A novel algorithm for the automatic detection of sleep apnea from single-lead ECG

Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27664
Acceso en línea:
https://doi.org/10.1109/TBME.2015.2422378
https://repository.urosario.edu.co/handle/10336/27664
Palabra clave:
Electrocardiography
Sleep apnea
Heart rate
Morphology
Principal component analysis
Feature extraction
Eigenvalues and eigenfunctions
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_021f1d5292ab019b5280eb348c074753
oai_identifier_str oai:repository.urosario.edu.co:10336/27664
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 26c827fb-524d-4c98-829a-5c9a9c9c6127-101e890cc-5fd8-4aab-a0f9-77d71ca967d7-1e1d168f3-2e74-4d6f-95c3-dd477e69b32b-1373c77e3-5093-43fd-831b-0db88cefa50d-1141395126002020-08-19T14:43:13Z2020-08-19T14:43:13Z2015-04-13Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.application/pdfhttps://doi.org/10.1109/TBME.2015.2422378ISSN: 0018-9294EISSN: 1558-2531https://repository.urosario.edu.co/handle/10336/27664engIEEE2278No. 92269IEEE Transactions on Biomedical EngineeringVol. 62IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.62, No.9 (Sept 2015); pp. 2269 - 2278https://ieeexplore.ieee.org/document/7084597Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Transactions on Biomedical Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURElectrocardiographySleep apneaHeart rateMorphologyPrincipal component analysisFeature extractionEigenvalues and eigenfunctionsA novel algorithm for the automatic detection of sleep apnea from single-lead ECGUn algoritmo novedoso para la detección automática de la apnea del sueño a partir de ECG de una sola derivaciónarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Varon, CarolinaTestelmans, DriesBuyse, BertienVan Huffel, SabineCaicedo Dorado, Alexander10336/27664oai:repository.urosario.edu.co:10336/276642021-06-03 00:50:16.859https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
dc.title.TranslatedTitle.spa.fl_str_mv Un algoritmo novedoso para la detección automática de la apnea del sueño a partir de ECG de una sola derivación
title A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
spellingShingle A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
Electrocardiography
Sleep apnea
Heart rate
Morphology
Principal component analysis
Feature extraction
Eigenvalues and eigenfunctions
title_short A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
title_full A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
title_fullStr A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
title_full_unstemmed A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
title_sort A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
dc.subject.keyword.spa.fl_str_mv Electrocardiography
Sleep apnea
Heart rate
Morphology
Principal component analysis
Feature extraction
Eigenvalues and eigenfunctions
topic Electrocardiography
Sleep apnea
Heart rate
Morphology
Principal component analysis
Feature extraction
Eigenvalues and eigenfunctions
description Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015-04-13
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:43:13Z
dc.date.available.none.fl_str_mv 2020-08-19T14:43:13Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/TBME.2015.2422378
dc.identifier.issn.none.fl_str_mv ISSN: 0018-9294
EISSN: 1558-2531
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27664
url https://doi.org/10.1109/TBME.2015.2422378
https://repository.urosario.edu.co/handle/10336/27664
identifier_str_mv ISSN: 0018-9294
EISSN: 1558-2531
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 2278
dc.relation.citationIssue.none.fl_str_mv No. 9
dc.relation.citationStartPage.none.fl_str_mv 2269
dc.relation.citationTitle.none.fl_str_mv IEEE Transactions on Biomedical Engineering
dc.relation.citationVolume.none.fl_str_mv Vol. 62
dc.relation.ispartof.spa.fl_str_mv IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.62, No.9 (Sept 2015); pp. 2269 - 2278
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/7084597
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv IEEE Transactions on Biomedical Engineering
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167706194149376