The complex task of choosing a de novo assembly: Lessons from fungal genomes
Selecting the values of parameters used by de novo genomic assembly programs, or choosing an optimal de novo assembly from several runs obtained with different parameters or programs, are tasks that can require complex decision-making. A key parameter that must be supplied to typical next generation...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23761
- Acceso en línea:
- https://doi.org/10.1016/j.compbiolchem.2014.08.014
https://repository.urosario.edu.co/handle/10336/23761
- Palabra clave:
- Complex task
De novo assemblies
Genome assembly
Next-generation sequencing
Spacer DNA
Algorithm
Contig mapping
DNA sequence
Fungal genome
Genetics
High throughput sequencing
Nucleotide repeat
Open reading frame
Paracoccidioides
Quality control
Statistics and numerical data
Algorithms
Benchmarking
Contig Mapping
High-Throughput Nucleotide Sequencing
Open Reading Frames
Paracoccidioides
Genome assembly methods
Next-generation sequencing
Repetitive DNA
Nucleic Acid
DNA
Fungal
Intergenic
DNA
Genome
Repetitive Sequences
Sequence Analysis
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_2aca8c616771aa67814d7f918c6c8514 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23761 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
8d2fbe92-da8c-46a5-ab8d-8b5ea2cd1d5f-17dcaba27-e80f-4f46-a0c0-98010bce926a-1f2a7edfb-a2ef-461e-8062-812cd0c2123b-182ae7fd9-7890-4c2d-8135-9ad6c4018b45-1830c46ff-6a7a-4623-a65e-dc868e2c265b-12020-05-26T00:05:10Z2020-05-26T00:05:10Z2014Selecting the values of parameters used by de novo genomic assembly programs, or choosing an optimal de novo assembly from several runs obtained with different parameters or programs, are tasks that can require complex decision-making. A key parameter that must be supplied to typical next generation sequencing (NGS) assemblers is the k-mer length, i.e., the word size that determines which de Bruijn graph the program should map out and use. The topic of assembly selection criteria was recently revisited in the Assemblathon 2 study (Bradnam et al., 2013). Although no clear message was delivered with regard to optimal k-mer lengths, it was shown with examples that it is sometimes important to decide if one is most interested in optimizing the sequences of protein-coding genes (the gene space) or in optimizing the whole genome sequence including the intergenic DNA, as what is best for one criterion may not be best for the other. In the present study, our aim was to better understand how the assembly of unicellular fungi (which are typically intermediate in size and complexity between prokaryotes and metazoan eukaryotes) can change as one varies the k-mer values over a wide range. We used two different de novo assembly programs (SOAPdenovo2 and ABySS), and simple assembly metrics that also focused on success in assembling the gene space and repetitive elements. A recent increase in Illumina read length to around 150 bp allowed us to attempt de novo assemblies with a larger range of k-mers, up to 127 bp. We applied these methods to Illumina paired-end sequencing read sets of fungal strains of Paracoccidioides brasiliensis and other species. By visualizing the results in simple plots, we were able to track the effect of changing k-mer size and assembly program, and to demonstrate how such plots can readily reveal discontinuities or other unexpected characteristics that assembly programs can present in practice, especially when they are used in a traditional molecular microbiology laboratory with a 'genomics corner'. Here we propose and apply a component of a first pass validation methodology for benchmarking and understanding fungal genome de novo assembly processes. © 2014 Elsevier Ltd. All rights reserved.application/pdfhttps://doi.org/10.1016/j.compbiolchem.2014.08.01414769271https://repository.urosario.edu.co/handle/10336/23761engElsevier Ltd107No. PA97Computational Biology and ChemistryVol. 53Computational Biology and Chemistry, ISSN:14769271, Vol.53, No.PA (2014); pp. 97-107https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908554464&doi=10.1016%2fj.compbiolchem.2014.08.014&partnerID=40&md5=66fd3c29a8b9f784aa0c6941b74970e4Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURComplex taskDe novo assembliesGenome assemblyNext-generation sequencingSpacer DNAAlgorithmContig mappingDNA sequenceFungal genomeGeneticsHigh throughput sequencingNucleotide repeatOpen reading frameParacoccidioidesQuality controlStatistics and numerical dataAlgorithmsBenchmarkingContig MappingHigh-Throughput Nucleotide SequencingOpen Reading FramesParacoccidioidesGenome assembly methodsNext-generation sequencingRepetitive DNANucleic AcidDNAFungalIntergenicDNAGenomeRepetitive SequencesSequence AnalysisThe complex task of choosing a de novo assembly: Lessons from fungal genomesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Gallo, Juan EstebanMuñoz, José FernandoMisas, ElizabethMcEwen, Juan GuillermoClay, Oliver Keatinge10336/23761oai:repository.urosario.edu.co:10336/237612022-05-02 07:37:21.211576https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
title |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
spellingShingle |
The complex task of choosing a de novo assembly: Lessons from fungal genomes Complex task De novo assemblies Genome assembly Next-generation sequencing Spacer DNA Algorithm Contig mapping DNA sequence Fungal genome Genetics High throughput sequencing Nucleotide repeat Open reading frame Paracoccidioides Quality control Statistics and numerical data Algorithms Benchmarking Contig Mapping High-Throughput Nucleotide Sequencing Open Reading Frames Paracoccidioides Genome assembly methods Next-generation sequencing Repetitive DNA Nucleic Acid DNA Fungal Intergenic DNA Genome Repetitive Sequences Sequence Analysis |
title_short |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
title_full |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
title_fullStr |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
title_full_unstemmed |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
title_sort |
The complex task of choosing a de novo assembly: Lessons from fungal genomes |
dc.subject.keyword.spa.fl_str_mv |
Complex task De novo assemblies Genome assembly Next-generation sequencing Spacer DNA Algorithm Contig mapping DNA sequence Fungal genome Genetics High throughput sequencing Nucleotide repeat Open reading frame Paracoccidioides Quality control Statistics and numerical data Algorithms Benchmarking Contig Mapping High-Throughput Nucleotide Sequencing Open Reading Frames Paracoccidioides Genome assembly methods Next-generation sequencing Repetitive DNA |
topic |
Complex task De novo assemblies Genome assembly Next-generation sequencing Spacer DNA Algorithm Contig mapping DNA sequence Fungal genome Genetics High throughput sequencing Nucleotide repeat Open reading frame Paracoccidioides Quality control Statistics and numerical data Algorithms Benchmarking Contig Mapping High-Throughput Nucleotide Sequencing Open Reading Frames Paracoccidioides Genome assembly methods Next-generation sequencing Repetitive DNA Nucleic Acid DNA Fungal Intergenic DNA Genome Repetitive Sequences Sequence Analysis |
dc.subject.keyword.eng.fl_str_mv |
Nucleic Acid DNA Fungal Intergenic DNA Genome Repetitive Sequences Sequence Analysis |
description |
Selecting the values of parameters used by de novo genomic assembly programs, or choosing an optimal de novo assembly from several runs obtained with different parameters or programs, are tasks that can require complex decision-making. A key parameter that must be supplied to typical next generation sequencing (NGS) assemblers is the k-mer length, i.e., the word size that determines which de Bruijn graph the program should map out and use. The topic of assembly selection criteria was recently revisited in the Assemblathon 2 study (Bradnam et al., 2013). Although no clear message was delivered with regard to optimal k-mer lengths, it was shown with examples that it is sometimes important to decide if one is most interested in optimizing the sequences of protein-coding genes (the gene space) or in optimizing the whole genome sequence including the intergenic DNA, as what is best for one criterion may not be best for the other. In the present study, our aim was to better understand how the assembly of unicellular fungi (which are typically intermediate in size and complexity between prokaryotes and metazoan eukaryotes) can change as one varies the k-mer values over a wide range. We used two different de novo assembly programs (SOAPdenovo2 and ABySS), and simple assembly metrics that also focused on success in assembling the gene space and repetitive elements. A recent increase in Illumina read length to around 150 bp allowed us to attempt de novo assemblies with a larger range of k-mers, up to 127 bp. We applied these methods to Illumina paired-end sequencing read sets of fungal strains of Paracoccidioides brasiliensis and other species. By visualizing the results in simple plots, we were able to track the effect of changing k-mer size and assembly program, and to demonstrate how such plots can readily reveal discontinuities or other unexpected characteristics that assembly programs can present in practice, especially when they are used in a traditional molecular microbiology laboratory with a 'genomics corner'. Here we propose and apply a component of a first pass validation methodology for benchmarking and understanding fungal genome de novo assembly processes. © 2014 Elsevier Ltd. All rights reserved. |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:05:10Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:05:10Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.compbiolchem.2014.08.014 |
dc.identifier.issn.none.fl_str_mv |
14769271 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23761 |
url |
https://doi.org/10.1016/j.compbiolchem.2014.08.014 https://repository.urosario.edu.co/handle/10336/23761 |
identifier_str_mv |
14769271 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
107 |
dc.relation.citationIssue.none.fl_str_mv |
No. PA |
dc.relation.citationStartPage.none.fl_str_mv |
97 |
dc.relation.citationTitle.none.fl_str_mv |
Computational Biology and Chemistry |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 53 |
dc.relation.ispartof.spa.fl_str_mv |
Computational Biology and Chemistry, ISSN:14769271, Vol.53, No.PA (2014); pp. 97-107 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908554464&doi=10.1016%2fj.compbiolchem.2014.08.014&partnerID=40&md5=66fd3c29a8b9f784aa0c6941b74970e4 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167665086824448 |