Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks
Este artículo presenta una metodología para la detección automática de fallas en matrices fotovoltaicas. Debido a la gran importancia en la construcción de plantas fotovoltaicas cada vez más robustas, la detección automática de averías se ha convertido en una herramienta necesaria para alargar la vi...
- Autores:
-
Colmenares Quintero, Ramón Fernando
Rojas-Martinez, Eyberth Rolando
Macho-Hernantes, Fernando
Stansfield, Kim E.
Colmenares-Quintero, Juan Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/41026
- Acceso en línea:
- https://doi.org/10.1080/23311916.2021.1981520
https://hdl.handle.net/20.500.12494/41026
- Palabra clave:
- Sistema fotovoltaico
Detección de fallas
Red neuronal artificial (ANN)
Clasificación
Objetivos de Desarrollo Sostenible (ODS).
Photovoltaic system
fault detection
Artificial Neural Network (ANN)
classification
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_d03c3cf37b1397a15ee37b985aace8b8 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/41026 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
title |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
spellingShingle |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks Sistema fotovoltaico Detección de fallas Red neuronal artificial (ANN) Clasificación Objetivos de Desarrollo Sostenible (ODS). Photovoltaic system fault detection Artificial Neural Network (ANN) classification |
title_short |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
title_full |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
title_fullStr |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
title_full_unstemmed |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
title_sort |
Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks |
dc.creator.fl_str_mv |
Colmenares Quintero, Ramón Fernando Rojas-Martinez, Eyberth Rolando Macho-Hernantes, Fernando Stansfield, Kim E. Colmenares-Quintero, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Colmenares Quintero, Ramón Fernando Rojas-Martinez, Eyberth Rolando Macho-Hernantes, Fernando Stansfield, Kim E. Colmenares-Quintero, Juan Carlos |
dc.subject.spa.fl_str_mv |
Sistema fotovoltaico Detección de fallas Red neuronal artificial (ANN) Clasificación Objetivos de Desarrollo Sostenible (ODS). |
topic |
Sistema fotovoltaico Detección de fallas Red neuronal artificial (ANN) Clasificación Objetivos de Desarrollo Sostenible (ODS). Photovoltaic system fault detection Artificial Neural Network (ANN) classification |
dc.subject.other.spa.fl_str_mv |
Photovoltaic system fault detection Artificial Neural Network (ANN) classification |
description |
Este artículo presenta una metodología para la detección automática de fallas en matrices fotovoltaicas. Debido a la gran importancia en la construcción de plantas fotovoltaicas cada vez más robustas, la detección automática de averías se ha convertido en una herramienta necesaria para alargar la vida útil de estas plantas, evitar paradas del sistema y reducir graves problemas de seguridad. En el presente estudio se detectan nueve posibles fallas, provocadas por un mal funcionamiento de los diodos de bypass y bloqueo. La solución consiste en entrenar dos modelos basados en redes neuronales artificiales, el primer modelo es un clasificador binario que detecta si ocurre o no una falla, el segundo es un clasificador multiclase que detecta el tipo de falla. Los modelos obtenidos fueron entrenados a partir de datos de simulación, en una arquitectura de 9 paneles fotovoltaicos interconectados en tres filas por matriz de tres columnas (extensible a sistemas más grandes). La evaluación muestra que el sistema de predicción tiene una precisión total del 92,95%. Finalmente, esta metodología se pretende implementar en Colombia, en zonas de difícil acceso y no interconectadas a la red eléctrica, buscando reducir el mantenimiento correctivo. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-12-06T12:34:56Z |
dc.date.available.none.fl_str_mv |
2021-12-06T12:34:56Z |
dc.date.issued.none.fl_str_mv |
2021-09-29 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
23311916 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/23311916.2021.1981520 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/41026 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Colmenares-Quintero, R.F., Rojas-Martinez, E. R., Macho-Hernantes, F., Stansfield, K.E. y Colmenares-Quintero, J.C. (2021). Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks, Cogent Engineering, 8:1, 1981520, DOI: 10.1080/23311916.2021.1981520 |
identifier_str_mv |
23311916 Colmenares-Quintero, R.F., Rojas-Martinez, E. R., Macho-Hernantes, F., Stansfield, K.E. y Colmenares-Quintero, J.C. (2021). Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks, Cogent Engineering, 8:1, 1981520, DOI: 10.1080/23311916.2021.1981520 |
url |
https://doi.org/10.1080/23311916.2021.1981520 https://hdl.handle.net/20.500.12494/41026 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/23311916.2021.1981520 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cogent Engineering |
dc.relation.references.spa.fl_str_mv |
Ahmed, B. M., & Farman Alhialy, N. F. (2019). Optimum efficiency of PV panel using genetic algorithms to Touch Proximate Zero Energy House (NZEH). Civil Engineering Journal, 5(8), 1832–1840. https://doi.org/ 10.28991/cej-2019-03091375 Bonsignore, L., Davarifar, M., Rabhi, A., Tina, G. M., & Elhajjaji, A. (2014). Neuro-Fuzzy fault detection method for photovoltaic systems. Energy Procedia, 62, 431–441. https://doi.org/10.1016/j.egypro.2014.12.405 Chen, Z., Chen, Y., Wu, L., Cheng, S., & Lin, P. (2019). Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Conversion and Management, 198, 111793. https://doi.org/10.1016/j. enconman.2019.111793 Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., & Massi Pavan, A. (2016). A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable Energy, 90, 501–512. https://doi.org/10.1016/j.renene.2016.01.036 Chine, W., Mellit, A., Pavan, A. M., & Kalogirou, S. A. (2014). Fault detection method for grid-connected photovoltaic plants. Renewable Energy, 66, 99–110. https:// doi.org/10.1016/j.renene.2013.11.073 De Benedetti, M., Leonardi, F., Messina, F., Santoro, C., & Vasilakos, A. (2018). Anomaly detection and predictive maintenance for photovoltaic systems. Neurocomputing, 310, 59–68. https://doi.org/10. 1016/j.neucom.2018.05.017 Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2018). Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renewable Energy, 117, 257–274. https://doi.org/10.1016/j. renene.2017.10.066 Firth, S. K., Lomas, K. J., & Rees, S. J. (2010). A simple model of PV system performance and its use in fault detection. Solar Energy, 84(4), 624–635. https://doi. org/10.1016/j.solener.2009.08.004 Harrou, F., Sun, Y., Taghezouit, B., Saidi, A., & Hamlati, M.- E. (2018). Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches. Renewable Energy, 116, 22–37. https:// doi.org/10.1016/j.renene.2017.09.048 Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284–297. https://doi.org/10.1016/j.rser.2014.08.046 Jiang, L. L., & Maskell, D. L. (2015). Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network and analytical based methods. 2015 International Joint Conference on Neural Networks (IJCNN), 1–8, Killarney, Ireland. https://doi.org/10.1109/IJCNN. 2015.7280498 Kibaara, S. K., Murage, D. K., Musau, P., & Saulo, M. J. (2020). Comparative analysis of implementation of solar PV systems using the advanced SPECA modelling tool and HOMER software: Kenyan scenario. HighTech and Innovation Journal, 1(1), 8–20. https://doi.org/10.28991/HIJ-2020-01-01-02 Lu, X., Lin, P., Cheng, S., Lin, Y., Chen, Z., Wu, L., & Zheng, Q. (2019). Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph. Energy Conversion and Management, 196, 950–965. https://doi.org/10.1016/ j.enconman.2019.06.062 Madeti, S. R., & Singh, S. N. (2018). Modeling of PV system based on experimental data for fault detection using kNN method. Solar Energy, 173, 139–151. https://doi. org/10.1016/j.solener.2018.07.038 Mekki, H., Mellit, A., & Salhi, H. (2016). Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simulation Modelling Practice and Theory, 67, 1–13. https://doi. org/10.1016/j.simpat.2016.05.005 Pahwa, K., Sharma, M., Saggu, M. S., & Mandpura, A. K. (2020, February). Performance evaluation of machine learning techniques for fault detection and classification in PV array systems. In 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 791–796). IEEE, Noida, India Pierdicca, R., Malinverni, E. S., Piccinini, F., Paolanti, M., Felicetti, A., & Zingaretti, P. (2018). DEEP CONVOLUTIONAL NEURAL NETWORK FOR AUTOMATIC DETECTION OF DAMAGED PHOTOVOLTAIC CELLS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–2, XLII-2, 893–900. https://doi.org/10.5194/isprs-archives-XLII-2-893-2018 Rao, S., Spanias, A., & Tepedelenlioglu, C. (2019). Solar array fault detection using neural networks. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 196–200, Taipei, Taiwan. https://doi.org/ 10.1109/ICPHYS.2019.8780208 Solórzano, J., & Egido, M. A. (2014). Hot-spot mitigation in PV arrays with distributed MPPT (DMPPT). Solar Energy, 101, 131–137. https://doi.org/10.1016/j.sol ener.2013.12.020 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 - 22 p. |
dc.coverage.temporal.spa.fl_str_mv |
8-1 |
dc.publisher.spa.fl_str_mv |
Taylor & Francis Online Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/accc6761-7e92-4c43-a1ad-b9b4763576ea/download https://repository.ucc.edu.co/bitstreams/4bda26c3-6aa9-40a5-88e2-3f1686a951e8/download https://repository.ucc.edu.co/bitstreams/7ca95cba-e108-491a-afb9-2dbe87b8fe4e/download https://repository.ucc.edu.co/bitstreams/1abb402a-b48e-4e90-be40-373c7fe44740/download https://repository.ucc.edu.co/bitstreams/92f8786d-bfde-4218-b697-bb6e33148016/download https://repository.ucc.edu.co/bitstreams/9c310988-f62f-4058-a3a5-8e8dca61ff57/download https://repository.ucc.edu.co/bitstreams/fc32e941-cef7-4cbb-af9d-b6dcbdc9146f/download |
bitstream.checksum.fl_str_mv |
10acf0741d6f137ab8924fde9d6ff18e 7d428eb5053872e853fb2f329f0bb828 3bce4f7ab09dfc588f126e1e36e98a45 05643794f1bc5d4cd59f3acd132bc44a 85fc10ae715cfee40982e4e3a3de2e05 914a262fdc8fb6b56c3cad431e1187b3 163ba6a6a2cc6271612bd7e289f580d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565405581344768 |
spelling |
Colmenares Quintero, Ramón FernandoRojas-Martinez, Eyberth RolandoMacho-Hernantes, FernandoStansfield, Kim E.Colmenares-Quintero, Juan Carlos8-12021-12-06T12:34:56Z2021-12-06T12:34:56Z2021-09-2923311916https://doi.org/10.1080/23311916.2021.1981520https://hdl.handle.net/20.500.12494/41026Colmenares-Quintero, R.F., Rojas-Martinez, E. R., Macho-Hernantes, F., Stansfield, K.E. y Colmenares-Quintero, J.C. (2021). Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks, Cogent Engineering, 8:1, 1981520, DOI: 10.1080/23311916.2021.1981520Este artículo presenta una metodología para la detección automática de fallas en matrices fotovoltaicas. Debido a la gran importancia en la construcción de plantas fotovoltaicas cada vez más robustas, la detección automática de averías se ha convertido en una herramienta necesaria para alargar la vida útil de estas plantas, evitar paradas del sistema y reducir graves problemas de seguridad. En el presente estudio se detectan nueve posibles fallas, provocadas por un mal funcionamiento de los diodos de bypass y bloqueo. La solución consiste en entrenar dos modelos basados en redes neuronales artificiales, el primer modelo es un clasificador binario que detecta si ocurre o no una falla, el segundo es un clasificador multiclase que detecta el tipo de falla. Los modelos obtenidos fueron entrenados a partir de datos de simulación, en una arquitectura de 9 paneles fotovoltaicos interconectados en tres filas por matriz de tres columnas (extensible a sistemas más grandes). La evaluación muestra que el sistema de predicción tiene una precisión total del 92,95%. Finalmente, esta metodología se pretende implementar en Colombia, en zonas de difícil acceso y no interconectadas a la red eléctrica, buscando reducir el mantenimiento correctivo.Automatic fault detection in photovoltaic (PV) systems has acquired great relevance worldwide, as expressed by (Pierdicca et al., 2018), (Rao et al., 2019), and (Lu et al., 2019). This is due to the necessity of keeping this type of system functioning properly for as long as possible. The early detection of faults in solar plants can be summarized in the reduction of serious safety problems, shutdown of the system and need for corrective maintenance. This will be reflected in the decrease in operating costs.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-1166-1982https://sba.minciencias.gov.co/Buscador_Grupos/BuscadorIFindIt/busqueda?q=TERMOMEC&pagenum=1&start=0&type=load&inmeta=COD_ID_GRUPO_s!COL0054239&lang=es&idss=BvCIhKWihGbYwfEramon.colmenaresq@campusucc.edu.cohttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=es1 - 22 p.Taylor & Francis OnlineUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://www.tandfonline.com/doi/full/10.1080/23311916.2021.1981520Cogent EngineeringAhmed, B. M., & Farman Alhialy, N. F. (2019). Optimum efficiency of PV panel using genetic algorithms to Touch Proximate Zero Energy House (NZEH). Civil Engineering Journal, 5(8), 1832–1840. https://doi.org/ 10.28991/cej-2019-03091375Bonsignore, L., Davarifar, M., Rabhi, A., Tina, G. M., & Elhajjaji, A. (2014). Neuro-Fuzzy fault detection method for photovoltaic systems. Energy Procedia, 62, 431–441. https://doi.org/10.1016/j.egypro.2014.12.405Chen, Z., Chen, Y., Wu, L., Cheng, S., & Lin, P. (2019). Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Conversion and Management, 198, 111793. https://doi.org/10.1016/j. enconman.2019.111793Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., & Massi Pavan, A. (2016). A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable Energy, 90, 501–512. https://doi.org/10.1016/j.renene.2016.01.036Chine, W., Mellit, A., Pavan, A. M., & Kalogirou, S. A. (2014). Fault detection method for grid-connected photovoltaic plants. Renewable Energy, 66, 99–110. https:// doi.org/10.1016/j.renene.2013.11.073De Benedetti, M., Leonardi, F., Messina, F., Santoro, C., & Vasilakos, A. (2018). Anomaly detection and predictive maintenance for photovoltaic systems. Neurocomputing, 310, 59–68. https://doi.org/10. 1016/j.neucom.2018.05.017Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2018). Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renewable Energy, 117, 257–274. https://doi.org/10.1016/j. renene.2017.10.066Firth, S. K., Lomas, K. J., & Rees, S. J. (2010). A simple model of PV system performance and its use in fault detection. Solar Energy, 84(4), 624–635. https://doi. org/10.1016/j.solener.2009.08.004Harrou, F., Sun, Y., Taghezouit, B., Saidi, A., & Hamlati, M.- E. (2018). Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches. Renewable Energy, 116, 22–37. https:// doi.org/10.1016/j.renene.2017.09.048Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284–297. https://doi.org/10.1016/j.rser.2014.08.046Jiang, L. L., & Maskell, D. L. (2015). Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network and analytical based methods. 2015 International Joint Conference on Neural Networks (IJCNN), 1–8, Killarney, Ireland. https://doi.org/10.1109/IJCNN. 2015.7280498Kibaara, S. K., Murage, D. K., Musau, P., & Saulo, M. J. (2020). Comparative analysis of implementation of solar PV systems using the advanced SPECA modelling tool and HOMER software: Kenyan scenario. HighTech and Innovation Journal, 1(1), 8–20. https://doi.org/10.28991/HIJ-2020-01-01-02Lu, X., Lin, P., Cheng, S., Lin, Y., Chen, Z., Wu, L., & Zheng, Q. (2019). Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph. Energy Conversion and Management, 196, 950–965. https://doi.org/10.1016/ j.enconman.2019.06.062Madeti, S. R., & Singh, S. N. (2018). Modeling of PV system based on experimental data for fault detection using kNN method. Solar Energy, 173, 139–151. https://doi. org/10.1016/j.solener.2018.07.038Mekki, H., Mellit, A., & Salhi, H. (2016). Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simulation Modelling Practice and Theory, 67, 1–13. https://doi. org/10.1016/j.simpat.2016.05.005Pahwa, K., Sharma, M., Saggu, M. S., & Mandpura, A. K. (2020, February). Performance evaluation of machine learning techniques for fault detection and classification in PV array systems. In 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 791–796). IEEE, Noida, IndiaPierdicca, R., Malinverni, E. S., Piccinini, F., Paolanti, M., Felicetti, A., & Zingaretti, P. (2018). DEEP CONVOLUTIONAL NEURAL NETWORK FOR AUTOMATIC DETECTION OF DAMAGED PHOTOVOLTAIC CELLS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–2, XLII-2, 893–900. https://doi.org/10.5194/isprs-archives-XLII-2-893-2018Rao, S., Spanias, A., & Tepedelenlioglu, C. (2019). Solar array fault detection using neural networks. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 196–200, Taipei, Taiwan. https://doi.org/ 10.1109/ICPHYS.2019.8780208Solórzano, J., & Egido, M. A. (2014). Hot-spot mitigation in PV arrays with distributed MPPT (DMPPT). Solar Energy, 101, 131–137. https://doi.org/10.1016/j.sol ener.2013.12.020Sistema fotovoltaicoDetección de fallasRed neuronal artificial (ANN)ClasificaciónObjetivos de Desarrollo Sostenible (ODS).Photovoltaic systemfault detectionArtificial Neural Network (ANN)classificationMethodology for automatic fault detection in photovoltaic arrays from artificial neural networksArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2021_Methodology_photovoltaic_artificial.pdf2021_Methodology_photovoltaic_artificial.pdfArtículoapplication/pdf10374749https://repository.ucc.edu.co/bitstreams/accc6761-7e92-4c43-a1ad-b9b4763576ea/download10acf0741d6f137ab8924fde9d6ff18eMD512021_Methodology_photovoltaic_artificial_licenciadeuso.pdf2021_Methodology_photovoltaic_artificial_licenciadeuso.pdfLicencia de usoapplication/pdf138190https://repository.ucc.edu.co/bitstreams/4bda26c3-6aa9-40a5-88e2-3f1686a951e8/download7d428eb5053872e853fb2f329f0bb828MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/7ca95cba-e108-491a-afb9-2dbe87b8fe4e/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2021_Methodology_photovoltaic_artificial.pdf.jpg2021_Methodology_photovoltaic_artificial.pdf.jpgGenerated Thumbnailimage/jpeg4317https://repository.ucc.edu.co/bitstreams/1abb402a-b48e-4e90-be40-373c7fe44740/download05643794f1bc5d4cd59f3acd132bc44aMD542021_Methodology_photovoltaic_artificial_licenciadeuso.pdf.jpg2021_Methodology_photovoltaic_artificial_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5233https://repository.ucc.edu.co/bitstreams/92f8786d-bfde-4218-b697-bb6e33148016/download85fc10ae715cfee40982e4e3a3de2e05MD55TEXT2021_Methodology_photovoltaic_artificial.pdf.txt2021_Methodology_photovoltaic_artificial.pdf.txtExtracted texttext/plain54619https://repository.ucc.edu.co/bitstreams/9c310988-f62f-4058-a3a5-8e8dca61ff57/download914a262fdc8fb6b56c3cad431e1187b3MD562021_Methodology_photovoltaic_artificial_licenciadeuso.pdf.txt2021_Methodology_photovoltaic_artificial_licenciadeuso.pdf.txtExtracted texttext/plain5685https://repository.ucc.edu.co/bitstreams/fc32e941-cef7-4cbb-af9d-b6dcbdc9146f/download163ba6a6a2cc6271612bd7e289f580d7MD5720.500.12494/41026oai:repository.ucc.edu.co:20.500.12494/410262024-08-10 21:02:43.922restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |