Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor

Los sensores de specklegram de fibra óptica utilizan el patrón de interferencia modal (o specklegram) para determinar la magnitud de una perturbación. Los métodos de interrogación más utilizados para estos sensores se han centrado en mediciones puntuales de la intensidad o en correlaciones entre spe...

Full description

Autores:
Universidad Cooperativa de Colombia
Velez Hoyos, Francisco Javier
Aristizabal Tique, Víctor Hugo
Herrera-Ramirez, Jorge
Arango, Juan David
Gómez, Jorge Alberto
Quijano, Jairo Camilo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46365
Acceso en línea:
https://hdl.handle.net/20.500.12494/46365
Palabra clave:
sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.
fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.
Rights
openAccess
License
Atribución
id COOPER2_ebd291dcdad6b091e9f442ce250ed8ed
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46365
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
title Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
spellingShingle Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.
fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.
title_short Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
title_full Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
title_fullStr Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
title_full_unstemmed Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
title_sort Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor
dc.creator.fl_str_mv Universidad Cooperativa de Colombia
Velez Hoyos, Francisco Javier
Aristizabal Tique, Víctor Hugo
Herrera-Ramirez, Jorge
Arango, Juan David
Gómez, Jorge Alberto
Quijano, Jairo Camilo
dc.contributor.author.none.fl_str_mv Universidad Cooperativa de Colombia
Velez Hoyos, Francisco Javier
Aristizabal Tique, Víctor Hugo
Herrera-Ramirez, Jorge
Arango, Juan David
Gómez, Jorge Alberto
Quijano, Jairo Camilo
dc.subject.spa.fl_str_mv sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.
topic sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.
fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.
dc.subject.other.spa.fl_str_mv fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.
description Los sensores de specklegram de fibra óptica utilizan el patrón de interferencia modal (o specklegram) para determinar la magnitud de una perturbación. Los métodos de interrogación más utilizados para estos sensores se han centrado en mediciones puntuales de la intensidad o en correlaciones entre specklegrams, con limitaciones en cuanto a sensibilidad y rango de medición útil. Para investigar métodos alternativos de interrogación de specklegrams que mejoren el rendimiento de los sensores de specklegrams de fibra, implementamos y comparamos dos modelos de aprendizaje profundo: un modelo de clasificación y un modelo de regresión. Para probar y entrenar los modelos, utilizamos modelos físico-ópticos y simulaciones por el método de elementos finitos para crear una base de datos de imágenes de specklegram, que cubren el rango de temperatura entre 0 °C y 100 °C. Con las pruebas de predicción, demostramos que ambos modelos pueden cubrir el de temperatura propuesto y alcanzar una precisión del 99,5%, para el modelo de clasificación y un error absoluto medio de 2,3 °C en el modelo de regresión. Creemos que estos resultados que las estrategias implementadas pueden mejorar las capacidades metrológicas de este tipo de sensor.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-09
dc.date.accessioned.none.fl_str_mv 2022-09-13T13:55:41Z
dc.date.available.none.fl_str_mv 2022-09-13T13:55:41Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 17426588, 17426596
dc.identifier.uri.spa.fl_str_mv 10.1088/1742-6596/2139/1/012001
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46365
dc.identifier.bibliographicCitation.spa.fl_str_mv Arango et al. Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor Reino Unido, Journal of Physics: Conference Series ISSN: 1742-6596, 2021 vol:2139 fasc: 1 págs: 12001 - 12005, DOI:10.1088/1742-6596/2139/1/012001 Autores: VICTOR HUGO ARISTIZABAL TIQUE, FRANCISCO JAVIER VELEZ HOYOS, JORGE ALBERTO GOMEZ LOPEZ, JORGE ALEXIS HERRERA RAMIREZ, JAIRO CAMILO QUIJANO PEREZ, JUAN DAVID ARANGO MORENO, JUAN FELIPE CARRASQUILLA ALVAREZ
identifier_str_mv 17426588, 17426596
10.1088/1742-6596/2139/1/012001
Arango et al. Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor Reino Unido, Journal of Physics: Conference Series ISSN: 1742-6596, 2021 vol:2139 fasc: 1 págs: 12001 - 12005, DOI:10.1088/1742-6596/2139/1/012001 Autores: VICTOR HUGO ARISTIZABAL TIQUE, FRANCISCO JAVIER VELEZ HOYOS, JORGE ALBERTO GOMEZ LOPEZ, JORGE ALEXIS HERRERA RAMIREZ, JAIRO CAMILO QUIJANO PEREZ, JUAN DAVID ARANGO MORENO, JUAN FELIPE CARRASQUILLA ALVAREZ
url https://hdl.handle.net/20.500.12494/46365
dc.relation.isversionof.spa.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/2139/1/012001/meta
dc.relation.conferenceplace.spa.fl_str_mv San José de Cúcuta, Colombia
dc.relation.ispartofconference.spa.fl_str_mv 8th International Week of Science, Technology & Innovation (8th IWSTI)
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Physics: Conference Series
dc.relation.references.spa.fl_str_mv [1] Fujiwara E, dos Santos M F M, Suzuki C K 2017 Optical fiber specklegram sensor analysis by speckle pattern division Applied Optics 56(6) 1585 [2] Castaño L F, et al. 2018 Temperature measurement by means of fiber specklegram sensors (FSS) Optica Pura y Aplicada 51(3) 50306 [3] Hoyos A, Gómez N D, Gómez J A 2013 Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations 8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications (Porto: Society of Photo-Optical Instrumentation Engineers) [4] Liu Y, Li G, Qin Q, Tan Z, Wang M, Yan F 2020 Bending recognition based on the analysis of fiber specklegrams using deep learning Optics & Laser Technology 131 106424 [5] Krohn D A, MacDougall T W, Mendez A 2015 Fiber Optic Sensors: Fundamentals and Applications (Bellingham: SPIE press) [6] Efendioglu H 2017 A Review of fiber-optic modal modulated sensors: specklegram and modal power distribution sensing IEEE Sensors Journal 17(7) 2055 [7] Fujiwara E, Ri Y, Wu Y T, Fujimoto H, Suzuki C K 2018 Evaluation of image matching techniques for optical fiber specklegram sensor analysis Applied Optics 57(33) 9845 [8] Gubarev F, Li L, Klenovskii M, Glotov A 2016 Speckle pattern processing by digital image correlation MATEC Web of Conferences 48 04003 [9] Crammond G, Boyd S W, Dulieu-Barton J M 2013 Speckle pattern quality assessment for digital image correlation Optics and Lasers in Engineering 51(12) 1368 [10] Wei M, Tang G, Liu J, Zhu L, Liu J, Huang C, Zhang J, Shen L, Yu S 2021 Neural network based perturbation-location fiber specklegram sensing system towards applications with limited number of training samples Journal of Lightwave Technology 39(19) 6315 [11] Razmyar S, Mostafavi M T 2020 Deep learning for estimating deflection direction of a multimode fiber from specklegram Journal of Lightwave Technology 39(6) 1850 [12] Arístizabal V H, et al. 2016 Numerical modeling of fiber specklegram sensors by using finite element method (FEM) Optics Express 24 27225 [13] Torres P, Aristizábal V H, Andrés M V. 2011 Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential Journal of the Optical Society of America B 28(4) 787 [14] Arango J D, et al. 2021 Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone Computer Optics 45(4) 534
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12001 - 12005
dc.coverage.temporal.spa.fl_str_mv 2139
dc.publisher.spa.fl_str_mv IOP Publishing Ltd.
Universidad Cooperativa de Colombia sede Medellín, Facultad de Ingeniería
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/e7d37fbe-12d0-4c61-9bda-0fc4ae664c0f/download
https://repository.ucc.edu.co/bitstreams/b6c1fcc0-9c20-4dbf-87e9-2f094946e467/download
https://repository.ucc.edu.co/bitstreams/8a623aae-789f-4af4-b9fb-f653b6cc4b97/download
https://repository.ucc.edu.co/bitstreams/229deec0-1a45-4fbe-8046-1fa20a771d77/download
bitstream.checksum.fl_str_mv 80756c39d6710a2fe4fea03c9200bec6
8a4605be74aa9ea9d79846c1fba20a33
f4a60e3dc132b2751b76601ae37195f3
582186561fb74384bbcb54ecfb68e4b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565048950161408
spelling Universidad Cooperativa de ColombiaVelez Hoyos, Francisco JavierAristizabal Tique, Víctor HugoHerrera-Ramirez, JorgeArango, Juan DavidGómez, Jorge AlbertoQuijano, Jairo Camilo21392022-09-13T13:55:41Z2022-09-13T13:55:41Z2021-12-0917426588, 1742659610.1088/1742-6596/2139/1/012001https://hdl.handle.net/20.500.12494/46365Arango et al. Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensor Reino Unido, Journal of Physics: Conference Series ISSN: 1742-6596, 2021 vol:2139 fasc: 1 págs: 12001 - 12005, DOI:10.1088/1742-6596/2139/1/012001 Autores: VICTOR HUGO ARISTIZABAL TIQUE, FRANCISCO JAVIER VELEZ HOYOS, JORGE ALBERTO GOMEZ LOPEZ, JORGE ALEXIS HERRERA RAMIREZ, JAIRO CAMILO QUIJANO PEREZ, JUAN DAVID ARANGO MORENO, JUAN FELIPE CARRASQUILLA ALVAREZLos sensores de specklegram de fibra óptica utilizan el patrón de interferencia modal (o specklegram) para determinar la magnitud de una perturbación. Los métodos de interrogación más utilizados para estos sensores se han centrado en mediciones puntuales de la intensidad o en correlaciones entre specklegrams, con limitaciones en cuanto a sensibilidad y rango de medición útil. Para investigar métodos alternativos de interrogación de specklegrams que mejoren el rendimiento de los sensores de specklegrams de fibra, implementamos y comparamos dos modelos de aprendizaje profundo: un modelo de clasificación y un modelo de regresión. Para probar y entrenar los modelos, utilizamos modelos físico-ópticos y simulaciones por el método de elementos finitos para crear una base de datos de imágenes de specklegram, que cubren el rango de temperatura entre 0 °C y 100 °C. Con las pruebas de predicción, demostramos que ambos modelos pueden cubrir el de temperatura propuesto y alcanzar una precisión del 99,5%, para el modelo de clasificación y un error absoluto medio de 2,3 °C en el modelo de regresión. Creemos que estos resultados que las estrategias implementadas pueden mejorar las capacidades metrológicas de este tipo de sensor.Fiber optic specklegram sensors use the modal interference pattern (or specklegram) to determine the magnitude of a disturbance. The most used interrogation methods for these sensors have focused on point measurements of intensity or correlations between specklegrams, with limitations in sensitivity and useful measurement range. To investigate alternative methods of specklegram interrogation that improve the performance of the fiber specklegram sensors, we implemented and compared two deep learning models: a classification model and a regression model. To test and train the models, we use physical-optical models and simulations by the finite element method to create a database of specklegram images, covering the temperature range between 0 °C and 100 °C. With the prediction tests, we showed that both models can cover the entire proposed temperature range and achieve an accuracy of 99.5%, for the classification model, and a mean absolute error of 2.3 °C, in the regression model. We believe that these results show that the strategies implemented can improve the metrological capabilities of this type of sensor.1. Introduction, 2. Methodology and materials, 3. Results and discussions, 4. Conclusionshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000448222https://orcid.org/0000-0002-4267-042Xhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961francisco.velezh@campusucc.edu.covictor.aristizabalt@campusucc.edu.cohttps://scholar.google.com/citations?user=CLkAM5AAAAAJ&hl=es12001 - 12005IOP Publishing Ltd.Universidad Cooperativa de Colombia sede Medellín, Facultad de IngenieríaIngeniería CivilMedellínhttps://iopscience.iop.org/article/10.1088/1742-6596/2139/1/012001/metaSan José de Cúcuta, Colombia8th International Week of Science, Technology & Innovation (8th IWSTI)Journal of Physics: Conference Series[1] Fujiwara E, dos Santos M F M, Suzuki C K 2017 Optical fiber specklegram sensor analysis by speckle pattern division Applied Optics 56(6) 1585 [2] Castaño L F, et al. 2018 Temperature measurement by means of fiber specklegram sensors (FSS) Optica Pura y Aplicada 51(3) 50306 [3] Hoyos A, Gómez N D, Gómez J A 2013 Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations 8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications (Porto: Society of Photo-Optical Instrumentation Engineers) [4] Liu Y, Li G, Qin Q, Tan Z, Wang M, Yan F 2020 Bending recognition based on the analysis of fiber specklegrams using deep learning Optics & Laser Technology 131 106424 [5] Krohn D A, MacDougall T W, Mendez A 2015 Fiber Optic Sensors: Fundamentals and Applications (Bellingham: SPIE press) [6] Efendioglu H 2017 A Review of fiber-optic modal modulated sensors: specklegram and modal power distribution sensing IEEE Sensors Journal 17(7) 2055 [7] Fujiwara E, Ri Y, Wu Y T, Fujimoto H, Suzuki C K 2018 Evaluation of image matching techniques for optical fiber specklegram sensor analysis Applied Optics 57(33) 9845 [8] Gubarev F, Li L, Klenovskii M, Glotov A 2016 Speckle pattern processing by digital image correlation MATEC Web of Conferences 48 04003 [9] Crammond G, Boyd S W, Dulieu-Barton J M 2013 Speckle pattern quality assessment for digital image correlation Optics and Lasers in Engineering 51(12) 1368 [10] Wei M, Tang G, Liu J, Zhu L, Liu J, Huang C, Zhang J, Shen L, Yu S 2021 Neural network based perturbation-location fiber specklegram sensing system towards applications with limited number of training samples Journal of Lightwave Technology 39(19) 6315 [11] Razmyar S, Mostafavi M T 2020 Deep learning for estimating deflection direction of a multimode fiber from specklegram Journal of Lightwave Technology 39(6) 1850 [12] Arístizabal V H, et al. 2016 Numerical modeling of fiber specklegram sensors by using finite element method (FEM) Optics Express 24 27225 [13] Torres P, Aristizábal V H, Andrés M V. 2011 Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential Journal of the Optical Society of America B 28(4) 787 [14] Arango J D, et al. 2021 Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone Computer Optics 45(4) 534sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.Deep learning classification and regression models for temperature values on a simulated fibre specklegram sensorArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2021-ART_Deep learning classification and regression.pdf2021-ART_Deep learning classification and regression.pdfapplication/pdf985086https://repository.ucc.edu.co/bitstreams/e7d37fbe-12d0-4c61-9bda-0fc4ae664c0f/download80756c39d6710a2fe4fea03c9200bec6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/b6c1fcc0-9c20-4dbf-87e9-2f094946e467/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL2021-ART_Deep learning classification and regression.pdf.jpg2021-ART_Deep learning classification and regression.pdf.jpgGenerated Thumbnailimage/jpeg4144https://repository.ucc.edu.co/bitstreams/8a623aae-789f-4af4-b9fb-f653b6cc4b97/downloadf4a60e3dc132b2751b76601ae37195f3MD53TEXT2021-ART_Deep learning classification and regression.pdf.txt2021-ART_Deep learning classification and regression.pdf.txtExtracted texttext/plain19606https://repository.ucc.edu.co/bitstreams/229deec0-1a45-4fbe-8046-1fa20a771d77/download582186561fb74384bbcb54ecfb68e4b6MD5420.500.12494/46365oai:repository.ucc.edu.co:20.500.12494/463652024-08-20 16:23:41.772open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=