Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning
Establecer un sistema de análisis de tráfico de red basado en algoritmos de machine learning (ML), orientado a sistemas de control industrial que permita: la identificación de comportamientos anormales para evitar la explotación de vulnerabilidades que afecten la seguridad de procesos industriales r...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/38272
- Acceso en línea:
- https://doi.org/10.48713/10336_38272
https://repository.urosario.edu.co/handle/10336/38272
- Palabra clave:
- Machine learning
Sistemas de control industrial ICS
Tráfico de red industrial
Detección de anomalías
Reducción de riesgos en seguridad de procesos industriales
Machine Learning
Cibersecurity
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_3b7e208eac0755c1ac89d78c62f83d62 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/38272 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
dc.title.TranslatedTitle.none.fl_str_mv |
Detection of anomalies in red traffic of Industrial Control Systems supported by machine learning algorithms |
title |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
spellingShingle |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning Machine learning Sistemas de control industrial ICS Tráfico de red industrial Detección de anomalías Reducción de riesgos en seguridad de procesos industriales Machine Learning Cibersecurity |
title_short |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
title_full |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
title_fullStr |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
title_full_unstemmed |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
title_sort |
Detección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learning |
dc.contributor.advisor.none.fl_str_mv |
Díaz López, Daniel Orlando |
dc.subject.none.fl_str_mv |
Machine learning Sistemas de control industrial ICS Tráfico de red industrial Detección de anomalías Reducción de riesgos en seguridad de procesos industriales |
topic |
Machine learning Sistemas de control industrial ICS Tráfico de red industrial Detección de anomalías Reducción de riesgos en seguridad de procesos industriales Machine Learning Cibersecurity |
dc.subject.keyword.none.fl_str_mv |
Machine Learning Cibersecurity |
description |
Establecer un sistema de análisis de tráfico de red basado en algoritmos de machine learning (ML), orientado a sistemas de control industrial que permita: la identificación de comportamientos anormales para evitar la explotación de vulnerabilidades que afecten la seguridad de procesos industriales reduciendo riesgos de disponibilidad y soporte la continuidad del negocio. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-03-24T21:27:37Z |
dc.date.available.none.fl_str_mv |
2023-03-24T21:27:37Z |
dc.date.created.none.fl_str_mv |
2023-02-07 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_38272 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/38272 |
url |
https://doi.org/10.48713/10336_38272 https://repository.urosario.edu.co/handle/10336/38272 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
78 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería, Ciencia y Tecnología |
dc.publisher.program.spa.fl_str_mv |
Maestría en Matemáticas Aplicadas y Ciencias de la Computación |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
V. Atluri and J. Horne, "A Machine Learning based Threat Intelligence Framework for Industrial Control System Network Traffic Indicators of Compromise," SoutheastCon 2021, 2021, pp. 1-5, doi: 10.1109/SoutheastCon45413.2021.9401809. J. M. Beaver, R. C. Borges-Hink and M. A. Buckner, "An Evaluation of Machine Learning Methods to Detect Malicious SCADA Communications," 2013 12th International Conference on Machine Learning and Applications, 2013, pp. 54-59, doi: 10.1109/ICMLA.2013.105. H. Lan, X. Zhu, J. Sun and S. Li, "Traffic Data Classification to Detect Man-in-the-Middle Attacks in Industrial Control System," 2019 6th International Conference on Dependable Systems and Their Applications (DSA), 2020, pp. 430-434, doi: 10.1109/DSA.2019.00067. S. M. Rachmawati, D. -S. Kim and J. -M. Lee, "Machine Learning Algorithm in Network Traffic Classification," 2021 International Conference on Information and Communication Technology Convergence (ICTC), 2021, pp. 1010-1013, doi: 10.1109/ICTC52510.2021.9620746. S. P. Khedkar and R. AroulCanessane, "Machine Learning Model for classification of IoT Network Traffic," 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 166-170, doi: 10.1109/I-SMAC49090.2020.9243468. H. Li and S. Qin, "Optimization and implementation of industrial control system network intrusion detection by telemetry analysis," 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 2017, pp. 1251-1254, doi: 10.1109/CompComm.2017.8322743. H. Singh, "Performance Analysis of Unsupervised Machine Learning Techniques for Network Traffic Classification," 2015 Fifth International Conference on Advanced Computing & Communication Technologies, 2015, pp. 401-404, doi: 10.1109/ACCT.2015.54. Chi-Ho Tsang and S. Kwong, "Multi-agent intrusion detection system in industrial network using ant colony clustering approach and unsupervised feature extraction," 2005 IEEE International Conference on Industrial Technology, 2005, pp. 51-56, doi: 10.1109/ICIT.2005.1600609. E. D. Knapp, J.T. Langill, “Industrial Network Security, Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems”, ISBN: 978-0-12-420114-9. W. Chen, T. Liu, Y. Tang, D. Xu, “Multi-level adaptive coupled method for industrial control networks safety based on machine learning”, Safety Science, Volume 120, 2019, Pages 268-275, ISSN 0925-7535, https://doi.org/10.1016/j.ssci.2019.07.012. E. Anthi, L. Williams, M. Rhode, P. Burnap, A.Wedgbury, “Adversarial attacks on machine learning cybersecurity defences in Industrial Control Systems”, Journal of Information Security and Applications, Volume 58, 2021, 102717, ISSN 2214-2126, https://doi.org/10.1016/j.jisa.2020.102717. J. Pei, K. Zhong, M. Ahmad Jan, J. Li, “Personalized federated learning framework for network traffic anomaly detection”, Computer Networks, Volume 209, 2022, 108906, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2022.108906. A. Shahraki, M. Abbasi, A. Taherkordi, A.Delia Jurcut, “A comparative study on online machine learning techniques for network traffic streams analysis”, Computer Networks, Volume 207, 2022, 108836, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2022.108836. J. Vávra, M. Hromada, L. Lukáš, J.Dworzecki, “Adaptive anomaly detection system based on machine learning algorithms in an industrial control environment, International Journal of Critical Infrastructure Protection”, Volume 34, 2021, 100446, ISSN 1874-5482, https://doi.org/10.1016/j.ijcip.2021.100446. M. A. Umer, K. N. Junejo, M. T. Jilani, A. P. Mathur, “Machine learning for intrusion detection in industrial control systems: Applications, challenges, and recommendations”, International Journal of Critical Infrastructure Protection, Volume 38, 2022, 100516, ISSN 1874-5482, https://doi.org/10.1016/j.ijcip.2022.100516. I. Chakraborty, B. M. Kelley, B. Gallagher, “Industrial control system device classification using network traffic features and neural network embeddings”, Array, Volume 12, 2021, 100081, ISSN 2590-0056, https://doi.org/10.1016/j.array.2021.100081. Yask & B. Suresh Kumar (2019), “A review of model on malware detection and protection for the distributed control systems (Industrial control systems) in oil & gas sectors”, Journal of Discrete Mathematical Sciences and Cryptography, 22:4, 531-540, DOI: 10.1080/09720529.2019.1642623 J. F. Brenner (2013), “Eyes wide shut: The growing threat of cyber-attacks on industrial control systems”, Bulletin of the Atomic Scientists, 69:5, 15-20, DOI: 10.1177/0096340213501372 S. Bagui, X. Fang, E. Kalaimannan, S.C. Bagui & Joseph Sheehan (2017), “Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features”, Journal of Cyber Security Technology, 1:2, 108-126, DOI: 10.1080/23742917.2017.1321891 P. Ackerman, “Industrial Cybersecurity, Efficiently secure critical infrastructure systems”, Published by Packt Publishing Ltd, ISBN 978-1-78839-515-1. J. McCarthy, E Division, D Faatz, “Securing the Industrial Internet of Things: Cybersecurity for Distributed Energy Resources”, NIST SPECIAL PUBLICATION 1800-32, National Institute of Standards and Technology, https://www.nccoe.nist.gov/iiot |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/59f6d889-25c8-4ddd-9037-6300453ea369/download https://repository.urosario.edu.co/bitstreams/19518c31-6203-4e93-81c6-eb308a553575/download https://repository.urosario.edu.co/bitstreams/75759e88-e10a-4bbd-be13-fb262484ef94/download https://repository.urosario.edu.co/bitstreams/4409010e-c86a-4142-9b04-c454a0de042d/download https://repository.urosario.edu.co/bitstreams/dcd7d6cd-7436-408f-b1e2-56ad9effe909/download |
bitstream.checksum.fl_str_mv |
652fffcac78698da385de1b1591daa06 b2825df9f458e9d5d96ee8b7cd74fde6 3b6ce8e9e36c89875e8cf39962fe8920 18e83963b41bdf1db7cc2aae874eef94 d065fa3653ab1ff7c2592cacf993acae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167699967705088 |
spelling |
Díaz López, Daniel Orlando1061695713600Tristancho Muñoz, Miguel AngelMagíster en Matemáticas Aplicadas y Ciencias de la ComputaciónFull timef8c9d57c-260c-4e7f-bc8b-ab7b40b5a50c-12023-03-24T21:27:37Z2023-03-24T21:27:37Z2023-02-07Establecer un sistema de análisis de tráfico de red basado en algoritmos de machine learning (ML), orientado a sistemas de control industrial que permita: la identificación de comportamientos anormales para evitar la explotación de vulnerabilidades que afecten la seguridad de procesos industriales reduciendo riesgos de disponibilidad y soporte la continuidad del negocio.The growing development of computer networks associated with industrial systems and their integration with corporate networks (Internet) have made this group a desired target for cybercriminals worldwide. Mitigating this type of risk is one of the highest priorities for integrators, manufacturers, and users of control systems due to the great impact that can occur on the economy, the environment and the people in an organization when materialization occurs. of an attempted attack or sabotage of industrial processes. It is becoming increasingly important for industrial organizations to become aware of the weakness of these systems and seek organizational structures for security management that help them optimize their protection against external threats from all points of view to detect and address incidents. security-related issues before they become a major problem.78 ppapplication/pdfhttps://doi.org/10.48713/10336_38272 https://repository.urosario.edu.co/handle/10336/38272spaUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaMaestría en Matemáticas Aplicadas y Ciencias de la ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2V. Atluri and J. Horne, "A Machine Learning based Threat Intelligence Framework for Industrial Control System Network Traffic Indicators of Compromise," SoutheastCon 2021, 2021, pp. 1-5, doi: 10.1109/SoutheastCon45413.2021.9401809.J. M. Beaver, R. C. Borges-Hink and M. A. Buckner, "An Evaluation of Machine Learning Methods to Detect Malicious SCADA Communications," 2013 12th International Conference on Machine Learning and Applications, 2013, pp. 54-59, doi: 10.1109/ICMLA.2013.105.H. Lan, X. Zhu, J. Sun and S. Li, "Traffic Data Classification to Detect Man-in-the-Middle Attacks in Industrial Control System," 2019 6th International Conference on Dependable Systems and Their Applications (DSA), 2020, pp. 430-434, doi: 10.1109/DSA.2019.00067.S. M. Rachmawati, D. -S. Kim and J. -M. Lee, "Machine Learning Algorithm in Network Traffic Classification," 2021 International Conference on Information and Communication Technology Convergence (ICTC), 2021, pp. 1010-1013, doi: 10.1109/ICTC52510.2021.9620746.S. P. Khedkar and R. AroulCanessane, "Machine Learning Model for classification of IoT Network Traffic," 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 166-170, doi: 10.1109/I-SMAC49090.2020.9243468.H. Li and S. Qin, "Optimization and implementation of industrial control system network intrusion detection by telemetry analysis," 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 2017, pp. 1251-1254, doi: 10.1109/CompComm.2017.8322743.H. Singh, "Performance Analysis of Unsupervised Machine Learning Techniques for Network Traffic Classification," 2015 Fifth International Conference on Advanced Computing & Communication Technologies, 2015, pp. 401-404, doi: 10.1109/ACCT.2015.54.Chi-Ho Tsang and S. Kwong, "Multi-agent intrusion detection system in industrial network using ant colony clustering approach and unsupervised feature extraction," 2005 IEEE International Conference on Industrial Technology, 2005, pp. 51-56, doi: 10.1109/ICIT.2005.1600609.E. D. Knapp, J.T. Langill, “Industrial Network Security, Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems”, ISBN: 978-0-12-420114-9.W. Chen, T. Liu, Y. Tang, D. Xu, “Multi-level adaptive coupled method for industrial control networks safety based on machine learning”, Safety Science, Volume 120, 2019, Pages 268-275, ISSN 0925-7535, https://doi.org/10.1016/j.ssci.2019.07.012.E. Anthi, L. Williams, M. Rhode, P. Burnap, A.Wedgbury, “Adversarial attacks on machine learning cybersecurity defences in Industrial Control Systems”, Journal of Information Security and Applications, Volume 58, 2021, 102717, ISSN 2214-2126, https://doi.org/10.1016/j.jisa.2020.102717.J. Pei, K. Zhong, M. Ahmad Jan, J. Li, “Personalized federated learning framework for network traffic anomaly detection”, Computer Networks, Volume 209, 2022, 108906, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2022.108906.A. Shahraki, M. Abbasi, A. Taherkordi, A.Delia Jurcut, “A comparative study on online machine learning techniques for network traffic streams analysis”, Computer Networks, Volume 207, 2022, 108836, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2022.108836.J. Vávra, M. Hromada, L. Lukáš, J.Dworzecki, “Adaptive anomaly detection system based on machine learning algorithms in an industrial control environment, International Journal of Critical Infrastructure Protection”, Volume 34, 2021, 100446, ISSN 1874-5482, https://doi.org/10.1016/j.ijcip.2021.100446.M. A. Umer, K. N. Junejo, M. T. Jilani, A. P. Mathur, “Machine learning for intrusion detection in industrial control systems: Applications, challenges, and recommendations”, International Journal of Critical Infrastructure Protection, Volume 38, 2022, 100516, ISSN 1874-5482, https://doi.org/10.1016/j.ijcip.2022.100516.I. Chakraborty, B. M. Kelley, B. Gallagher, “Industrial control system device classification using network traffic features and neural network embeddings”, Array, Volume 12, 2021, 100081, ISSN 2590-0056, https://doi.org/10.1016/j.array.2021.100081.Yask & B. Suresh Kumar (2019), “A review of model on malware detection and protection for the distributed control systems (Industrial control systems) in oil & gas sectors”, Journal of Discrete Mathematical Sciences and Cryptography, 22:4, 531-540, DOI: 10.1080/09720529.2019.1642623J. F. Brenner (2013), “Eyes wide shut: The growing threat of cyber-attacks on industrial control systems”, Bulletin of the Atomic Scientists, 69:5, 15-20, DOI: 10.1177/0096340213501372S. Bagui, X. Fang, E. Kalaimannan, S.C. Bagui & Joseph Sheehan (2017), “Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features”, Journal of Cyber Security Technology, 1:2, 108-126, DOI: 10.1080/23742917.2017.1321891P. Ackerman, “Industrial Cybersecurity, Efficiently secure critical infrastructure systems”, Published by Packt Publishing Ltd, ISBN 978-1-78839-515-1.J. McCarthy, E Division, D Faatz, “Securing the Industrial Internet of Things: Cybersecurity for Distributed Energy Resources”, NIST SPECIAL PUBLICATION 1800-32, National Institute of Standards and Technology, https://www.nccoe.nist.gov/iiotinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURMachine learningSistemas de control industrial ICSTráfico de red industrialDetección de anomalíasReducción de riesgos en seguridad de procesos industrialesMachine LearningCibersecurityDetección de anomalías en tráfico de red de Sistemas de Control Industrial soportada en algoritmos de machine learningDetection of anomalies in red traffic of Industrial Control Systems supported by machine learning algorithmsbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALDeteccion-de-anomalías-en- trafico-de-red-de-Sistemas-de-Control.pdfDeteccion-de-anomalías-en- trafico-de-red-de-Sistemas-de-Control.pdfapplication/pdf4140457https://repository.urosario.edu.co/bitstreams/59f6d889-25c8-4ddd-9037-6300453ea369/download652fffcac78698da385de1b1591daa06MD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/19518c31-6203-4e93-81c6-eb308a553575/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/75759e88-e10a-4bbd-be13-fb262484ef94/download3b6ce8e9e36c89875e8cf39962fe8920MD53TEXTDeteccion-de-anomalías-en- trafico-de-red-de-Sistemas-de-Control.pdf.txtDeteccion-de-anomalías-en- trafico-de-red-de-Sistemas-de-Control.pdf.txtExtracted texttext/plain101701https://repository.urosario.edu.co/bitstreams/4409010e-c86a-4142-9b04-c454a0de042d/download18e83963b41bdf1db7cc2aae874eef94MD54THUMBNAILDeteccion-de-anomalías-en- trafico-de-red-de-Sistemas-de-Control.pdf.jpgDeteccion-de-anomalías-en- trafico-de-red-de-Sistemas-de-Control.pdf.jpgGenerated Thumbnailimage/jpeg2974https://repository.urosario.edu.co/bitstreams/dcd7d6cd-7436-408f-b1e2-56ad9effe909/downloadd065fa3653ab1ff7c2592cacf993acaeMD5510336/38272oai:repository.urosario.edu.co:10336/382722023-03-25 03:03:08.768http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |