W. J. T. Elias, «TIminer: NGS data mining pipeline for cancer immunology and immunotherapy,» Bioinformatics, vol. 33, nº 19, p. 3140–3141, 2017L. T. S. L. H. Olsen, «TANTIGEN: a comprehensive database of tumor T cell antigens,» Cancer Immunol Immunother, nº 66, 2017C. L. S. S. R. L. G. a. L. Pommié, «IMGT standardized criteria for statistical analysis of immunoglobulin V‐REGION amino acid properties,» IMGT, nº 17, pp. 17-32, 2004J.-L. C. M. K. L. B. V. A. &. P. V. FAUCHÈRE, «Amino acid side chain parameters for correlation studies in biology and pharmacology,» International Journal of Peptide and Protein Research, nº 32(4), p. 269–278, 2009ImMunoGeneTics, «Amino acids,» 20 04 2004. [En línea]. Available: http://www.imgt.org/IMGTeducation/Aidememoire/_UK/aminoacids/IMGTclasses.htmlQ. B. A. G. K. Maricel, «Optimization of a new score function for the detection of remote homologs,» Proteins: Structure, Function, and Bioinformatics, vol. XLI, nº 4, pp. 498-503, 2000k. S.-H. T. H. D. G. Eleni, «Verification and validation of bioinformatics software without a gold standard: a case study of BWA and Bowtie,» BMC Bioinformatics, vol. XV, nº 16, 2014R. T. J. F. T. Hastie, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Segunda ed., Stanford, California: Springer, 2008G. Thomas, «Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms,» 5 1995. [En línea]. Available: http://www.cems.uwe.ac.uk/~irjohnso/coursenotes/uqc832/tr-bias.pdfSciKit Learn, «sklearn.ensemble.RandomForestClassifier,» 2019. [En línea]. Available: https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.ht mlS. Haykin, Neural Network and Learning Machines, Tercera ed., Boston: Person, 2009F. J. &. P.-M. C. Valverde-Albacete, «100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.,» Plos One, vol. IX, nº 1, 2014Scikit Learn, «GridSearchCV,» 2 Enero 2020. [En línea]. Available: https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html# sklearn.model_selection.GridSearchCVC. C. H. S. M. S. Ciampi A., «Recursive Partition: A Versatile Method for Exploratory-Data Analysis in Biostatistics,» Springer, vol. XXXVII, 1999B. Y. B. James, «Random Search for Hyper-Parameter Optimization,» Journal of Machine Learning Research, vol. XIII, pp. 281-305, 2012T. S. H. T. A. ENDO, «Comparison of Seven Algorithms to Predict Breast Cancer Survival,» International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association, vol. XIII, nº 2, pp. 11-16, 2008M. J. D. A. F.F. João, «PLEURAL TUBERCULOSIS DIAGNOSIS BASED ON ARTIFICIAL,» Sociedade Brasileira de Inteligência Computacional, 2011Kakau, «ROC curves,» 17 06 2010. [En línea]. Available: http://creativecommons.org/licenses/by-sa/3.0/SciKit Learn, «sklearn.neural_network.MLPClassifier,» 20 Enero 2020. [En línea]. Available: https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#s klearn.neural_network.MLPClassifier.predict_probaC. L. D. I. Seixas JM, «Relevance criteria for variable selection in classifier design. In: International conference on engineering applications of neural networks,» de International conference on engineering applications of neural networks, London, 1996F. S. T. R. C. P. J. V. K. A. L. S. J. M. &. M. F. C. Aguiar, «Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized patients in Rio de Janeiro,» Medical & biological engineering & computing, vol. 54, nº 11, pp. 1751-1759, 2016M. L. F. W. N.A Obuchowski, «ROC curves in clinical chemistry: uses, misuses, and possible solutions.,» Clenecal Chemistry, vol. L, nº 7, pp. 18-25, 2004N. Tkachev, «Flexible data trimming improves performance of global machine learning methods in omics-based personalized oncology,» International Journal of Molecular Sciences, vol. XXI, nº 3, 2020L. Breiman, «Random forests,» Springer Netherlands, vol. XLV, nº 1, pp. 5-32, 2001instname:Universidad del Rosarioinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAntígenosAprendizaje automáticoCáncerIncidencia & prevención de la enfermedad614600Sistemas003600AntigenCancerMachine LearningComparación de modelos de aprendizaje automático para la predicción de células cancerígenas a partir del complejo MHC IComparison of machine learning models for the prediction of cancer cells from the MHC I complexPredicción de células cancerígenasbachelorThesisAnálisis de casoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludORIGINALComparacion-de-modelos-de-aprendizaje-automatico-para-la-prediccion-de-celulas-cancerigenas-a-partir-del-complejo-MHC-I.pdfComparacion-de-modelos-de-aprendizaje-automatico-para-la-prediccion-de-celulas-cancerigenas-a-partir-del-complejo-MHC-I.pdfapplication/pdf1719253https://repository.urosario.edu.co/bitstreams/68a9cb11-989f-4953-9647-565f4fcd96d0/download03b9a815cf54af2016505b936abb07baMD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/5888938f-5f3b-4248-b3af-ce2461ce8e64/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repository.urosario.edu.co/bitstreams/a502df63-c42e-4997-9aa6-b097b9cdc73d/download1608e658af296c3febc577e957e919bfMD53TEXTComparacion-de-modelos-de-aprendizaje-automatico-para-la-prediccion-de-celulas-cancerigenas-a-partir-del-complejo-MHC-I.pdf.txtComparacion-de-modelos-de-aprendizaje-automatico-para-la-prediccion-de-celulas-cancerigenas-a-partir-del-complejo-MHC-I.pdf.txtExtracted texttext/plain96343https://repository.urosario.edu.co/bitstreams/75e6b7a2-0576-42d8-8c11-b4b244c5e116/download8cdbfc8bc9393dd841b99b50e865dd0dMD54THUMBNAILComparacion-de-modelos-de-aprendizaje-automatico-para-la-prediccion-de-celulas-cancerigenas-a-partir-del-complejo-MHC-I.pdf.jpgComparacion-de-modelos-de-aprendizaje-automatico-para-la-prediccion-de-celulas-cancerigenas-a-partir-del-complejo-MHC-I.pdf.jpgGenerated Thumbnailimage/jpeg2478https://repository.urosario.edu.co/bitstreams/19db9097-e69d-4773-8708-a514c80b9cb4/downloade32d180ac8ec5439fc1290af5158d9daMD5510336/24401oai:repository.urosario.edu.co:10336/244012021-10-19 14:23:26.327http://creativecommons.org/licenses/by/2.5/co/Atribución 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |