A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
Goal: This paper presents a methodology for the automatic detection of sleep apnea from single-lead ECG. Methods: It uses two novel features derived from the ECG, and two well-known features in heart rate variability analysis, namely the standard deviation and the serial correlation coefficients of...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27664
- Acceso en línea:
- https://doi.org/10.1109/TBME.2015.2422378
https://repository.urosario.edu.co/handle/10336/27664
- Palabra clave:
- Electrocardiography
Sleep apnea
Heart rate
Morphology
Principal component analysis
Feature extraction
Eigenvalues and eigenfunctions
- Rights
- License
- Restringido (Acceso a grupos específicos)