Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática

Debido a los efectos lesivos de la producción animal sobre el medio ambiente, en la actualidad, el interés es identificar alternativas que permitan aumentar la sostenibilidad ambiental y a su vez logren obtener una rentabilidad económica, siendo una de estas alternativas el uso de las enzimas en la...

Full description

Autores:
Varon Lopez, Yeisson Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/35094
Acceso en línea:
https://hdl.handle.net/20.500.12494/35094
Palabra clave:
Enzima
Carbohidrasas
PNA’sas,
Fitasas
Lipasas
Proteasas
TG 2021 MVZ 35094
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_f5a5f6d87be0bd3f620e4b4a1fe1fbd2
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/35094
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
title Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
spellingShingle Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
Enzima
Carbohidrasas
PNA’sas,
Fitasas
Lipasas
Proteasas
TG 2021 MVZ 35094
title_short Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
title_full Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
title_fullStr Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
title_full_unstemmed Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
title_sort Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
dc.creator.fl_str_mv Varon Lopez, Yeisson Alejandro
dc.contributor.advisor.none.fl_str_mv Pérez Rubio, María del Rocío
dc.contributor.author.none.fl_str_mv Varon Lopez, Yeisson Alejandro
dc.subject.spa.fl_str_mv Enzima
Carbohidrasas
PNA’sas,
Fitasas
Lipasas
Proteasas
topic Enzima
Carbohidrasas
PNA’sas,
Fitasas
Lipasas
Proteasas
TG 2021 MVZ 35094
dc.subject.classification.spa.fl_str_mv TG 2021 MVZ 35094
description Debido a los efectos lesivos de la producción animal sobre el medio ambiente, en la actualidad, el interés es identificar alternativas que permitan aumentar la sostenibilidad ambiental y a su vez logren obtener una rentabilidad económica, siendo una de estas alternativas el uso de las enzimas en la nutrición de los cerdos. Además, otro enfoque de aplicación de las enzimas en la producción porcina es el mejorar la eficiencia alimenticia al optimizar la digestibilidad de los nutrientes, e incluso permitir una disminución de los requerimientos nutricionales en la dieta, optimizando las materias primas y a su vez mitigando el impacto ambiental, siendo el caso de las proteasas y las fitasas, las cuales mejoran la digestibilidad y absorción de las proteínas y de algunos minerales. La presente revisión tiene como objetivo identificar la evolución de la aplicación de las enzimas en la alimentación de los cerdos, su efecto sobre el medio ambiente, y rendimiento productivo, así como perspectivas futuras de aplicación. En conclusión, se identificó los principales focos de aplicación de las enzimas en la nutrición de cerdos, siendo la disminución de los requerimientos nutriciones (proteína) y minerales (calcio, fosforo, magnesio y zinc) los enfoques que priman. En un principio se consideró con un gran potencial la implementación de estos catalizadores en dietas compuestas por materias primas no convencionales o poco implementadas según la región de producción (cebada, sorgo, trigo), sin embargo en la actualidad, incluso en dietas compuesta por las principales fuentes de alimento, maíz y soya se justifica su aplicación, optimizando sus nutrientes y mitigando sus factores antinutricionales, de importancia en la actualidad por la tendencia al alza del precio de estas materias primas.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-13T13:21:43Z
dc.date.available.none.fl_str_mv 2021-07-13T13:21:43Z
dc.date.issued.none.fl_str_mv 2021-07-12
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/35094
dc.identifier.bibliographicCitation.spa.fl_str_mv Varón López, Y. A. (2021). Aspectos históricos, estado actual y futuro de las enzimas en la alimentación de cerdos: una revisión sistemática. [tesis de pregrado, Universidad Cooperativa de Colombia] Repositorio institucional UCC. http://hdl.handle.net/20.500.12494/35094
url https://hdl.handle.net/20.500.12494/35094
identifier_str_mv Varón López, Y. A. (2021). Aspectos históricos, estado actual y futuro de las enzimas en la alimentación de cerdos: una revisión sistemática. [tesis de pregrado, Universidad Cooperativa de Colombia] Repositorio institucional UCC. http://hdl.handle.net/20.500.12494/35094
dc.relation.references.spa.fl_str_mv Kumar A, Rani R, Pandey A. Production, Purification, and Application of Microbial Enzymes. En Brahmachari G. Biotechnology of Microbial Enzymes, Production, Biocatalysis and Industrial Applications.: Academic Press; 2017. p. 13-14.
Souza F, Gutterres M. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Brazilian Journal of Chemical Engineering. 2012; 29(3): p. 473-482.
Hirose Y. Enzymes for Human Nutrition and Health. En Vogel A, May O. Industrial Enzyme Applications.: Wiley‐VCH Verlag GmbH & Co. KGaA; 2019. p. 203-217.
Moreira K, Moura L, Monteiro R, Oliveira A, Valle C, Freire T, et al. Optimization of the Production of Enzymatic. Catalysts. 2020; 10(4): p. 414-434.
Porcicultura Colombiana. ¿Cómo le fue a la porcicultura colombiana en el 2015? Porcicultura Colombiana. 2016; 5(1): p. 7-17.
Porcicultura Colombiana. Análisis de coyuntura del sector porcícola Primer semestre 2016. Porcicultura Colombiana. 2016; 5(7): p. 16-22.
Aguirre P. Efecto de las enzimas en la alimentación de cerdos. [Online]; 2020. Disponible en: https://bmeditores.mx/porcicultura/efecto-de-las-enzimas-en-la-alimentacion-de-cerdos/
Imran M, Nazar M, Saif M, Ashan M, Sanahullah , Vardan M, et al. Role of Enzymes in Animal Nutrition: A Review. PSM Veterinary Research. 2016; 1(2): p. 38-45.
Cardoso L. Custos de produção de suínos sobem 10,93% em julho. [Online]; 2020. Disponible en: https://www.embrapa.br/busca-de-noticias/-/noticia/55034075/custos-de-producao-de-suinos-sobem-1093-em-julho
Kerr B, Shurson G. Strategies to improve fiber utilization in swine. Journal of Animal Science and Biotechnology. 2013; 4(1): p. 11-23.
Dourado L, Sakomura N, Barbosa N, Bonato M, Kawauchi I, Fernandes J, et al. Corn and soybean meal metabolizable energy with the addition of exogenous enzymes for poultry. Brazilian Journal of Poultry Science. 2009; 11(1): p. 51-55.
Park K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. Springerplus. 2016; 5: p. 598.604.
Bedford M. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science. 2018; 59(5): p. 486-493.
Clickner F, Follwell E. Application of “Protozyme” (Aspergillus orizae) to Poultry Feeding. Poultry Science. 1926; 5(5): p. 241-247
Thacker P, Campbell G, GrootWassin J. The effect of enzyme supplementation on the nutritive value of rye-based diets for swine. Canadian Journal of Animal Science. 1991; 71(2).
Thacker P, Baas T. Effects of gastric pH on the activity of exogenous pentosanase and the effect of pentosanase supplementation of the diet on the performance of growing-finishing pigs. Animal Feed Science and Technology. 1996; 63(1-4): p. 187-200.
Bedford M, Schulze H. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews. 1998; 11(1): p. 91-114.
Vangroenweghe F, Poulsen K, Thas O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management. 2021; 7(1): p. 8-19.
Walk C, Bedford M. Application of exogenous enzymes: Is digestibility an appropriate response variable? Animal Production Science. 2020; 60(8): p. 993-998.
Bedford M, Masey H. Introduction. En Simoes C, Vikas K. Enzymes in Human and Animal Nutrition.: Elsevier; 2018. p. xxxii - xxxvi.
Selle P, Ravindran V, Caldwell A, Bryden W. 2000. Nutrition Research Reviews. 2000; 13(2): p. 255-278.
Wang H, Long W, Chadwick D, Velthof G, Oenema O, Ma W, et al. Can dietary manipulations improve the productivity of pigs with lower environmental and economic cost? A global meta-analysis. Agriculture, Ecosystems and Environment. 2020; 289: p. 106748.
Revindran V. Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research. 2013; 22(3): p. 628-636.
Kumar S, Chakravarty S. Amylases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 163-175.
Simoes C. Depolymerizating enzymes—cellulases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 107-126.
Pierzynowski S, Szwiec K, Valverde J, Gruijc D, Szymanczyk S, Swieboda P, et al. Exogenous pancreatic-like enzymes are recovered in the gut and improve growth of exocrine pancreatic insufficient pigs. Journal if Animal Science. 2012; 90(4): p. 324-326.
Cency de Barro P, Oliveira V, Eliseu C, Vianna R. Effect of enzymes addition on the total tract apparent digestibility of piglet diets. Semina Ciencias Agrarias. 2014; 35(4): p. 2211-2218.
Ree K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. SpringerPlus. 2016; 5: p. 598.
Habte-Tsion H, Kumar V, Rossi W. Perspectives of nonstarch polysaccharide enzymes in nutrition. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 239-249.
Habte-Tsion H, Kumar V. Nonstarch polysaccharide enzymes—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academis Prees; 2018. p. 183-203.
Long C, Rösch C, Vries S, Schols H, Venema K. Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs. Journal of Agricultural and Food Chemistry. 2020; 68(39): p. 11011-11025.
Zhao J, Zhang G, Liu L, Wang J, Zhang S. Effects of fibre-degrading enzymes in combination with different fibre sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Archives of Animal Nutrition. 2020; 74(6): p. 309-324
Hoon S, Kyoung J, Ho Y, Kang D. Complete genome sequence of the acidic cellulase producer Bacillus amyloliquefaciens ATC6. Journal of Animal Science and Technology. 2020; 62(5): p. 761-763
Martínez-Aispuro J, Figueroa-Velasco J, Cordero-Mora J, Sánchez-Torres-Esqueda M, Martínez-Aispuro M. Martínez-Aispuro. Ecosistema y recursos agropecuarios. 2017; 4(10): p. 73-80
Lyu Z, Wang L, Wang J, Wang Z, Zhang S, Wang J, et al. Oat bran and wheat bran impact net energy by shaping microbial communities and fermentation products in pigs fed diets with or without xylanase. Journal of Animal Science and Biotechnology. 2020; 11: p. 99-114.
Pedersen N, Azem E, Broz J, Guggenbuhl P, Le D, Fojan P, et al. The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase. Journal of Animal Science. 2012; 90(4): p. 149-151.
Karie E, Owusu-Asiedu A, Péron A, Simmins P, Nyachoti C. Efficacy of xylanase and β-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science. 2012; 148(1-2): p. 129-133.
Trindade M, Dadalt J, Gallardo C. Nutrient and energy balance, and amino acid digestibility in weaned piglets fed wheat bran and an exogenous enzyme combination. Animal. 2020; 14(3): p. 499-507
Li Q, Burrough E, Gabler N, Loving C, Sahin O, Gould S, et al. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs. Journal of Animal Science. 2019; 97(5): p. 2139–2153.
Logn C, Venema K. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Frontiers in Microbiology. 2020; 11: p. 2692.
Jakobsen G, Jensen B, Bach K, Canibe N. Fermentation and addition of enzymes to a diet based on high-moisture corn, rapeseed cake, and peas improve digestibility of nonstarch polysaccharides, crude protein, and phosphorus in pigs. Journal of Animal Science. 2015; 93(5): p. 2234-2245.
Wook J, Pattersson R, Rogiewicz A, Woyengo T. Nutrient digestibility of multi-enzyme supplemented low-energy and AA diets for grower pigs. Journal of Animal Science. 2019; 97(7): p. 2979–2988.
Romano N, Kumar V. Phytase in animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 73 - 81.
Kumar V, Sinha A. General aspects of phytases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 53-67.
Batson K, Calderón H, Goodband R, Woodworth J, Tokach M, Dritz S, et al. Effect of high-phytase supplementation in lactation diets on sow and litter performance. Translational Animal Science. 2021; 5(1): p. 227.
Schlegel P, Gutzwiller A. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase. Journal of Animal Phisiology and Animal Nutrition. 2017; 101(5): p. 165-174.
Lee S, Lagos L, Walk C, Stein H. Standardized total tract digestibility of calcium varies among sources of calcium carbonate, but not among sources of dicalcium phosphate, but microbial phytase increases calcium digestibility in calcium carbonate. Journal of Animal Science. 2019; 97(8): p. 3440–3450
Philipps-Wiemann P. Proteases—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 257-264.
Philipps-Wiemann P. Proteases—animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 279-292.
Morales M, Cervantes M, Cuca M, Figueroa J, Pro A, Araiza B, et al. Digestibilidad ileal de aminoácidos y comportamiento productivo de cerdos alimentados con dietas a base de trigo, adicionadas con una proteasa fungal. Agrociencia. 2002; 36(5): p. 515-522.
Park S, Jae J, Mo B, Ho J, Kim S, Kang J, et al. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal if Animal Science anf Technology. 2020; 62(1): p. 21-30.
Tactacan G, Cho S, Cho J, Kim I. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australasian Journal of Animal Sciences. 2016; 29(7): p. 998-1003.
Torres-Pitarch A, McCormack U, Beattie V, Magowan E, Gardiner G, Pérez-Vendrell A, et al. Effect of phytase, carbohydrase, and protease addition to a wheat distillers dried grains with solubles and rapeseed based diet on in vitro ileal digestibility, growth, and bone mineral density of grower-finisher pigs. Livestock Science. 2018; 216: p. 94-99.
Dierick N, Decuypere J, Degeyter I. THE COMBINED USE OF WHOLE CUPHEA SEEDS CONTAINING MEDIUM CHAIN FATTY ACIDS AND AN EXOGENOUS LIPASE IN PIGLET NUTRITION. Archives of Animal Nutrition. 2003; 57(1): p. 49-63.
Zhang S, Zhang X, Qiao H, Chen J, Fang C, Deng Z, et al. Effect of timing of post-weaning supplementation of soybean oil and exogenous lipase on growth performance, blood biochemical profiles, intestinal morphology and caecal microbial composition in weaning pigs. Italian Journal of Animal Science. 2018; 17(4): p. 967-975.
Nutrinews. Uso de enzimas en la alimentación animal. Un proceso de innovación. [Online]: 2014. Disponible en: https://nutricionanimal.info/introduccion-al-uso-de-enzimas-en-la-alimentacion-animal-un-proceso-de-innovacion/
Valdivia A, Matos M, Rodríguez Z, Pérez Y, Rubio Y, Vega J. Los aditivos enzimáticos, su aplicación en la crianza animal. Cuban Journal of Agricultural Science. 2019; 53(4): p. 341-352.
Kurtovic I, Marshall S, Zhao X, Simpson B. Lipases from Mammals and Fishes. Reviews in Fisheries Science. 2009; 17(1): p. 18-40.
Sindhu R, Shiburaj S, Sabu A, Fernandes P. Singhal R, Mathew G, Mair I… Pandey, A. Enzyme Technology in Food Processing: Recent Developments and Future Prospects. En Knoerzer K, Muthukumarappan K. Innovative Food Processing Technologies: Elsevier; 2021: p. 191-215.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 50 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibagué
dc.publisher.program.spa.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.spa.fl_str_mv Ibagué
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/83f43c1b-8a11-48c2-bbb7-49e241fd0249/download
https://repository.ucc.edu.co/bitstreams/c24e99db-36d2-4ed8-b099-20c0831f5542/download
https://repository.ucc.edu.co/bitstreams/86e505b3-439a-438f-9ba6-61e32e25472b/download
https://repository.ucc.edu.co/bitstreams/5b51e3f4-b58e-4719-b786-b013c4321353/download
https://repository.ucc.edu.co/bitstreams/1ce21fe9-6887-4a66-b3e3-d7fd052c4036/download
https://repository.ucc.edu.co/bitstreams/106d79e9-ff76-48ea-8c71-f06739b75db6/download
https://repository.ucc.edu.co/bitstreams/08669682-e79f-44d0-bee7-1b543ae0b070/download
https://repository.ucc.edu.co/bitstreams/6646cd67-d15a-498b-bc74-6f4dfce21605/download
https://repository.ucc.edu.co/bitstreams/10d07a90-daaf-4cb0-b318-a7ff3537fe1f/download
https://repository.ucc.edu.co/bitstreams/70b61eca-038e-46d0-bc3e-489e56b9217d/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
7a36db4240a05041a4ef9e9e9fef6d2e
ff969b49719d209b225d448dfea98f9b
c476636e07accf92ec394440aa4411fa
97602f9916c3ed660862ab9c7f24770a
51d5476784ff309de7ee0c5b968abc8a
ec8edb8302336007cf12fa715779fc8d
2efe5a9f3ea9fee1dac3f35bdbd51d1b
6d93d3216dc4a7f5df47d4876fbec4d3
1c293d1b36812c08e748571e621cdfe6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246793545777152
spelling Pérez Rubio, María del Rocío Varon Lopez, Yeisson Alejandro2021-07-13T13:21:43Z2021-07-13T13:21:43Z2021-07-12https://hdl.handle.net/20.500.12494/35094Varón López, Y. A. (2021). Aspectos históricos, estado actual y futuro de las enzimas en la alimentación de cerdos: una revisión sistemática. [tesis de pregrado, Universidad Cooperativa de Colombia] Repositorio institucional UCC. http://hdl.handle.net/20.500.12494/35094Debido a los efectos lesivos de la producción animal sobre el medio ambiente, en la actualidad, el interés es identificar alternativas que permitan aumentar la sostenibilidad ambiental y a su vez logren obtener una rentabilidad económica, siendo una de estas alternativas el uso de las enzimas en la nutrición de los cerdos. Además, otro enfoque de aplicación de las enzimas en la producción porcina es el mejorar la eficiencia alimenticia al optimizar la digestibilidad de los nutrientes, e incluso permitir una disminución de los requerimientos nutricionales en la dieta, optimizando las materias primas y a su vez mitigando el impacto ambiental, siendo el caso de las proteasas y las fitasas, las cuales mejoran la digestibilidad y absorción de las proteínas y de algunos minerales. La presente revisión tiene como objetivo identificar la evolución de la aplicación de las enzimas en la alimentación de los cerdos, su efecto sobre el medio ambiente, y rendimiento productivo, así como perspectivas futuras de aplicación. En conclusión, se identificó los principales focos de aplicación de las enzimas en la nutrición de cerdos, siendo la disminución de los requerimientos nutriciones (proteína) y minerales (calcio, fosforo, magnesio y zinc) los enfoques que priman. En un principio se consideró con un gran potencial la implementación de estos catalizadores en dietas compuestas por materias primas no convencionales o poco implementadas según la región de producción (cebada, sorgo, trigo), sin embargo en la actualidad, incluso en dietas compuesta por las principales fuentes de alimento, maíz y soya se justifica su aplicación, optimizando sus nutrientes y mitigando sus factores antinutricionales, de importancia en la actualidad por la tendencia al alza del precio de estas materias primas.Due to the harmful effects of animal production for the environment, currently, interest is directed to identify alternatives that allow increasing environmental sustainability and also obtaining economic profitability, one of these alternatives is the use of enzymes in the nutrition of pigs. In addition to this, the other approach to the application of enzymes in pig production is to improve feed efficiency by optimizing the digestibility of nutrients, also allowing a decrease in nutritional requirements in the diet, optimizing raw materials and mitigating the environmental impact. Such is the case of proteases and phytases that improve the digestibility and absorption of proteins and some minerals. The objective of this review is to identify the evolution of the application of enzymes in pig feed, the effect it has on the environment and productive performance, as well as future prospects for its application. In conclusion, the main sources of application of enzymes in pig nutrition were identified, with the reduction of nutritional requirements (protein) and minerals (calcium, phosphorus, magnesium and zinc) being the main approaches. At the beginning, the implementation of these catalysts in diets made with unconventional raw materials or little implemented according to the production region (barley, sorghum, wheat) was considered with great potential, however at present, even in diets composed of the main sources of food, corn and soybeans, their application is justified, optimizing their nutrients and mitigating their antinutritional factors, which are important today due to the upward trend in the price of these raw materials.Agradecimientos. -- Resumen. -- 1. Introducción. -- 2. Justificación. -- 3. objetivos. -- 3.1. Objetivos Generales. -- 3.2. Objetivos Específicos. -- 4. Metodología. -- 5. Resultados encontrados en el uso de enzimas exogenas en la alimentación de cerdos. -- 5.1 Aspectos históricos. -- 5.2 Carbohidrasas. -- 5.2.1 Amilasas. -- 5.2.2 PNA sas. -- 5.3 Fitasas. -- 5.4 proteasas. -- 5.5 Lipasas. -- 6 Conclusiones. -- Referencias bibliográfica.yeisson.varonl@campusucc.edu.co50 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, IbaguéMedicina veterinaria y zootecniaIbaguéEnzimaCarbohidrasasPNA’sas,FitasasLipasasProteasasTG 2021 MVZ 35094Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemáticaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kumar A, Rani R, Pandey A. Production, Purification, and Application of Microbial Enzymes. En Brahmachari G. Biotechnology of Microbial Enzymes, Production, Biocatalysis and Industrial Applications.: Academic Press; 2017. p. 13-14.Souza F, Gutterres M. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Brazilian Journal of Chemical Engineering. 2012; 29(3): p. 473-482.Hirose Y. Enzymes for Human Nutrition and Health. En Vogel A, May O. Industrial Enzyme Applications.: Wiley‐VCH Verlag GmbH & Co. KGaA; 2019. p. 203-217.Moreira K, Moura L, Monteiro R, Oliveira A, Valle C, Freire T, et al. Optimization of the Production of Enzymatic. Catalysts. 2020; 10(4): p. 414-434.Porcicultura Colombiana. ¿Cómo le fue a la porcicultura colombiana en el 2015? Porcicultura Colombiana. 2016; 5(1): p. 7-17.Porcicultura Colombiana. Análisis de coyuntura del sector porcícola Primer semestre 2016. Porcicultura Colombiana. 2016; 5(7): p. 16-22.Aguirre P. Efecto de las enzimas en la alimentación de cerdos. [Online]; 2020. Disponible en: https://bmeditores.mx/porcicultura/efecto-de-las-enzimas-en-la-alimentacion-de-cerdos/Imran M, Nazar M, Saif M, Ashan M, Sanahullah , Vardan M, et al. Role of Enzymes in Animal Nutrition: A Review. PSM Veterinary Research. 2016; 1(2): p. 38-45.Cardoso L. Custos de produção de suínos sobem 10,93% em julho. [Online]; 2020. Disponible en: https://www.embrapa.br/busca-de-noticias/-/noticia/55034075/custos-de-producao-de-suinos-sobem-1093-em-julhoKerr B, Shurson G. Strategies to improve fiber utilization in swine. Journal of Animal Science and Biotechnology. 2013; 4(1): p. 11-23.Dourado L, Sakomura N, Barbosa N, Bonato M, Kawauchi I, Fernandes J, et al. Corn and soybean meal metabolizable energy with the addition of exogenous enzymes for poultry. Brazilian Journal of Poultry Science. 2009; 11(1): p. 51-55.Park K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. Springerplus. 2016; 5: p. 598.604.Bedford M. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science. 2018; 59(5): p. 486-493.Clickner F, Follwell E. Application of “Protozyme” (Aspergillus orizae) to Poultry Feeding. Poultry Science. 1926; 5(5): p. 241-247Thacker P, Campbell G, GrootWassin J. The effect of enzyme supplementation on the nutritive value of rye-based diets for swine. Canadian Journal of Animal Science. 1991; 71(2).Thacker P, Baas T. Effects of gastric pH on the activity of exogenous pentosanase and the effect of pentosanase supplementation of the diet on the performance of growing-finishing pigs. Animal Feed Science and Technology. 1996; 63(1-4): p. 187-200.Bedford M, Schulze H. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews. 1998; 11(1): p. 91-114.Vangroenweghe F, Poulsen K, Thas O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management. 2021; 7(1): p. 8-19.Walk C, Bedford M. Application of exogenous enzymes: Is digestibility an appropriate response variable? Animal Production Science. 2020; 60(8): p. 993-998.Bedford M, Masey H. Introduction. En Simoes C, Vikas K. Enzymes in Human and Animal Nutrition.: Elsevier; 2018. p. xxxii - xxxvi.Selle P, Ravindran V, Caldwell A, Bryden W. 2000. Nutrition Research Reviews. 2000; 13(2): p. 255-278.Wang H, Long W, Chadwick D, Velthof G, Oenema O, Ma W, et al. Can dietary manipulations improve the productivity of pigs with lower environmental and economic cost? A global meta-analysis. Agriculture, Ecosystems and Environment. 2020; 289: p. 106748.Revindran V. Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research. 2013; 22(3): p. 628-636.Kumar S, Chakravarty S. Amylases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 163-175.Simoes C. Depolymerizating enzymes—cellulases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 107-126.Pierzynowski S, Szwiec K, Valverde J, Gruijc D, Szymanczyk S, Swieboda P, et al. Exogenous pancreatic-like enzymes are recovered in the gut and improve growth of exocrine pancreatic insufficient pigs. Journal if Animal Science. 2012; 90(4): p. 324-326.Cency de Barro P, Oliveira V, Eliseu C, Vianna R. Effect of enzymes addition on the total tract apparent digestibility of piglet diets. Semina Ciencias Agrarias. 2014; 35(4): p. 2211-2218.Ree K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. SpringerPlus. 2016; 5: p. 598.Habte-Tsion H, Kumar V, Rossi W. Perspectives of nonstarch polysaccharide enzymes in nutrition. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 239-249.Habte-Tsion H, Kumar V. Nonstarch polysaccharide enzymes—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academis Prees; 2018. p. 183-203.Long C, Rösch C, Vries S, Schols H, Venema K. Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs. Journal of Agricultural and Food Chemistry. 2020; 68(39): p. 11011-11025.Zhao J, Zhang G, Liu L, Wang J, Zhang S. Effects of fibre-degrading enzymes in combination with different fibre sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Archives of Animal Nutrition. 2020; 74(6): p. 309-324Hoon S, Kyoung J, Ho Y, Kang D. Complete genome sequence of the acidic cellulase producer Bacillus amyloliquefaciens ATC6. Journal of Animal Science and Technology. 2020; 62(5): p. 761-763Martínez-Aispuro J, Figueroa-Velasco J, Cordero-Mora J, Sánchez-Torres-Esqueda M, Martínez-Aispuro M. Martínez-Aispuro. Ecosistema y recursos agropecuarios. 2017; 4(10): p. 73-80Lyu Z, Wang L, Wang J, Wang Z, Zhang S, Wang J, et al. Oat bran and wheat bran impact net energy by shaping microbial communities and fermentation products in pigs fed diets with or without xylanase. Journal of Animal Science and Biotechnology. 2020; 11: p. 99-114.Pedersen N, Azem E, Broz J, Guggenbuhl P, Le D, Fojan P, et al. The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase. Journal of Animal Science. 2012; 90(4): p. 149-151.Karie E, Owusu-Asiedu A, Péron A, Simmins P, Nyachoti C. Efficacy of xylanase and β-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science. 2012; 148(1-2): p. 129-133.Trindade M, Dadalt J, Gallardo C. Nutrient and energy balance, and amino acid digestibility in weaned piglets fed wheat bran and an exogenous enzyme combination. Animal. 2020; 14(3): p. 499-507Li Q, Burrough E, Gabler N, Loving C, Sahin O, Gould S, et al. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs. Journal of Animal Science. 2019; 97(5): p. 2139–2153.Logn C, Venema K. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Frontiers in Microbiology. 2020; 11: p. 2692.Jakobsen G, Jensen B, Bach K, Canibe N. Fermentation and addition of enzymes to a diet based on high-moisture corn, rapeseed cake, and peas improve digestibility of nonstarch polysaccharides, crude protein, and phosphorus in pigs. Journal of Animal Science. 2015; 93(5): p. 2234-2245.Wook J, Pattersson R, Rogiewicz A, Woyengo T. Nutrient digestibility of multi-enzyme supplemented low-energy and AA diets for grower pigs. Journal of Animal Science. 2019; 97(7): p. 2979–2988.Romano N, Kumar V. Phytase in animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 73 - 81.Kumar V, Sinha A. General aspects of phytases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 53-67.Batson K, Calderón H, Goodband R, Woodworth J, Tokach M, Dritz S, et al. Effect of high-phytase supplementation in lactation diets on sow and litter performance. Translational Animal Science. 2021; 5(1): p. 227.Schlegel P, Gutzwiller A. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase. Journal of Animal Phisiology and Animal Nutrition. 2017; 101(5): p. 165-174.Lee S, Lagos L, Walk C, Stein H. Standardized total tract digestibility of calcium varies among sources of calcium carbonate, but not among sources of dicalcium phosphate, but microbial phytase increases calcium digestibility in calcium carbonate. Journal of Animal Science. 2019; 97(8): p. 3440–3450Philipps-Wiemann P. Proteases—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 257-264.Philipps-Wiemann P. Proteases—animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 279-292.Morales M, Cervantes M, Cuca M, Figueroa J, Pro A, Araiza B, et al. Digestibilidad ileal de aminoácidos y comportamiento productivo de cerdos alimentados con dietas a base de trigo, adicionadas con una proteasa fungal. Agrociencia. 2002; 36(5): p. 515-522.Park S, Jae J, Mo B, Ho J, Kim S, Kang J, et al. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal if Animal Science anf Technology. 2020; 62(1): p. 21-30.Tactacan G, Cho S, Cho J, Kim I. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australasian Journal of Animal Sciences. 2016; 29(7): p. 998-1003.Torres-Pitarch A, McCormack U, Beattie V, Magowan E, Gardiner G, Pérez-Vendrell A, et al. Effect of phytase, carbohydrase, and protease addition to a wheat distillers dried grains with solubles and rapeseed based diet on in vitro ileal digestibility, growth, and bone mineral density of grower-finisher pigs. Livestock Science. 2018; 216: p. 94-99.Dierick N, Decuypere J, Degeyter I. THE COMBINED USE OF WHOLE CUPHEA SEEDS CONTAINING MEDIUM CHAIN FATTY ACIDS AND AN EXOGENOUS LIPASE IN PIGLET NUTRITION. Archives of Animal Nutrition. 2003; 57(1): p. 49-63.Zhang S, Zhang X, Qiao H, Chen J, Fang C, Deng Z, et al. Effect of timing of post-weaning supplementation of soybean oil and exogenous lipase on growth performance, blood biochemical profiles, intestinal morphology and caecal microbial composition in weaning pigs. Italian Journal of Animal Science. 2018; 17(4): p. 967-975.Nutrinews. Uso de enzimas en la alimentación animal. Un proceso de innovación. [Online]: 2014. Disponible en: https://nutricionanimal.info/introduccion-al-uso-de-enzimas-en-la-alimentacion-animal-un-proceso-de-innovacion/Valdivia A, Matos M, Rodríguez Z, Pérez Y, Rubio Y, Vega J. Los aditivos enzimáticos, su aplicación en la crianza animal. Cuban Journal of Agricultural Science. 2019; 53(4): p. 341-352.Kurtovic I, Marshall S, Zhao X, Simpson B. Lipases from Mammals and Fishes. Reviews in Fisheries Science. 2009; 17(1): p. 18-40.Sindhu R, Shiburaj S, Sabu A, Fernandes P. Singhal R, Mathew G, Mair I… Pandey, A. Enzyme Technology in Food Processing: Recent Developments and Future Prospects. En Knoerzer K, Muthukumarappan K. Innovative Food Processing Technologies: Elsevier; 2021: p. 191-215.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/83f43c1b-8a11-48c2-bbb7-49e241fd0249/download3bce4f7ab09dfc588f126e1e36e98a45MD54ORIGINAL2021_aspectos_historicos_estado_actual.pdf2021_aspectos_historicos_estado_actual.pdftrabajo de gradoapplication/pdf895738https://repository.ucc.edu.co/bitstreams/c24e99db-36d2-4ed8-b099-20c0831f5542/download7a36db4240a05041a4ef9e9e9fef6d2eMD512021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf2021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdflicencia de usoapplication/pdf290439https://repository.ucc.edu.co/bitstreams/86e505b3-439a-438f-9ba6-61e32e25472b/downloadff969b49719d209b225d448dfea98f9bMD522021_aspectos_historicos_estado_actual- Anexo.pdf2021_aspectos_historicos_estado_actual- Anexo.pdfactaapplication/pdf321000https://repository.ucc.edu.co/bitstreams/5b51e3f4-b58e-4719-b786-b013c4321353/downloadc476636e07accf92ec394440aa4411faMD53THUMBNAIL2021_aspectos_historicos_estado_actual.pdf.jpg2021_aspectos_historicos_estado_actual.pdf.jpgGenerated Thumbnailimage/jpeg2724https://repository.ucc.edu.co/bitstreams/1ce21fe9-6887-4a66-b3e3-d7fd052c4036/download97602f9916c3ed660862ab9c7f24770aMD552021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.jpg2021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5232https://repository.ucc.edu.co/bitstreams/106d79e9-ff76-48ea-8c71-f06739b75db6/download51d5476784ff309de7ee0c5b968abc8aMD562021_aspectos_historicos_estado_actual- Anexo.pdf.jpg2021_aspectos_historicos_estado_actual- Anexo.pdf.jpgGenerated Thumbnailimage/jpeg4896https://repository.ucc.edu.co/bitstreams/08669682-e79f-44d0-bee7-1b543ae0b070/downloadec8edb8302336007cf12fa715779fc8dMD57TEXT2021_aspectos_historicos_estado_actual.pdf.txt2021_aspectos_historicos_estado_actual.pdf.txtExtracted texttext/plain90077https://repository.ucc.edu.co/bitstreams/6646cd67-d15a-498b-bc74-6f4dfce21605/download2efe5a9f3ea9fee1dac3f35bdbd51d1bMD582021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.txt2021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6https://repository.ucc.edu.co/bitstreams/10d07a90-daaf-4cb0-b318-a7ff3537fe1f/download6d93d3216dc4a7f5df47d4876fbec4d3MD592021_aspectos_historicos_estado_actual- Anexo.pdf.txt2021_aspectos_historicos_estado_actual- Anexo.pdf.txtExtracted texttext/plain1825https://repository.ucc.edu.co/bitstreams/70b61eca-038e-46d0-bc3e-489e56b9217d/download1c293d1b36812c08e748571e621cdfe6MD51020.500.12494/35094oai:repository.ucc.edu.co:20.500.12494/350942024-08-09 12:42:07.158open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=