A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27664
- Acceso en línea:
- https://doi.org/10.1109/TBME.2015.2422378
https://repository.urosario.edu.co/handle/10336/27664
- Palabra clave:
- Electrocardiography
Sleep apnea
Heart rate
Morphology
Principal component analysis
Feature extraction
Eigenvalues and eigenfunctions
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_021f1d5292ab019b5280eb348c074753 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27664 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
26c827fb-524d-4c98-829a-5c9a9c9c6127-101e890cc-5fd8-4aab-a0f9-77d71ca967d7-1e1d168f3-2e74-4d6f-95c3-dd477e69b32b-1373c77e3-5093-43fd-831b-0db88cefa50d-1141395126002020-08-19T14:43:13Z2020-08-19T14:43:13Z2015-04-13Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection.application/pdfhttps://doi.org/10.1109/TBME.2015.2422378ISSN: 0018-9294EISSN: 1558-2531https://repository.urosario.edu.co/handle/10336/27664engIEEE2278No. 92269IEEE Transactions on Biomedical EngineeringVol. 62IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.62, No.9 (Sept 2015); pp. 2269 - 2278https://ieeexplore.ieee.org/document/7084597Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Transactions on Biomedical Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURElectrocardiographySleep apneaHeart rateMorphologyPrincipal component analysisFeature extractionEigenvalues and eigenfunctionsA novel algorithm for the automatic detection of sleep apnea from single-lead ECGUn algoritmo novedoso para la detección automática de la apnea del sueño a partir de ECG de una sola derivaciónarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Varon, CarolinaTestelmans, DriesBuyse, BertienVan Huffel, SabineCaicedo Dorado, Alexander10336/27664oai:repository.urosario.edu.co:10336/276642021-06-03 00:50:16.859https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
dc.title.TranslatedTitle.spa.fl_str_mv |
Un algoritmo novedoso para la detección automática de la apnea del sueño a partir de ECG de una sola derivación |
title |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
spellingShingle |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG Electrocardiography Sleep apnea Heart rate Morphology Principal component analysis Feature extraction Eigenvalues and eigenfunctions |
title_short |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
title_full |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
title_fullStr |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
title_full_unstemmed |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
title_sort |
A novel algorithm for the automatic detection of sleep apnea from single-lead ECG |
dc.subject.keyword.spa.fl_str_mv |
Electrocardiography Sleep apnea Heart rate Morphology Principal component analysis Feature extraction Eigenvalues and eigenfunctions |
topic |
Electrocardiography Sleep apnea Heart rate Morphology Principal component analysis Feature extraction Eigenvalues and eigenfunctions |
description |
Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of the RR interval time series. The first novel feature uses the principal components of the QRS complexes, and it describes changes in their morphology caused by an increased sympathetic activity during apnea. The second novel feature extracts the information shared between respiration and heart rate using orthogonal subspace projections. Respiratory information is derived from the ECG by means of three state-of-the-art algorithms, which are implemented and compared here. All features are used as input to a least-squares support vector machines classifier, using an RBF kernel. In total, 80 ECG recordings were included in the study. Results: Accuracies of about 85% are achieved on a minute-by-minute basis, for two independent datasets including both hypopneas and apneas together. Separation between apnea and normal recordings is achieved with 100% accuracy. In addition to apnea classification, the proposed methodology determines the contamination level of each ECG minute. Conclusion: The performances achieved are comparable with those reported in the literature for fully automated algorithms. Significance: These results indicate that the use of only ECG sensors can achieve good accuracies in the detection of sleep apnea. Moreover, the contamination level of each ECG segment can be used to automatically detect artefacts, and to highlight segments that require further visual inspection. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015-04-13 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:43:13Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:43:13Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/TBME.2015.2422378 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0018-9294 EISSN: 1558-2531 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27664 |
url |
https://doi.org/10.1109/TBME.2015.2422378 https://repository.urosario.edu.co/handle/10336/27664 |
identifier_str_mv |
ISSN: 0018-9294 EISSN: 1558-2531 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
2278 |
dc.relation.citationIssue.none.fl_str_mv |
No. 9 |
dc.relation.citationStartPage.none.fl_str_mv |
2269 |
dc.relation.citationTitle.none.fl_str_mv |
IEEE Transactions on Biomedical Engineering |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 62 |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Transactions on Biomedical Engineering, ISSN: 0018-9294;EISSN: 1558-2531, Vol.62, No.9 (Sept 2015); pp. 2269 - 2278 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/7084597 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
IEEE Transactions on Biomedical Engineering |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167706194149376 |