The complex task of choosing a de novo assembly: Lessons from fungal genomes

Selecting the values of parameters used by de novo genomic assembly programs, or choosing an optimal de novo assembly from several runs obtained with different parameters or programs, are tasks that can require complex decision-making. A key parameter that must be supplied to typical next generation...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23761
Acceso en línea:
https://doi.org/10.1016/j.compbiolchem.2014.08.014
https://repository.urosario.edu.co/handle/10336/23761
Palabra clave:
Complex task
De novo assemblies
Genome assembly
Next-generation sequencing
Spacer DNA
Algorithm
Contig mapping
DNA sequence
Fungal genome
Genetics
High throughput sequencing
Nucleotide repeat
Open reading frame
Paracoccidioides
Quality control
Statistics and numerical data
Algorithms
Benchmarking
Contig Mapping
High-Throughput Nucleotide Sequencing
Open Reading Frames
Paracoccidioides
Genome assembly methods
Next-generation sequencing
Repetitive DNA
Nucleic Acid
DNA
Fungal
Intergenic
DNA
Genome
Repetitive Sequences
Sequence Analysis
Rights
License
Abierto (Texto Completo)
id EDOCUR2_2aca8c616771aa67814d7f918c6c8514
oai_identifier_str oai:repository.urosario.edu.co:10336/23761
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 8d2fbe92-da8c-46a5-ab8d-8b5ea2cd1d5f-17dcaba27-e80f-4f46-a0c0-98010bce926a-1f2a7edfb-a2ef-461e-8062-812cd0c2123b-182ae7fd9-7890-4c2d-8135-9ad6c4018b45-1830c46ff-6a7a-4623-a65e-dc868e2c265b-12020-05-26T00:05:10Z2020-05-26T00:05:10Z2014Selecting the values of parameters used by de novo genomic assembly programs, or choosing an optimal de novo assembly from several runs obtained with different parameters or programs, are tasks that can require complex decision-making. A key parameter that must be supplied to typical next generation sequencing (NGS) assemblers is the k-mer length, i.e., the word size that determines which de Bruijn graph the program should map out and use. The topic of assembly selection criteria was recently revisited in the Assemblathon 2 study (Bradnam et al., 2013). Although no clear message was delivered with regard to optimal k-mer lengths, it was shown with examples that it is sometimes important to decide if one is most interested in optimizing the sequences of protein-coding genes (the gene space) or in optimizing the whole genome sequence including the intergenic DNA, as what is best for one criterion may not be best for the other. In the present study, our aim was to better understand how the assembly of unicellular fungi (which are typically intermediate in size and complexity between prokaryotes and metazoan eukaryotes) can change as one varies the k-mer values over a wide range. We used two different de novo assembly programs (SOAPdenovo2 and ABySS), and simple assembly metrics that also focused on success in assembling the gene space and repetitive elements. A recent increase in Illumina read length to around 150 bp allowed us to attempt de novo assemblies with a larger range of k-mers, up to 127 bp. We applied these methods to Illumina paired-end sequencing read sets of fungal strains of Paracoccidioides brasiliensis and other species. By visualizing the results in simple plots, we were able to track the effect of changing k-mer size and assembly program, and to demonstrate how such plots can readily reveal discontinuities or other unexpected characteristics that assembly programs can present in practice, especially when they are used in a traditional molecular microbiology laboratory with a 'genomics corner'. Here we propose and apply a component of a first pass validation methodology for benchmarking and understanding fungal genome de novo assembly processes. © 2014 Elsevier Ltd. All rights reserved.application/pdfhttps://doi.org/10.1016/j.compbiolchem.2014.08.01414769271https://repository.urosario.edu.co/handle/10336/23761engElsevier Ltd107No. PA97Computational Biology and ChemistryVol. 53Computational Biology and Chemistry, ISSN:14769271, Vol.53, No.PA (2014); pp. 97-107https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908554464&doi=10.1016%2fj.compbiolchem.2014.08.014&partnerID=40&md5=66fd3c29a8b9f784aa0c6941b74970e4Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURComplex taskDe novo assembliesGenome assemblyNext-generation sequencingSpacer DNAAlgorithmContig mappingDNA sequenceFungal genomeGeneticsHigh throughput sequencingNucleotide repeatOpen reading frameParacoccidioidesQuality controlStatistics and numerical dataAlgorithmsBenchmarkingContig MappingHigh-Throughput Nucleotide SequencingOpen Reading FramesParacoccidioidesGenome assembly methodsNext-generation sequencingRepetitive DNANucleic AcidDNAFungalIntergenicDNAGenomeRepetitive SequencesSequence AnalysisThe complex task of choosing a de novo assembly: Lessons from fungal genomesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Gallo, Juan EstebanMuñoz, José FernandoMisas, ElizabethMcEwen, Juan GuillermoClay, Oliver Keatinge10336/23761oai:repository.urosario.edu.co:10336/237612022-05-02 07:37:21.211576https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv The complex task of choosing a de novo assembly: Lessons from fungal genomes
title The complex task of choosing a de novo assembly: Lessons from fungal genomes
spellingShingle The complex task of choosing a de novo assembly: Lessons from fungal genomes
Complex task
De novo assemblies
Genome assembly
Next-generation sequencing
Spacer DNA
Algorithm
Contig mapping
DNA sequence
Fungal genome
Genetics
High throughput sequencing
Nucleotide repeat
Open reading frame
Paracoccidioides
Quality control
Statistics and numerical data
Algorithms
Benchmarking
Contig Mapping
High-Throughput Nucleotide Sequencing
Open Reading Frames
Paracoccidioides
Genome assembly methods
Next-generation sequencing
Repetitive DNA
Nucleic Acid
DNA
Fungal
Intergenic
DNA
Genome
Repetitive Sequences
Sequence Analysis
title_short The complex task of choosing a de novo assembly: Lessons from fungal genomes
title_full The complex task of choosing a de novo assembly: Lessons from fungal genomes
title_fullStr The complex task of choosing a de novo assembly: Lessons from fungal genomes
title_full_unstemmed The complex task of choosing a de novo assembly: Lessons from fungal genomes
title_sort The complex task of choosing a de novo assembly: Lessons from fungal genomes
dc.subject.keyword.spa.fl_str_mv Complex task
De novo assemblies
Genome assembly
Next-generation sequencing
Spacer DNA
Algorithm
Contig mapping
DNA sequence
Fungal genome
Genetics
High throughput sequencing
Nucleotide repeat
Open reading frame
Paracoccidioides
Quality control
Statistics and numerical data
Algorithms
Benchmarking
Contig Mapping
High-Throughput Nucleotide Sequencing
Open Reading Frames
Paracoccidioides
Genome assembly methods
Next-generation sequencing
Repetitive DNA
topic Complex task
De novo assemblies
Genome assembly
Next-generation sequencing
Spacer DNA
Algorithm
Contig mapping
DNA sequence
Fungal genome
Genetics
High throughput sequencing
Nucleotide repeat
Open reading frame
Paracoccidioides
Quality control
Statistics and numerical data
Algorithms
Benchmarking
Contig Mapping
High-Throughput Nucleotide Sequencing
Open Reading Frames
Paracoccidioides
Genome assembly methods
Next-generation sequencing
Repetitive DNA
Nucleic Acid
DNA
Fungal
Intergenic
DNA
Genome
Repetitive Sequences
Sequence Analysis
dc.subject.keyword.eng.fl_str_mv Nucleic Acid
DNA
Fungal
Intergenic
DNA
Genome
Repetitive Sequences
Sequence Analysis
description Selecting the values of parameters used by de novo genomic assembly programs, or choosing an optimal de novo assembly from several runs obtained with different parameters or programs, are tasks that can require complex decision-making. A key parameter that must be supplied to typical next generation sequencing (NGS) assemblers is the k-mer length, i.e., the word size that determines which de Bruijn graph the program should map out and use. The topic of assembly selection criteria was recently revisited in the Assemblathon 2 study (Bradnam et al., 2013). Although no clear message was delivered with regard to optimal k-mer lengths, it was shown with examples that it is sometimes important to decide if one is most interested in optimizing the sequences of protein-coding genes (the gene space) or in optimizing the whole genome sequence including the intergenic DNA, as what is best for one criterion may not be best for the other. In the present study, our aim was to better understand how the assembly of unicellular fungi (which are typically intermediate in size and complexity between prokaryotes and metazoan eukaryotes) can change as one varies the k-mer values over a wide range. We used two different de novo assembly programs (SOAPdenovo2 and ABySS), and simple assembly metrics that also focused on success in assembling the gene space and repetitive elements. A recent increase in Illumina read length to around 150 bp allowed us to attempt de novo assemblies with a larger range of k-mers, up to 127 bp. We applied these methods to Illumina paired-end sequencing read sets of fungal strains of Paracoccidioides brasiliensis and other species. By visualizing the results in simple plots, we were able to track the effect of changing k-mer size and assembly program, and to demonstrate how such plots can readily reveal discontinuities or other unexpected characteristics that assembly programs can present in practice, especially when they are used in a traditional molecular microbiology laboratory with a 'genomics corner'. Here we propose and apply a component of a first pass validation methodology for benchmarking and understanding fungal genome de novo assembly processes. © 2014 Elsevier Ltd. All rights reserved.
publishDate 2014
dc.date.created.spa.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:05:10Z
dc.date.available.none.fl_str_mv 2020-05-26T00:05:10Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.compbiolchem.2014.08.014
dc.identifier.issn.none.fl_str_mv 14769271
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23761
url https://doi.org/10.1016/j.compbiolchem.2014.08.014
https://repository.urosario.edu.co/handle/10336/23761
identifier_str_mv 14769271
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 107
dc.relation.citationIssue.none.fl_str_mv No. PA
dc.relation.citationStartPage.none.fl_str_mv 97
dc.relation.citationTitle.none.fl_str_mv Computational Biology and Chemistry
dc.relation.citationVolume.none.fl_str_mv Vol. 53
dc.relation.ispartof.spa.fl_str_mv Computational Biology and Chemistry, ISSN:14769271, Vol.53, No.PA (2014); pp. 97-107
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908554464&doi=10.1016%2fj.compbiolchem.2014.08.014&partnerID=40&md5=66fd3c29a8b9f784aa0c6941b74970e4
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167665086824448