Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática
Debido a los efectos lesivos de la producción animal sobre el medio ambiente, en la actualidad, el interés es identificar alternativas que permitan aumentar la sostenibilidad ambiental y a su vez logren obtener una rentabilidad económica, siendo una de estas alternativas el uso de las enzimas en la...
- Autores:
-
Varon Lopez, Yeisson Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/35094
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/35094
- Palabra clave:
- Enzima
Carbohidrasas
PNA’sas,
Fitasas
Lipasas
Proteasas
TG 2021 MVZ 35094
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_f5a5f6d87be0bd3f620e4b4a1fe1fbd2 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/35094 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
title |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
spellingShingle |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática Enzima Carbohidrasas PNA’sas, Fitasas Lipasas Proteasas TG 2021 MVZ 35094 |
title_short |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
title_full |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
title_fullStr |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
title_full_unstemmed |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
title_sort |
Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemática |
dc.creator.fl_str_mv |
Varon Lopez, Yeisson Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Pérez Rubio, María del Rocío |
dc.contributor.author.none.fl_str_mv |
Varon Lopez, Yeisson Alejandro |
dc.subject.spa.fl_str_mv |
Enzima Carbohidrasas PNA’sas, Fitasas Lipasas Proteasas |
topic |
Enzima Carbohidrasas PNA’sas, Fitasas Lipasas Proteasas TG 2021 MVZ 35094 |
dc.subject.classification.spa.fl_str_mv |
TG 2021 MVZ 35094 |
description |
Debido a los efectos lesivos de la producción animal sobre el medio ambiente, en la actualidad, el interés es identificar alternativas que permitan aumentar la sostenibilidad ambiental y a su vez logren obtener una rentabilidad económica, siendo una de estas alternativas el uso de las enzimas en la nutrición de los cerdos. Además, otro enfoque de aplicación de las enzimas en la producción porcina es el mejorar la eficiencia alimenticia al optimizar la digestibilidad de los nutrientes, e incluso permitir una disminución de los requerimientos nutricionales en la dieta, optimizando las materias primas y a su vez mitigando el impacto ambiental, siendo el caso de las proteasas y las fitasas, las cuales mejoran la digestibilidad y absorción de las proteínas y de algunos minerales. La presente revisión tiene como objetivo identificar la evolución de la aplicación de las enzimas en la alimentación de los cerdos, su efecto sobre el medio ambiente, y rendimiento productivo, así como perspectivas futuras de aplicación. En conclusión, se identificó los principales focos de aplicación de las enzimas en la nutrición de cerdos, siendo la disminución de los requerimientos nutriciones (proteína) y minerales (calcio, fosforo, magnesio y zinc) los enfoques que priman. En un principio se consideró con un gran potencial la implementación de estos catalizadores en dietas compuestas por materias primas no convencionales o poco implementadas según la región de producción (cebada, sorgo, trigo), sin embargo en la actualidad, incluso en dietas compuesta por las principales fuentes de alimento, maíz y soya se justifica su aplicación, optimizando sus nutrientes y mitigando sus factores antinutricionales, de importancia en la actualidad por la tendencia al alza del precio de estas materias primas. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-13T13:21:43Z |
dc.date.available.none.fl_str_mv |
2021-07-13T13:21:43Z |
dc.date.issued.none.fl_str_mv |
2021-07-12 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/35094 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Varón López, Y. A. (2021). Aspectos históricos, estado actual y futuro de las enzimas en la alimentación de cerdos: una revisión sistemática. [tesis de pregrado, Universidad Cooperativa de Colombia] Repositorio institucional UCC. http://hdl.handle.net/20.500.12494/35094 |
url |
https://hdl.handle.net/20.500.12494/35094 |
identifier_str_mv |
Varón López, Y. A. (2021). Aspectos históricos, estado actual y futuro de las enzimas en la alimentación de cerdos: una revisión sistemática. [tesis de pregrado, Universidad Cooperativa de Colombia] Repositorio institucional UCC. http://hdl.handle.net/20.500.12494/35094 |
dc.relation.references.spa.fl_str_mv |
Kumar A, Rani R, Pandey A. Production, Purification, and Application of Microbial Enzymes. En Brahmachari G. Biotechnology of Microbial Enzymes, Production, Biocatalysis and Industrial Applications.: Academic Press; 2017. p. 13-14. Souza F, Gutterres M. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Brazilian Journal of Chemical Engineering. 2012; 29(3): p. 473-482. Hirose Y. Enzymes for Human Nutrition and Health. En Vogel A, May O. Industrial Enzyme Applications.: Wiley‐VCH Verlag GmbH & Co. KGaA; 2019. p. 203-217. Moreira K, Moura L, Monteiro R, Oliveira A, Valle C, Freire T, et al. Optimization of the Production of Enzymatic. Catalysts. 2020; 10(4): p. 414-434. Porcicultura Colombiana. ¿Cómo le fue a la porcicultura colombiana en el 2015? Porcicultura Colombiana. 2016; 5(1): p. 7-17. Porcicultura Colombiana. Análisis de coyuntura del sector porcícola Primer semestre 2016. Porcicultura Colombiana. 2016; 5(7): p. 16-22. Aguirre P. Efecto de las enzimas en la alimentación de cerdos. [Online]; 2020. Disponible en: https://bmeditores.mx/porcicultura/efecto-de-las-enzimas-en-la-alimentacion-de-cerdos/ Imran M, Nazar M, Saif M, Ashan M, Sanahullah , Vardan M, et al. Role of Enzymes in Animal Nutrition: A Review. PSM Veterinary Research. 2016; 1(2): p. 38-45. Cardoso L. Custos de produção de suínos sobem 10,93% em julho. [Online]; 2020. Disponible en: https://www.embrapa.br/busca-de-noticias/-/noticia/55034075/custos-de-producao-de-suinos-sobem-1093-em-julho Kerr B, Shurson G. Strategies to improve fiber utilization in swine. Journal of Animal Science and Biotechnology. 2013; 4(1): p. 11-23. Dourado L, Sakomura N, Barbosa N, Bonato M, Kawauchi I, Fernandes J, et al. Corn and soybean meal metabolizable energy with the addition of exogenous enzymes for poultry. Brazilian Journal of Poultry Science. 2009; 11(1): p. 51-55. Park K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. Springerplus. 2016; 5: p. 598.604. Bedford M. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science. 2018; 59(5): p. 486-493. Clickner F, Follwell E. Application of “Protozyme” (Aspergillus orizae) to Poultry Feeding. Poultry Science. 1926; 5(5): p. 241-247 Thacker P, Campbell G, GrootWassin J. The effect of enzyme supplementation on the nutritive value of rye-based diets for swine. Canadian Journal of Animal Science. 1991; 71(2). Thacker P, Baas T. Effects of gastric pH on the activity of exogenous pentosanase and the effect of pentosanase supplementation of the diet on the performance of growing-finishing pigs. Animal Feed Science and Technology. 1996; 63(1-4): p. 187-200. Bedford M, Schulze H. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews. 1998; 11(1): p. 91-114. Vangroenweghe F, Poulsen K, Thas O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management. 2021; 7(1): p. 8-19. Walk C, Bedford M. Application of exogenous enzymes: Is digestibility an appropriate response variable? Animal Production Science. 2020; 60(8): p. 993-998. Bedford M, Masey H. Introduction. En Simoes C, Vikas K. Enzymes in Human and Animal Nutrition.: Elsevier; 2018. p. xxxii - xxxvi. Selle P, Ravindran V, Caldwell A, Bryden W. 2000. Nutrition Research Reviews. 2000; 13(2): p. 255-278. Wang H, Long W, Chadwick D, Velthof G, Oenema O, Ma W, et al. Can dietary manipulations improve the productivity of pigs with lower environmental and economic cost? A global meta-analysis. Agriculture, Ecosystems and Environment. 2020; 289: p. 106748. Revindran V. Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research. 2013; 22(3): p. 628-636. Kumar S, Chakravarty S. Amylases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 163-175. Simoes C. Depolymerizating enzymes—cellulases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 107-126. Pierzynowski S, Szwiec K, Valverde J, Gruijc D, Szymanczyk S, Swieboda P, et al. Exogenous pancreatic-like enzymes are recovered in the gut and improve growth of exocrine pancreatic insufficient pigs. Journal if Animal Science. 2012; 90(4): p. 324-326. Cency de Barro P, Oliveira V, Eliseu C, Vianna R. Effect of enzymes addition on the total tract apparent digestibility of piglet diets. Semina Ciencias Agrarias. 2014; 35(4): p. 2211-2218. Ree K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. SpringerPlus. 2016; 5: p. 598. Habte-Tsion H, Kumar V, Rossi W. Perspectives of nonstarch polysaccharide enzymes in nutrition. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 239-249. Habte-Tsion H, Kumar V. Nonstarch polysaccharide enzymes—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academis Prees; 2018. p. 183-203. Long C, Rösch C, Vries S, Schols H, Venema K. Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs. Journal of Agricultural and Food Chemistry. 2020; 68(39): p. 11011-11025. Zhao J, Zhang G, Liu L, Wang J, Zhang S. Effects of fibre-degrading enzymes in combination with different fibre sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Archives of Animal Nutrition. 2020; 74(6): p. 309-324 Hoon S, Kyoung J, Ho Y, Kang D. Complete genome sequence of the acidic cellulase producer Bacillus amyloliquefaciens ATC6. Journal of Animal Science and Technology. 2020; 62(5): p. 761-763 Martínez-Aispuro J, Figueroa-Velasco J, Cordero-Mora J, Sánchez-Torres-Esqueda M, Martínez-Aispuro M. Martínez-Aispuro. Ecosistema y recursos agropecuarios. 2017; 4(10): p. 73-80 Lyu Z, Wang L, Wang J, Wang Z, Zhang S, Wang J, et al. Oat bran and wheat bran impact net energy by shaping microbial communities and fermentation products in pigs fed diets with or without xylanase. Journal of Animal Science and Biotechnology. 2020; 11: p. 99-114. Pedersen N, Azem E, Broz J, Guggenbuhl P, Le D, Fojan P, et al. The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase. Journal of Animal Science. 2012; 90(4): p. 149-151. Karie E, Owusu-Asiedu A, Péron A, Simmins P, Nyachoti C. Efficacy of xylanase and β-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science. 2012; 148(1-2): p. 129-133. Trindade M, Dadalt J, Gallardo C. Nutrient and energy balance, and amino acid digestibility in weaned piglets fed wheat bran and an exogenous enzyme combination. Animal. 2020; 14(3): p. 499-507 Li Q, Burrough E, Gabler N, Loving C, Sahin O, Gould S, et al. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs. Journal of Animal Science. 2019; 97(5): p. 2139–2153. Logn C, Venema K. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Frontiers in Microbiology. 2020; 11: p. 2692. Jakobsen G, Jensen B, Bach K, Canibe N. Fermentation and addition of enzymes to a diet based on high-moisture corn, rapeseed cake, and peas improve digestibility of nonstarch polysaccharides, crude protein, and phosphorus in pigs. Journal of Animal Science. 2015; 93(5): p. 2234-2245. Wook J, Pattersson R, Rogiewicz A, Woyengo T. Nutrient digestibility of multi-enzyme supplemented low-energy and AA diets for grower pigs. Journal of Animal Science. 2019; 97(7): p. 2979–2988. Romano N, Kumar V. Phytase in animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 73 - 81. Kumar V, Sinha A. General aspects of phytases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 53-67. Batson K, Calderón H, Goodband R, Woodworth J, Tokach M, Dritz S, et al. Effect of high-phytase supplementation in lactation diets on sow and litter performance. Translational Animal Science. 2021; 5(1): p. 227. Schlegel P, Gutzwiller A. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase. Journal of Animal Phisiology and Animal Nutrition. 2017; 101(5): p. 165-174. Lee S, Lagos L, Walk C, Stein H. Standardized total tract digestibility of calcium varies among sources of calcium carbonate, but not among sources of dicalcium phosphate, but microbial phytase increases calcium digestibility in calcium carbonate. Journal of Animal Science. 2019; 97(8): p. 3440–3450 Philipps-Wiemann P. Proteases—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 257-264. Philipps-Wiemann P. Proteases—animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 279-292. Morales M, Cervantes M, Cuca M, Figueroa J, Pro A, Araiza B, et al. Digestibilidad ileal de aminoácidos y comportamiento productivo de cerdos alimentados con dietas a base de trigo, adicionadas con una proteasa fungal. Agrociencia. 2002; 36(5): p. 515-522. Park S, Jae J, Mo B, Ho J, Kim S, Kang J, et al. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal if Animal Science anf Technology. 2020; 62(1): p. 21-30. Tactacan G, Cho S, Cho J, Kim I. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australasian Journal of Animal Sciences. 2016; 29(7): p. 998-1003. Torres-Pitarch A, McCormack U, Beattie V, Magowan E, Gardiner G, Pérez-Vendrell A, et al. Effect of phytase, carbohydrase, and protease addition to a wheat distillers dried grains with solubles and rapeseed based diet on in vitro ileal digestibility, growth, and bone mineral density of grower-finisher pigs. Livestock Science. 2018; 216: p. 94-99. Dierick N, Decuypere J, Degeyter I. THE COMBINED USE OF WHOLE CUPHEA SEEDS CONTAINING MEDIUM CHAIN FATTY ACIDS AND AN EXOGENOUS LIPASE IN PIGLET NUTRITION. Archives of Animal Nutrition. 2003; 57(1): p. 49-63. Zhang S, Zhang X, Qiao H, Chen J, Fang C, Deng Z, et al. Effect of timing of post-weaning supplementation of soybean oil and exogenous lipase on growth performance, blood biochemical profiles, intestinal morphology and caecal microbial composition in weaning pigs. Italian Journal of Animal Science. 2018; 17(4): p. 967-975. Nutrinews. Uso de enzimas en la alimentación animal. Un proceso de innovación. [Online]: 2014. Disponible en: https://nutricionanimal.info/introduccion-al-uso-de-enzimas-en-la-alimentacion-animal-un-proceso-de-innovacion/ Valdivia A, Matos M, Rodríguez Z, Pérez Y, Rubio Y, Vega J. Los aditivos enzimáticos, su aplicación en la crianza animal. Cuban Journal of Agricultural Science. 2019; 53(4): p. 341-352. Kurtovic I, Marshall S, Zhao X, Simpson B. Lipases from Mammals and Fishes. Reviews in Fisheries Science. 2009; 17(1): p. 18-40. Sindhu R, Shiburaj S, Sabu A, Fernandes P. Singhal R, Mathew G, Mair I… Pandey, A. Enzyme Technology in Food Processing: Recent Developments and Future Prospects. En Knoerzer K, Muthukumarappan K. Innovative Food Processing Technologies: Elsevier; 2021: p. 191-215. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
50 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibagué |
dc.publisher.program.spa.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.spa.fl_str_mv |
Ibagué |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/83f43c1b-8a11-48c2-bbb7-49e241fd0249/download https://repository.ucc.edu.co/bitstreams/c24e99db-36d2-4ed8-b099-20c0831f5542/download https://repository.ucc.edu.co/bitstreams/86e505b3-439a-438f-9ba6-61e32e25472b/download https://repository.ucc.edu.co/bitstreams/5b51e3f4-b58e-4719-b786-b013c4321353/download https://repository.ucc.edu.co/bitstreams/1ce21fe9-6887-4a66-b3e3-d7fd052c4036/download https://repository.ucc.edu.co/bitstreams/106d79e9-ff76-48ea-8c71-f06739b75db6/download https://repository.ucc.edu.co/bitstreams/08669682-e79f-44d0-bee7-1b543ae0b070/download https://repository.ucc.edu.co/bitstreams/6646cd67-d15a-498b-bc74-6f4dfce21605/download https://repository.ucc.edu.co/bitstreams/10d07a90-daaf-4cb0-b318-a7ff3537fe1f/download https://repository.ucc.edu.co/bitstreams/70b61eca-038e-46d0-bc3e-489e56b9217d/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 7a36db4240a05041a4ef9e9e9fef6d2e ff969b49719d209b225d448dfea98f9b c476636e07accf92ec394440aa4411fa 97602f9916c3ed660862ab9c7f24770a 51d5476784ff309de7ee0c5b968abc8a ec8edb8302336007cf12fa715779fc8d 2efe5a9f3ea9fee1dac3f35bdbd51d1b 6d93d3216dc4a7f5df47d4876fbec4d3 1c293d1b36812c08e748571e621cdfe6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246793545777152 |
spelling |
Pérez Rubio, María del Rocío Varon Lopez, Yeisson Alejandro2021-07-13T13:21:43Z2021-07-13T13:21:43Z2021-07-12https://hdl.handle.net/20.500.12494/35094Varón López, Y. A. (2021). Aspectos históricos, estado actual y futuro de las enzimas en la alimentación de cerdos: una revisión sistemática. [tesis de pregrado, Universidad Cooperativa de Colombia] Repositorio institucional UCC. http://hdl.handle.net/20.500.12494/35094Debido a los efectos lesivos de la producción animal sobre el medio ambiente, en la actualidad, el interés es identificar alternativas que permitan aumentar la sostenibilidad ambiental y a su vez logren obtener una rentabilidad económica, siendo una de estas alternativas el uso de las enzimas en la nutrición de los cerdos. Además, otro enfoque de aplicación de las enzimas en la producción porcina es el mejorar la eficiencia alimenticia al optimizar la digestibilidad de los nutrientes, e incluso permitir una disminución de los requerimientos nutricionales en la dieta, optimizando las materias primas y a su vez mitigando el impacto ambiental, siendo el caso de las proteasas y las fitasas, las cuales mejoran la digestibilidad y absorción de las proteínas y de algunos minerales. La presente revisión tiene como objetivo identificar la evolución de la aplicación de las enzimas en la alimentación de los cerdos, su efecto sobre el medio ambiente, y rendimiento productivo, así como perspectivas futuras de aplicación. En conclusión, se identificó los principales focos de aplicación de las enzimas en la nutrición de cerdos, siendo la disminución de los requerimientos nutriciones (proteína) y minerales (calcio, fosforo, magnesio y zinc) los enfoques que priman. En un principio se consideró con un gran potencial la implementación de estos catalizadores en dietas compuestas por materias primas no convencionales o poco implementadas según la región de producción (cebada, sorgo, trigo), sin embargo en la actualidad, incluso en dietas compuesta por las principales fuentes de alimento, maíz y soya se justifica su aplicación, optimizando sus nutrientes y mitigando sus factores antinutricionales, de importancia en la actualidad por la tendencia al alza del precio de estas materias primas.Due to the harmful effects of animal production for the environment, currently, interest is directed to identify alternatives that allow increasing environmental sustainability and also obtaining economic profitability, one of these alternatives is the use of enzymes in the nutrition of pigs. In addition to this, the other approach to the application of enzymes in pig production is to improve feed efficiency by optimizing the digestibility of nutrients, also allowing a decrease in nutritional requirements in the diet, optimizing raw materials and mitigating the environmental impact. Such is the case of proteases and phytases that improve the digestibility and absorption of proteins and some minerals. The objective of this review is to identify the evolution of the application of enzymes in pig feed, the effect it has on the environment and productive performance, as well as future prospects for its application. In conclusion, the main sources of application of enzymes in pig nutrition were identified, with the reduction of nutritional requirements (protein) and minerals (calcium, phosphorus, magnesium and zinc) being the main approaches. At the beginning, the implementation of these catalysts in diets made with unconventional raw materials or little implemented according to the production region (barley, sorghum, wheat) was considered with great potential, however at present, even in diets composed of the main sources of food, corn and soybeans, their application is justified, optimizing their nutrients and mitigating their antinutritional factors, which are important today due to the upward trend in the price of these raw materials.Agradecimientos. -- Resumen. -- 1. Introducción. -- 2. Justificación. -- 3. objetivos. -- 3.1. Objetivos Generales. -- 3.2. Objetivos Específicos. -- 4. Metodología. -- 5. Resultados encontrados en el uso de enzimas exogenas en la alimentación de cerdos. -- 5.1 Aspectos históricos. -- 5.2 Carbohidrasas. -- 5.2.1 Amilasas. -- 5.2.2 PNA sas. -- 5.3 Fitasas. -- 5.4 proteasas. -- 5.5 Lipasas. -- 6 Conclusiones. -- Referencias bibliográfica.yeisson.varonl@campusucc.edu.co50 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, IbaguéMedicina veterinaria y zootecniaIbaguéEnzimaCarbohidrasasPNA’sas,FitasasLipasasProteasasTG 2021 MVZ 35094Aspectos históricos, estado actual y futuro de las enzimas en alimentación de cerdos: una revisión sistemáticaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kumar A, Rani R, Pandey A. Production, Purification, and Application of Microbial Enzymes. En Brahmachari G. Biotechnology of Microbial Enzymes, Production, Biocatalysis and Industrial Applications.: Academic Press; 2017. p. 13-14.Souza F, Gutterres M. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Brazilian Journal of Chemical Engineering. 2012; 29(3): p. 473-482.Hirose Y. Enzymes for Human Nutrition and Health. En Vogel A, May O. Industrial Enzyme Applications.: Wiley‐VCH Verlag GmbH & Co. KGaA; 2019. p. 203-217.Moreira K, Moura L, Monteiro R, Oliveira A, Valle C, Freire T, et al. Optimization of the Production of Enzymatic. Catalysts. 2020; 10(4): p. 414-434.Porcicultura Colombiana. ¿Cómo le fue a la porcicultura colombiana en el 2015? Porcicultura Colombiana. 2016; 5(1): p. 7-17.Porcicultura Colombiana. Análisis de coyuntura del sector porcícola Primer semestre 2016. Porcicultura Colombiana. 2016; 5(7): p. 16-22.Aguirre P. Efecto de las enzimas en la alimentación de cerdos. [Online]; 2020. Disponible en: https://bmeditores.mx/porcicultura/efecto-de-las-enzimas-en-la-alimentacion-de-cerdos/Imran M, Nazar M, Saif M, Ashan M, Sanahullah , Vardan M, et al. Role of Enzymes in Animal Nutrition: A Review. PSM Veterinary Research. 2016; 1(2): p. 38-45.Cardoso L. Custos de produção de suínos sobem 10,93% em julho. [Online]; 2020. Disponible en: https://www.embrapa.br/busca-de-noticias/-/noticia/55034075/custos-de-producao-de-suinos-sobem-1093-em-julhoKerr B, Shurson G. Strategies to improve fiber utilization in swine. Journal of Animal Science and Biotechnology. 2013; 4(1): p. 11-23.Dourado L, Sakomura N, Barbosa N, Bonato M, Kawauchi I, Fernandes J, et al. Corn and soybean meal metabolizable energy with the addition of exogenous enzymes for poultry. Brazilian Journal of Poultry Science. 2009; 11(1): p. 51-55.Park K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. Springerplus. 2016; 5: p. 598.604.Bedford M. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science. 2018; 59(5): p. 486-493.Clickner F, Follwell E. Application of “Protozyme” (Aspergillus orizae) to Poultry Feeding. Poultry Science. 1926; 5(5): p. 241-247Thacker P, Campbell G, GrootWassin J. The effect of enzyme supplementation on the nutritive value of rye-based diets for swine. Canadian Journal of Animal Science. 1991; 71(2).Thacker P, Baas T. Effects of gastric pH on the activity of exogenous pentosanase and the effect of pentosanase supplementation of the diet on the performance of growing-finishing pigs. Animal Feed Science and Technology. 1996; 63(1-4): p. 187-200.Bedford M, Schulze H. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews. 1998; 11(1): p. 91-114.Vangroenweghe F, Poulsen K, Thas O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management. 2021; 7(1): p. 8-19.Walk C, Bedford M. Application of exogenous enzymes: Is digestibility an appropriate response variable? Animal Production Science. 2020; 60(8): p. 993-998.Bedford M, Masey H. Introduction. En Simoes C, Vikas K. Enzymes in Human and Animal Nutrition.: Elsevier; 2018. p. xxxii - xxxvi.Selle P, Ravindran V, Caldwell A, Bryden W. 2000. Nutrition Research Reviews. 2000; 13(2): p. 255-278.Wang H, Long W, Chadwick D, Velthof G, Oenema O, Ma W, et al. Can dietary manipulations improve the productivity of pigs with lower environmental and economic cost? A global meta-analysis. Agriculture, Ecosystems and Environment. 2020; 289: p. 106748.Revindran V. Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research. 2013; 22(3): p. 628-636.Kumar S, Chakravarty S. Amylases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 163-175.Simoes C. Depolymerizating enzymes—cellulases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 107-126.Pierzynowski S, Szwiec K, Valverde J, Gruijc D, Szymanczyk S, Swieboda P, et al. Exogenous pancreatic-like enzymes are recovered in the gut and improve growth of exocrine pancreatic insufficient pigs. Journal if Animal Science. 2012; 90(4): p. 324-326.Cency de Barro P, Oliveira V, Eliseu C, Vianna R. Effect of enzymes addition on the total tract apparent digestibility of piglet diets. Semina Ciencias Agrarias. 2014; 35(4): p. 2211-2218.Ree K, Sol C, Gyun B. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. SpringerPlus. 2016; 5: p. 598.Habte-Tsion H, Kumar V, Rossi W. Perspectives of nonstarch polysaccharide enzymes in nutrition. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Prees; 2018. p. 239-249.Habte-Tsion H, Kumar V. Nonstarch polysaccharide enzymes—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academis Prees; 2018. p. 183-203.Long C, Rösch C, Vries S, Schols H, Venema K. Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs. Journal of Agricultural and Food Chemistry. 2020; 68(39): p. 11011-11025.Zhao J, Zhang G, Liu L, Wang J, Zhang S. Effects of fibre-degrading enzymes in combination with different fibre sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Archives of Animal Nutrition. 2020; 74(6): p. 309-324Hoon S, Kyoung J, Ho Y, Kang D. Complete genome sequence of the acidic cellulase producer Bacillus amyloliquefaciens ATC6. Journal of Animal Science and Technology. 2020; 62(5): p. 761-763Martínez-Aispuro J, Figueroa-Velasco J, Cordero-Mora J, Sánchez-Torres-Esqueda M, Martínez-Aispuro M. Martínez-Aispuro. Ecosistema y recursos agropecuarios. 2017; 4(10): p. 73-80Lyu Z, Wang L, Wang J, Wang Z, Zhang S, Wang J, et al. Oat bran and wheat bran impact net energy by shaping microbial communities and fermentation products in pigs fed diets with or without xylanase. Journal of Animal Science and Biotechnology. 2020; 11: p. 99-114.Pedersen N, Azem E, Broz J, Guggenbuhl P, Le D, Fojan P, et al. The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase. Journal of Animal Science. 2012; 90(4): p. 149-151.Karie E, Owusu-Asiedu A, Péron A, Simmins P, Nyachoti C. Efficacy of xylanase and β-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science. 2012; 148(1-2): p. 129-133.Trindade M, Dadalt J, Gallardo C. Nutrient and energy balance, and amino acid digestibility in weaned piglets fed wheat bran and an exogenous enzyme combination. Animal. 2020; 14(3): p. 499-507Li Q, Burrough E, Gabler N, Loving C, Sahin O, Gould S, et al. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs. Journal of Animal Science. 2019; 97(5): p. 2139–2153.Logn C, Venema K. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Frontiers in Microbiology. 2020; 11: p. 2692.Jakobsen G, Jensen B, Bach K, Canibe N. Fermentation and addition of enzymes to a diet based on high-moisture corn, rapeseed cake, and peas improve digestibility of nonstarch polysaccharides, crude protein, and phosphorus in pigs. Journal of Animal Science. 2015; 93(5): p. 2234-2245.Wook J, Pattersson R, Rogiewicz A, Woyengo T. Nutrient digestibility of multi-enzyme supplemented low-energy and AA diets for grower pigs. Journal of Animal Science. 2019; 97(7): p. 2979–2988.Romano N, Kumar V. Phytase in animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 73 - 81.Kumar V, Sinha A. General aspects of phytases. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 53-67.Batson K, Calderón H, Goodband R, Woodworth J, Tokach M, Dritz S, et al. Effect of high-phytase supplementation in lactation diets on sow and litter performance. Translational Animal Science. 2021; 5(1): p. 227.Schlegel P, Gutzwiller A. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase. Journal of Animal Phisiology and Animal Nutrition. 2017; 101(5): p. 165-174.Lee S, Lagos L, Walk C, Stein H. Standardized total tract digestibility of calcium varies among sources of calcium carbonate, but not among sources of dicalcium phosphate, but microbial phytase increases calcium digestibility in calcium carbonate. Journal of Animal Science. 2019; 97(8): p. 3440–3450Philipps-Wiemann P. Proteases—general aspects. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 257-264.Philipps-Wiemann P. Proteases—animal feed. En Simoes C, Kumar V. Enzymes in Human and Animal Nutrition: Principles and Perspectives.: Elsevier - Academic Press; 2018. p. 279-292.Morales M, Cervantes M, Cuca M, Figueroa J, Pro A, Araiza B, et al. Digestibilidad ileal de aminoácidos y comportamiento productivo de cerdos alimentados con dietas a base de trigo, adicionadas con una proteasa fungal. Agrociencia. 2002; 36(5): p. 515-522.Park S, Jae J, Mo B, Ho J, Kim S, Kang J, et al. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal if Animal Science anf Technology. 2020; 62(1): p. 21-30.Tactacan G, Cho S, Cho J, Kim I. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australasian Journal of Animal Sciences. 2016; 29(7): p. 998-1003.Torres-Pitarch A, McCormack U, Beattie V, Magowan E, Gardiner G, Pérez-Vendrell A, et al. Effect of phytase, carbohydrase, and protease addition to a wheat distillers dried grains with solubles and rapeseed based diet on in vitro ileal digestibility, growth, and bone mineral density of grower-finisher pigs. Livestock Science. 2018; 216: p. 94-99.Dierick N, Decuypere J, Degeyter I. THE COMBINED USE OF WHOLE CUPHEA SEEDS CONTAINING MEDIUM CHAIN FATTY ACIDS AND AN EXOGENOUS LIPASE IN PIGLET NUTRITION. Archives of Animal Nutrition. 2003; 57(1): p. 49-63.Zhang S, Zhang X, Qiao H, Chen J, Fang C, Deng Z, et al. Effect of timing of post-weaning supplementation of soybean oil and exogenous lipase on growth performance, blood biochemical profiles, intestinal morphology and caecal microbial composition in weaning pigs. Italian Journal of Animal Science. 2018; 17(4): p. 967-975.Nutrinews. Uso de enzimas en la alimentación animal. Un proceso de innovación. [Online]: 2014. Disponible en: https://nutricionanimal.info/introduccion-al-uso-de-enzimas-en-la-alimentacion-animal-un-proceso-de-innovacion/Valdivia A, Matos M, Rodríguez Z, Pérez Y, Rubio Y, Vega J. Los aditivos enzimáticos, su aplicación en la crianza animal. Cuban Journal of Agricultural Science. 2019; 53(4): p. 341-352.Kurtovic I, Marshall S, Zhao X, Simpson B. Lipases from Mammals and Fishes. Reviews in Fisheries Science. 2009; 17(1): p. 18-40.Sindhu R, Shiburaj S, Sabu A, Fernandes P. Singhal R, Mathew G, Mair I… Pandey, A. Enzyme Technology in Food Processing: Recent Developments and Future Prospects. En Knoerzer K, Muthukumarappan K. Innovative Food Processing Technologies: Elsevier; 2021: p. 191-215.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/83f43c1b-8a11-48c2-bbb7-49e241fd0249/download3bce4f7ab09dfc588f126e1e36e98a45MD54ORIGINAL2021_aspectos_historicos_estado_actual.pdf2021_aspectos_historicos_estado_actual.pdftrabajo de gradoapplication/pdf895738https://repository.ucc.edu.co/bitstreams/c24e99db-36d2-4ed8-b099-20c0831f5542/download7a36db4240a05041a4ef9e9e9fef6d2eMD512021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf2021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdflicencia de usoapplication/pdf290439https://repository.ucc.edu.co/bitstreams/86e505b3-439a-438f-9ba6-61e32e25472b/downloadff969b49719d209b225d448dfea98f9bMD522021_aspectos_historicos_estado_actual- Anexo.pdf2021_aspectos_historicos_estado_actual- Anexo.pdfactaapplication/pdf321000https://repository.ucc.edu.co/bitstreams/5b51e3f4-b58e-4719-b786-b013c4321353/downloadc476636e07accf92ec394440aa4411faMD53THUMBNAIL2021_aspectos_historicos_estado_actual.pdf.jpg2021_aspectos_historicos_estado_actual.pdf.jpgGenerated Thumbnailimage/jpeg2724https://repository.ucc.edu.co/bitstreams/1ce21fe9-6887-4a66-b3e3-d7fd052c4036/download97602f9916c3ed660862ab9c7f24770aMD552021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.jpg2021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5232https://repository.ucc.edu.co/bitstreams/106d79e9-ff76-48ea-8c71-f06739b75db6/download51d5476784ff309de7ee0c5b968abc8aMD562021_aspectos_historicos_estado_actual- Anexo.pdf.jpg2021_aspectos_historicos_estado_actual- Anexo.pdf.jpgGenerated Thumbnailimage/jpeg4896https://repository.ucc.edu.co/bitstreams/08669682-e79f-44d0-bee7-1b543ae0b070/downloadec8edb8302336007cf12fa715779fc8dMD57TEXT2021_aspectos_historicos_estado_actual.pdf.txt2021_aspectos_historicos_estado_actual.pdf.txtExtracted texttext/plain90077https://repository.ucc.edu.co/bitstreams/6646cd67-d15a-498b-bc74-6f4dfce21605/download2efe5a9f3ea9fee1dac3f35bdbd51d1bMD582021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.txt2021_aspectos_historicos_estado_actual-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6https://repository.ucc.edu.co/bitstreams/10d07a90-daaf-4cb0-b318-a7ff3537fe1f/download6d93d3216dc4a7f5df47d4876fbec4d3MD592021_aspectos_historicos_estado_actual- Anexo.pdf.txt2021_aspectos_historicos_estado_actual- Anexo.pdf.txtExtracted texttext/plain1825https://repository.ucc.edu.co/bitstreams/70b61eca-038e-46d0-bc3e-489e56b9217d/download1c293d1b36812c08e748571e621cdfe6MD51020.500.12494/35094oai:repository.ucc.edu.co:20.500.12494/350942024-08-09 12:42:07.158open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |