Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina
El estrés en la etapa de prefaenado es un periodo crítico dentro de la cadena productiva al provocar pérdidas en el peso vivo del animal, afectaciones en el rendimiento y calidad de la canal y pérdida del bienestar animal debido a una alteración del homeóstasis del organismo por la exposición a situ...
- Autores:
-
Muñoz Salinas, Laura
Irreño Barrera, Francisco Javier
Escorcia Álvarez, Neila Sofía
Navarro Gómez, Gary Mauricio
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46800
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/46800
- Palabra clave:
- Bienestar animal
Estrés
Prefaenado
Calidad de la carne
Biomarcadores
TG 2022 MVZ 46800
Animal welfare
meat quality
Stress
Biomarkers
pre slaughter
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_78715b9acd21e4c706ee6fec6223cad5 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46800 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
title |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
spellingShingle |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina Bienestar animal Estrés Prefaenado Calidad de la carne Biomarcadores TG 2022 MVZ 46800 Animal welfare meat quality Stress Biomarkers pre slaughter |
title_short |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
title_full |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
title_fullStr |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
title_full_unstemmed |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
title_sort |
Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina |
dc.creator.fl_str_mv |
Muñoz Salinas, Laura Irreño Barrera, Francisco Javier Escorcia Álvarez, Neila Sofía Navarro Gómez, Gary Mauricio |
dc.contributor.advisor.none.fl_str_mv |
Cala Delgado, Daniel Leonardo |
dc.contributor.author.none.fl_str_mv |
Muñoz Salinas, Laura Irreño Barrera, Francisco Javier Escorcia Álvarez, Neila Sofía Navarro Gómez, Gary Mauricio |
dc.subject.spa.fl_str_mv |
Bienestar animal Estrés Prefaenado Calidad de la carne Biomarcadores |
topic |
Bienestar animal Estrés Prefaenado Calidad de la carne Biomarcadores TG 2022 MVZ 46800 Animal welfare meat quality Stress Biomarkers pre slaughter |
dc.subject.classification.spa.fl_str_mv |
TG 2022 MVZ 46800 |
dc.subject.other.spa.fl_str_mv |
Animal welfare meat quality Stress Biomarkers pre slaughter |
description |
El estrés en la etapa de prefaenado es un periodo crítico dentro de la cadena productiva al provocar pérdidas en el peso vivo del animal, afectaciones en el rendimiento y calidad de la canal y pérdida del bienestar animal debido a una alteración del homeóstasis del organismo por la exposición a situaciones estresantes. En la presente revisión se identifican y describen los factores estresores que se han reportado en los últimos 5 años como principales causas de deterioro de la calidad de la carne entre los cuales se incluyen actividades de manejo de los animales por parte del personal de granja o planta (transporte, carga y descarga, en planta de sacrificio), condiciones ambientales (temperatura, vibraciones), tiempo de espera previo al sacrificio y mezcla de lotes, periodo de ayuno de agua y comida, y estados de fatiga, así como los biomarcadores usados rutinariamente para el estudio de condiciones asociadas al estrés. Aunque las investigaciones sobre el tema son abundantes, aún no es totalmente claro los mecanismos bioquímicos involucrados en la obtención de ciertas características organolépticas de la carne con respecto a niveles de estrés y las variaciones individuales observables en diferentes grupos de animales, así mismo, se requiere mayor investigación en los biomarcadores de estrés que permitan una identificación y medición más específica, efectiva y no invasiva. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-20T20:27:40Z |
dc.date.available.none.fl_str_mv |
2022-10-20T20:27:40Z |
dc.date.issued.none.fl_str_mv |
2022-10-20 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46800 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Muñoz Salinas, L. Irreño Barrera, F. J. Escorcia Álvarez, N. S. Navarro Gómez, G. M. (2022) Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina. [Tesis de pregrado Universidad Cooperativa de Colombia] Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/46800 |
url |
https://hdl.handle.net/20.500.12494/46800 |
identifier_str_mv |
Muñoz Salinas, L. Irreño Barrera, F. J. Escorcia Álvarez, N. S. Navarro Gómez, G. M. (2022) Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina. [Tesis de pregrado Universidad Cooperativa de Colombia] Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/46800 |
dc.relation.references.spa.fl_str_mv |
Górska-Warsewicz H, Laskowski W, Kulykovets O, Kudlińska-Chylak A, Czeczotko M, Rejman K. Food products as sources of protein and amino acids—The case of Poland. Nutrients. 2018;10(12):1977. FAO. Meat market review. Food Agric Organ United Nations [Internet]. 2020;(December):1–13. Disponible en: http://www.fao.org/3/ca3880en/ca3880en.pdf Greenwood PL. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal [Internet]. 2021;(14):100295. Disponible en: https://doi.org/10.1016/j.animal.2021.100295 Rahmat S, Cheong CB, Hamid MSRBA. Challenges of Developing Countries in Complying Quality and Enhancing Standards in Food Industries. Procedia - Soc Behav Sci. 2016; 224:445–51. Gutema FD, Agga GE, Abdi RD, Jufare A, Duchateau L, De Zutter L, et al. Assessment of hygienic practices in beef cattle slaughterhouses and retail shops in bishoftu, ethiopia: Implications for public health. Int J Environ Res Public Health. 2021;18(5): 2729. Wazir Shafi M. Review on application of hazard analysis critical control point in ethiopian slaughtering plant. Int J Vet Sci Res. 2021;7:040–056. Hasanah N, Indrawan D. Food Safety Monitoring System using IoT in the Poultry Slaughterhouse. IOP Conf Ser Earth Environ Sci. 2020;519(1):012043. Edwards-Callaway LN, Calvo-Lorenzo MS. Animal welfare in the U.S. slaughter industry-a focus on fed cattle. J Anim Sci. 2020;98(4):1–21. Trevisan L, Brum JS. Incidence of pale, soft and exudative (PSE) pork meat in reason of extrinsic stress factors. An Acad Bras Cienc. 2020;92(3):1–9. Karunanayaka DS, Jayasena DD, Jo C. Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. J Anim Sci Technol [Internet]. 2016; 58:27. Disponible en: http://dx.doi.org/10.1186/s40781-016-0110-8 Ponnampalam EN, Hopkins DL, Bruce H, Li D, Baldi G, Bekhit AE din. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr Rev Food Sci Food Saf. 2017;16(3):400–30. Chauhan SS, Rashamol VP, Bagath M, Sejian V, Dunshea FR. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int J Biometeorol. 2021;65(7):1231–44. Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci [Internet]. 2020;162:108025. Available from: https://doi.org/10.1016/j.meatsci.2019.108025 Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front Vet Sci. 2021;8(July):699081. Fernandes RTV, De Arruda AMV, Melo ADS, Marinho JBM, Fernandes RTV, De Figueiredo LC. Chemical composition and pH of the meat of broilers submitted to pre-slaughter heat stress. J Anim Behav Biometeorol. 2016;4(4):93–5. Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R. Physiological adaptability of livestock to heat stress: an updated review. J Anim Behav Biometeorol. 2018;6(3):62–71. Zaboli G, Huang X, Feng X, Ahn DU. How can heat stress affect chicken meat quality? - A review. Poult Sci. 2019;98(3):1551–6. Chen S, Yong Y, Ju X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J Therm Biol [Internet]. 2021;99(April):103019. Available from: https://doi.org/10.1016/j.jtherbio.2021.103019 Brossi C, Montes-Villanueva N, Rios-Mera J, Delgado E, Menten J, Contreras-Castillo C. Acute heat stress detrimental effects transpose high mortality rate and affecting broiler breast meat quality. Sci Agropecu. 2018;9(3):305–11. Simonetti A, Perna A, Giudice R, Cappuccio A, Gambacorta E. The effect of high pre-slaughter environmental temperature on meat quality traits of Italian autochthonous pig Suino Nero Lucano. Anim Sci J. 2018;89(7):1020–6. Spurio RS, Soares AL, Carvalho RH, Silveira Junior V, Grespan M, Oba A, et al. Improving transport container design to reduce broiler chicken PSE (pale, soft, exudative) meat in Brazil. Anim Sci J. 2016;87(2):277–83. Freitas Lima LG, Bueno CP, Rodrigues LM, De Aquino Gontijo LM, Da Costa Ferro DA, Coelho KO, et al. Losses caused by carcass bruising in a packing plant in Goiás State. Semin Cienc Agrar. 2019;40(6):3729–40. Burdick NC, Randel RD, Carroll JA, Welsh TH. Interactions between temperament, stress, and immune function in cattle. Int J Zool. 2011;2011. Mota-Rojas D, Napolitano F, Strappini A, Orihuela A, Ghezzi MD, Hernández-ávalos I, et al. Pain at the slaughterhouse in ruminants with a focus on the neurobiology of sensitisation. Animals. 2021;11(4):1085. Brown EJ, Vosloo A. The involvement of the hypothalamo-pituitary-adrenocortical axis in stress physiology and its significance in the assessment of animal welfare in cattle. Onderstepoort J Vet Res. 2017;84(1):e1–e9. Njisane YZ, Muchenje V. Farm to abattoir conditions, animal factors and their subsequent effects on cattle behavioural responses and beef quality - A review. Asian-Australasian J Anim Sci. 2017;30(6):755–64. Bozzo G, Barrasso R, Marchetti P, Roma R, Samoilis G, Tantillo G, et al. Analysis of stress indicators for evaluation of animal welfare and meat quality in traditional and Jewish slaughtering. Animals. 2018;8(4):43. Gardner GE, Mcgilchrist P, Pethick DW. Ruminant glycogen metabolism. Anim Prod Sci. 2014;54(10):1575–83. Peres LM, Bridi AM, da Silva CA, Andreo N, Tarsitano MA, Stivaletti ELT. Effect of low or high stress in pre-slaughter handling on pig carcass and meat quality. Rev Bras Zootec. 2014;43(7):363–8. Matarneh SK, England EM, Scheffler TL, Gerrard DE. The Conversion of Muscle to Meat. Lawrie’s Meat Sci Eighth Ed. 2017;159–85. Collier RJ, Renquist BJ, Xiao Y. A 100-Year Review: Stress physiology including heat stress. J Dairy Sci [Internet]. 2017;100(12):10367–80. Disponible en: http://dx.doi.org/10.3168/jds.2017-13676 Turner AI, Tilbrook AJ. Stress, cortisol and reproduction in female pigs. Soc Reprod Fertil Suppl. 2006;62(Goldstein 1987):191–203. Machado, S. T., de Alencar Naas, I., dos Reis, J. G. M., & de Oliveira Costa Neto, P. L. Quality Economic Losses in Brazil’s Pork Industry. Lecture Notes in Business Information Processing. 2018. 262. https://doi.org/10.1007/978-3-319-73758-4_13 Titto CG, Negrão JA, Canaes T de S, Titto RM, Leme-dos Santos TM da C, Henrique FL, et al. Heat stress and ACTH administration on cortisol and insulin-like growth factor I (IGF-I) levels in lactating Holstein cows. J Appl Anim Res [Internet]. 2017;45(1):1–7. Disponible en: https://doi.org/10.1080/09712119.2015.1091326 Freitas-de-Melo A, Ungerfeld R. Progesterona y respuesta de estrés: mecanismos de acción y sus repercusiones en rumiantes domésticos. Revisión. Rev Mex Ciencias Pecu. 2016;7(2):185-199. Martínez-Miró S, Tecles F, Ramón M, Escribano D, Hernández F, Madrid J, et al. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet Res [Internet]. 2016;12(1):171. Disponible en: http://dx.doi.org/10.1186/s12917-016-0791-8 Yuki M, Aoyama R, Hirano T, Tawada R, Ogawa M, Naitoh E, et al. Investigation of serum cortisol concentration as a potential prognostic marker in hospitalized dogs: A prospective observational study in a primary care animal hospital. BMC Vet Res. 2019;15(1):170. Cockrem JF. Individual variation in glucocorticoid stress responses in animals. Gen Comp Endocrinol [Internet]. 2013;181(1):45–58. Disponible en: http://dx.doi.org/10.1016/j.ygcen.2012.11.025 Ericsson M, Jensen P. Domestication and ontogeny effects on the stress response in young chickens (Gallus gallus). Sci Rep [Internet]. 2016;6:35818. Disponible en: http://dx.doi.org/10.1038/srep35818 Baier F, Grandin T, Engle T, Edwards-Callaway L. Evaluation of hair characteristics and animal age on the impact of hair cortisol concentration in feedlot steers. Front Vet Sci. 2019;6:323. Boumans IJMM, de Boer IJM, Hofstede GJ, la Fleur SE, Bokkers EAM. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs. Horm Behav [Internet]. 2017;93:82–93. Disponible en: http://dx.doi.org/10.1016/j.yhbeh.2017.05.003 O’Neill HA. A review on the involvement of catecholamines in animal behaviour. South African J Anim Sci. 2019;49(1):1–8. Zupan M, Zanella AJ. Peripheral regulation of stress and fear responses in pigs from tail-biting pens. Rev Bras Zootec. 2017;46(1):33–8. Benincasa NC, Sakamoto KS, Silva IJO, Lobos CMV. Animal welfare: impacts of pre-slaughter operations on the current poultry industry. J Anim Behav Biometeorol. 2020; 8(2):104–10. Myers MJ, Smith ER, Turfle PG. Biomarkers in Veterinary Medicine∗. Annu Rev Anim Biosci. 2017;5:65–87. de Almeida AM, Zachut M, Hernández-Castellano LE, Šperanda M, Gabai G, Mobasheri A. Biomarkers of fitness and welfare in dairy animals: healthy living. Journal of Dairy Research 2019;86:379–87. Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, et al. Biomarkers in stress related diseases/disorders: Diagnostic, prognostic, and therapeutic values. Front Mol Biosci. 2019; 6:91. Widiyanto S, Widiyono I, Putro PP, ... Stress Estimation of Pre-Slaughter and Slaughtered by Means of Fourier Transform Infrared Spectroscopy Analysis Through Measurement of Cortisol and means of fourier transform infrared spectroscopy analysis through measurement of cortisol and catecholamine level in female cattle urine. Anim Prod [Internet]. 2014;16(3):193–201. Disponible en: http://animalproduction.net/index.php/JAP/article/view/468 Sharma A, Umapathy G, Kumar V, Phillips CJC. Hair Cortisol in Sheltered Cows and Its Association with Other Welfare Indicators. Animals. 2019;9(5):248. Koomkrong N, Boonkaewwan C, Laenoi W, Kayan A. Blood haematology, muscle pH and serum cortisol changes in pigs with different levels of drip loss. Asian-Australasian J Anim Sci. 2017;30(12):1751–5. Wirthgen E, Kunze M, Goumon S, Walz C, Hö C, Spitschak M, et al. Interference of stress with the somatotropic axis in pigs – lights on new biomarkers. Sci Rep.2017;7:12055. Stajković S, Teodorović V, Baltić M, Karabasil N. Pre-slaughter stress and pork quality. IOP Conf Ser Earth Environ Sci. 2017;85(1):012034. Sardi L, Gastaldo A, Borciani M, Bertolini A, Musi V, Martelli G, et al. Identification of possible pre-slaughter indicators to predict stress and meat quality: A study on heavy pigs. Animals. 2020;10(6):945. Heimbürge S, Kanitz E, Otten W. The use of hair cortisol for the assessment of stress in animals. Gen Comp Endocrinol [Internet]. 2019;270:10–7. Disponible en: https://doi.org/10.1016/j.ygcen.2018.09.016 Karabasil N, Boskovic T, Vicic I, Cobanović N, Dimitrijevic M, Teodorovic V. Meat quality: Impact of various pre-slaughter conditions. IOP Conf Ser Earth Environ Sci. 2019; 333(1). Morgan L, Itin-Shwartz B, Koren L, Meyer JS, Matas D, Younis A, et al. Physiological and economic benefits of abandoning invasive surgical procedures and enhancing animal welfare in swine production. Sci Rep. 2019;9(1):16093. Carroll GA, Boyle LA, Hanlon A, Palmer MA, Collins L, Griffin K, et al. Identifying physiological measures of lifetime welfare status in pigs: Exploring the usefulness of haptoglobin, C- reactive protein and hair cortisol sampled at the time of slaughter. Ir Vet J. 2018;71:8. Chulayo AY, Muchenje V. The effects of pre-slaughter stress and season on the activity of plasma creatine kinase and mutton quality from different sheep breeds slaughtered at a smallholder abattoir. Asian-Australasian J Anim Sci. 2013;26(12):1762–72. Berridge BR, Van Vleet JF, Herman E. Cardiac, Vascular, and Skeletal Muscle Systems [Internet]. Third Edit. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Elsevier; 2013. 1567–1665 p. Disponible en: http://dx.doi.org/10.1016/B978-0-12-415759-0.00046-7 Chulayo AY, Muchenje V. Activities of some stress enzymes as indicators of slaughter cattle welfare and their relationship with physico-chemical characteristics of beef. Animal. 2017;11(9):1645–52. Lu X, Zhang Y, Qin L, Ma W, Zhu L, Luo X. Association of ultimate pH and stress-related blood variables in cattle. Meat Sci [Internet]. 2018;139:228–30. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2018.02.004 Choe J. Pre-slaughter stress, animal welfare, and its implication on meat quality. Kjoas [Internet].2018;45(1):58–65. Death RB, Turner SP, Kurt E, Evans G, Thölking L, Looft H, et al. Pigs’ aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality. Animal. 2010;4(4):604–16. Larios-Cueto S, Ramírez-Valverde R, Aranda-Osorio G, Ortega-Cerrilla ME, García-Ortiz JC. Stress indicators in cattle in response to loading, transport and unloading practices. Rev Mex Ciencias Pecu. 2019;10(4):885–902. Chulayo AY, Bradley G, Muchenje V. Effects of transport distance, lairage time and stunning efficiency on cortisol, glucose, HSPA1A and how they relate with meat quality in cattle. Meat Sci [Internet]. 2016;117:89–96. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.03.001 Frimpong S, Gebresenbet G, Bobobee E, Aklaku ED, Hamdu I. Effect of transportation and pre-slaughter handling on welfare and meat quality of cattle: Case study of Kumasi Abattoir, Ghana. Vet Sci. 2014;1(3):174–91. Brandt P, Aaslyng MD. Welfare measurements of finishing pigs on the day of slaughter: A review. Meat Sci [Internet]. 2015;103:13–23. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2014.12.004 Tothova C, Nagy O, Kovac G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: A review. Vet Med (Praha). 2014;59(4):163–80. Cray C, Zaias J, Altman NH. Acute phase response in animals: A review. Comp Med. 2009;59(6):517–26. Bastos BL, Rocha-Filho JTR, Santana ÍP, Meyer R, Guimarães JE. Aplicabilidade da proteína haptoglobina como bioindicador de saúde na bovinocultura de corte e leite. Pubvet. 2018;12(3):1–13. Marcato F, van den Brand H, Kemp B, Engel B, Wolthuis-Fillerup M, van Reenen K. Effects of pretransport diet, transport duration, and type of vehicle on physiological status of young veal calves. J Dairy Sci [Internet]. 2020;103(4):3505–20. Disponible en: http://dx.doi.org/10.3168/jds.2019-17445 Soler L, Gutiérrez A, Escribano D, Fuentes M, Cerón JJ. Response of salivary haptoglobin and serum amyloid A to social isolation and short road transport stress in pigs. Res Vet Sci [Internet]. 2013;95(1):298–302. Disponible en: http://dx.doi.org/10.1016/j.rvsc.2013.03.007 Flores-Peinado S, Mota-Rojas D, Guerrero-Legarreta I, Mora-Medina P, Cruz-Monterrosa R, Gómez-Prado J, et al. Physiological responses of pigs to preslaughter handling: infrared and thermal imaging applications. Int J Vet Sci Med [Internet]. 2020;8(1):71–84. Disponible en: https://doi.org/10.1080/23144599.2020.1821574 Mato A, Rodríguez-Vázquez R, López-Pedrouso M, Bravo S, Franco D, Zapata C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genomics. 2019;20(1):590. Piras C, Roncada P, Rodrigues PM, Bonizzi L, Soggiu A. Proteomics in food: Quality, safety, microbes, and allergens. Proteomics. 2016;16(5):799–815. Holman BWB, Kerry JP, Hopkins DL. Meat packaging solutions to current industry challenges: A review. Meat Sci [Internet]. 2018;144(February):159–68. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2018.04.026 Carrasco-García AA, Pardío-Sedas VT, León-Banda GG, Ahuja-Aguirre C, Paredes-Ramos P, Hernández-Cruz BC, et al. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australasian J Anim Sci. 2020; 33(10):1656–65. Čobanović N, Stajković S, Blagojević B, Betić N, Dimitrijević M, Vasilev D, et al. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int J Biometeorol. 2020;64(11):1899–909. Smith SB. Muscle biology and meat quality - challenges, innovations, and sustainability. Anim Agric Sustain Challenges Innov. 2019;381–91. Kutsanedzie FYH, Guo Z, Chen Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. Food Rev Int [Internet]. 2019;35(6):536–62. Disponible en: https://doi.org/10.1080/87559129.2019.1584814 Ribeiro DM, Martins CF, Costa M, Coelho D, Pestana J, Alfaia C, et al. Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods. 2021;10(12):2961. Alam MR, Islam MJ, Amin A, Shaikat AH, Pasha MR, Doyle RE. Animal-Based Welfare Assessment of Cattle and Water Buffalo in Bangladeshi Slaughterhouses. J Appl Anim Welf Sci [Internet]. 2020;23(2):219–30. Available from: https://doi.org/10.1080/10888705.2019.1620608 Alonso ME, González-Montaña JR, Lomillos JM. Consumers’ concerns and perceptions of farm animal welfare. Animals. 2020;10(3):385. Teixeira A, Rodrigues S. More than Beef, Pork and Chicken – The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet. More than Beef, Pork Chick – Prod Process Qual Trait Other Sources Meat Hum Diet. 2019;21–9. Bonnet C, Bouamra-Mechemache Z, Réquillart V, Treich N. Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy [Internet]. 2020;97(February):101847. Disponible en: https://doi.org/10.1016/j.foodpol.2020.101847 Sarkis J, Zhu Q. Environmental sustainability and production: taking the road less travelled. Int J Prod Res [Internet]. 2018;56(1–2):743–59. Disponible en: http://doi.org/10.1080/00207543.2017.1365182 Salami SA, Luciano G, O’Grady MN, Biondi L, Newbold CJ, Kerry JP, et al. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim Feed Sci Technol [Internet]. 2019;251(February):37–55. Disponible: https://doi.org/10.1016/j.anifeedsci.2019.02.006 Wu JY, Hsiao HI. Food quality and safety risk diagnosis in the food cold chain through failure mode and effect analysis. Food Control [Internet]. 2021;120:107501. Disponible en: https://doi.org/10.1016/j.foodcont.2020.107501 Saucier L. Microbial spoilage, quality and safety within the context of meat sustainability. Meat Sci [Internet]. 2016;120:78–84. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.04.027 Jiang G, Ameer K, Kim H, Lee E-J, Ramachandraiah K, Hong G. Strategies for Sustainable Substitution of Livestock Meat. Foods. 2020;9(9):1227. Ismail I, Hwang YH, Joo ST. Meat analog as future food: A review. J Anim Sci Technol. 2020;62(2):111–20. Lynch J, Pierrehumbert R. Climate Impacts of Cultured Meat and Beef Cattle. Front Sustain Food Syst. 2019;3:5. Chriki S, Hocquette JF. The Myth of Cultured Meat: A Review. Front Nutr. 2020;7:7. Disponible en: https://doi.org/10.3389/fnut.2020.00007 Alexander P, Brown C, Arneth A, Dias C, Finnigan J, Moran D, et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob Food Sec [Internet]. 2017;15:22–32. Disponible en: http://dx.doi.org/10.1016/j.gfs.2017.04.001 Zhang P, Hou H, Yang J, Zhang D. Study on appreciation strategy of meat cold chain in China. Int Conf Logist Informatics Serv Sci LISS.2016:1-5. 20.Marlyn Romero P, Jorge Sánchez V. Bienestar animal durante el transporte y su relación con la calidad de la carne bovina. Rev MVZ Cordoba. 2012;17(1):2936–44. Lara LJ, Rostagno MH. Animal welfare and food safety in modern animal production. Advances in Agricultural Animal Welfare: Science and Practice.2018: 91–108 p. Disponible en: http://dx.doi.org/10.1016/B978-0-08-101215-4.00005-5 Gallo CB, Huertas SM. Main animal welfare problems in ruminant livestock during preslaughter operations: A South American view. Animal. 2016; 10(2):357-64. doi: 10.1017/S1751731115001597. Ferguson DM, Warner RD. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci. 2008;80(1):12–9. Birhanu AF. Pre-Slaughter Stress, Management of Stress and Its Effect on Meat and Carcass Quality. Int J Food Sci Agric. 2020;4(1):30–7. Saraiva S, Esteves A, Oliveira I, Mitchell M, Stilwell G. Impact of pre-slaughter factors on welfare of broilers. Vet Anim Sci [Internet]. 2020;10(October):100146. Disponible en: https://doi.org/10.1016/j.vas.2020.100146 Driessen B, Freson L, Buyse J. Fasting finisher pigs before slaughter influences pork safety, pork quality and animal welfare. Animals. 2020;10(12):2206. Sabaw AB, Muhammed TS. Meat Quality and Carcass Characteristics Assessments in Broiler Chickens Subjected to Different Pre-Slaughter Feed Withdrawal Times. IOP Conf Ser Earth Environ Sci. 2021;761(1):012112. Šímová V, Večerek V, Passantino A, Voslářová E. Pre-transport factors affecting the welfare of cattle during road transport for slaughter - A review. Acta Vet Brno. 2016;85(3):303–18. Faucitano L, Conte S, Pomar C, Paiano D, Duan Y, Zhang P, et al. Application of extended feed withdrawal time preslaughter and its effects on animal welfare and carcass and meat quality of enriched-housed pigs. Meat Sci [Internet]. 2020;167(December 2019):108163. Disponible en: https://doi.org/10.1016/j.meatsci.2020.108163 Vermeulen L, Van de Perre V, Permentier L, De Bie S, Verbeke G, Geers R. Pre-slaughter sound levels and pre-slaughter handling from loading at the farm till slaughter influence pork quality. Meat Sci [Internet]. 2016;116:86–90. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.02.007 Romero MH, Rodríguez-Palomares M, Sánchez JA. Animal-based measurements to assess the welfare of dairy cull cows during pre-slaughter. Animals. 2020;10(10):1802. Mendonça FS, Vaz RZ, Cardoso FF, Restle J, Vaz FN, Pascoal LL, et al. Pre-slaughtering factors related to bruises on cattle carcasses. Anim Prod Sci. 2018;58(2):385–92. Córdoba CP, Correa G, Barahona R, Tarazona A. Comportamiento de machos cebú em corrales presacrificio y su relación con el pH de la carne. Archivos de Zootecnia. 2017;66(256):579–86. Goumon S, Faucitano L. Influence of loading handling and facilities on the subsequent response to pre-slaughter stress in pigs. Livest Sci [Internet]. 2017; 200(March):6–13. Disponible en: http://dx.doi.org/10.1016/j.livsci.2017.03.021gg Loudon KMW, Tarr G, Lean IJ, Polkinghorne R, Mcgilchrist P, Dunshea FR, et al. The Impact of Pre-Slaughter Stress on Beef Eating Quality. Animals (Basel).2019;9(9):612. Claudia Terlouw EM, Picard B, Deiss V, Berri C, Hocquette JF, Lebret B, et al. Understanding the determination of meat quality using biochemical characteristics of the muscle: Stress at slaughter and other missing keys. Foods. 2021; 10(1):84. Zhang M, Dunshea FR, Warner RD, DiGiacomo K, Osei-Amponsah R, Chauhan SS. Impacts of heat stress on meat quality and strategies for amelioration: a review. Int J Biometeorol. 2020;64:1613-28. Disponible en https://doi.org/10.1007/s00484-020-01929-6 Zhao L, McMillan RP, Xie G, Giridhar SGLW, Baumgard LH, El-Kadi S, et al. Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am J Physiol - Regul Integr Comp Physiol. 2018;315(6):R1096–106. BRADEN, K.W. Converting muscle to meat: the physiology of rigor. In: KERTH, C.R. (Ed.). The science of meat quality. Iowa: J. Wiley & Sons, 2013. p.79-97. DOI: https://doi.org/10.1002/9781118530726.ch5 Wicks J, Beline M, Gomez JFM, Luzardo S, Silva SL, Gerrard D. Muscle energy metabolism, growth, and meat quality in beef cattle. Agric. 2019;9(9):195. Boland, M.; Kaur, L.; Chian, F.M.; Astruc, T. Muscle proteins. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2018; pp. 164–179. (41) Mir NA, Rafiq A, Kumar F, Singh V, Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. J Food Sci Technol. 2017;54(10):2997–3009. Álvarez C, Morán L, Keenan DF, Mullen AM, Delgado-Pando G. Mechanical and Biochemical Methods for Rigor Measurement: Relationship with Eating Quality. J Food Qual. 2019. https://doi.org/10.1155/2019/1894543 Bowker B. Developments in our understanding of water-holding capacity [Internet]. Poultry Quality Evaluation: Quality Attributes and Consumer Values. Elsevier Ltd; 2017. 77–113 p. Disponible en: http://dx.doi.org/10.1016/B978-0-08-100763-1.00004-0 Sánchez-Macías D, Cevallos-Velastegui L, Nuñez-Valle D, Morales-delaNuez A. First report of postmortem pH evolution and rigor mortis in guinea pigs. Livest Sci [Internet]. 2019;229(May):22–7. Disponible en: https://doi.org/10.1016/j.livsci.2019.09.014 Rodrigues LM, Fontes PR, Ramos EM. Rigor development and meat quality of Murrah buffalo from different production systems. Res., Soc. Dev. [Internet].2021; 10(6):e42810615814. Disponible en: https://rsdjournal.org/index.php/rsd/article/view/15814 Zhang Y, Mao Y, Li K, Luo X, Hopkins DL. Effect of Carcass Chilling on the Palatability Traits and Safety of Fresh Red Meat. Compr Rev Food Sci Food Saf. 2019;18(6):1676–704. Ertbjerg P, Puolanne E. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci [Internet]. 2017;132:139–52. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2017.04.261 Jorquera-Chavez M, Fuentes S, Dunshea FR, Jongman EC, Warner RD. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Sci [Internet]. 2019;156:11–22. Disponible en: https://doi.org/10.1016/j.meatsci.2019.05.007 Losada-Espinosa N, Villarroel M, María GA, Miranda-de la Lama GC. Pre-slaughter cattle welfare indicators for use in commercial abattoirs with voluntary monitoring systems: A systematic review. Meat Sci [Internet]. 2018;138:34–48. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2017.12.004 Díaz-Luis A, Díaz F, Diñeiro Y, González-Blanco L, Arias E, Coto-Montes A, et al. Nuevos indicadores de carnes DFD: estrés oxidativo, autofagia y apoptosis. Inf Tec Econ Agrar. 2021;117:3–18. García-Torres S, de Vaca MC, Tejerina D, Romero-Fernández MP, Ortiz A, Franco D, et al. Assessment of stress by serum biomarkers in calves and their relationship to ultimate ph as an indicator of meat quality. Animals. 2021;11(8):2291. Manalo MR, Gabriel AA. Influence of antemortem and slaughtering practices on the pH of pork and chicken meats. Philipp J Sci. 2020;149(1):1–19 Lees AM, Sejian V, Wallage AL, Steel CC, Mader TL, Lees JC, et al. The impact of heat load on cattle. Animals. 2019;9(6):322. Zhang X, Owens CM, Schilling MW. Meat: The edible flesh from mammals only or does it include poultry, fish, and seafood? Anim Front. 2017;7(4):12–8. Ijaz M, Li X, Zhang D, Hussain Z, Ren C, Bai Y, et al. Association between meat color of DFD beef and other quality attributes. Meat Sci [Internet]. 2020;161:107954. Disponible en: https://doi.org/10.1016/j.meatsci.2019.107954 Keenan DF. Pork Meat Quality, Production and Processing on [Internet]. 1st ed. Encyclopedia of Food and Health. Elsevier Ltd.; 2016. 419–431 p. Disponible en: http://dx.doi.org/10.1016/B978-0-12-384947-2.00551-1 Wang RH, Liang RR, Lin H, Zhu LX, Zhang YM, Mao YW, et al. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci. 2017;96(3):738–46. Shimokomaki M, Ida EI, Soares AL, Oba A., Kato T, Pedrão MR, Coró FAG., Carvalho RH. Animal Welfare and Meat Quality: Methodologies to Reduce Pre-slaughter Stress in Broiler Chicken. Global Food Security and Wellness. Springer. 2017; pp.301-313. Disponible en: https://doi.org/10.1007/978-1-4939-6496-3_16 Jordan D, Gorjanc G, Štuhec I, Žgur S. Improvement of pork characteristics under commercial conditions with small amount of straw or hay. J Appl Anim Res. 2018;46(1):1317–22. Çelen MF, Sögüt B, Zorba Ö, Demirulus H, Tekeli A. Comparison of normal and PSE turkey breast meat for chemical composition, pH, color, myoglobin, and drip loss. Rev Bras Zootec. 2016;45(8):441–4. Ismail I, Joo ST. Poultry meat quality in relation to muscle growth and muscle fiber characteristics. Korean J Food Sci Anim Resour. 2017;37(6):873–83. Lebret B, Čandek-Potokar M. Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal. 2021:100402. doi: 10.1016/j.animal.2021.100402. Odeón M, Romera S. Estrés en ganado: causas y consecuencias. Rev Vet. 2017; 28 (1): 69-77 Gallo C, Tadich B. Bienestar animal y calidad de carne durante los manejos previos al faenamiento en bovinos. REDVET. 2008; IX (10B). Urrea VM, Bridi AM, Ceballos MC, Paranhos da Costa MJR, Faucitano L. Behavior, blood stress indicators, skin lesions, and meat quality in pigs transported to slaughter at different loading densities. J Anim Sci. 2021; 99(6):skab119. doi: 10.1093/jas/skab119. Schwartzkopf GK, Faucitano L, Dadgar S, Shand P, González L, Crowe T. Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review. Meat Science. 2012; 92 (3) 227–243. doi: 10.1016/j.meatsci.2012.04.010 Dalla Costa FA, Devillers N, Paranhos da Costa MJR, Faucitano L. Effects of applying preslaughter feed withdrawal at the abattoir on behaviour, blood parameters and meat quality in pigs. Meat Sci [Internet]. 2016;119:89–94. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.03.033 Rybarczyk A, Lupkowska A, Hartuna B, A S. Effect of pre-slaughter fasting and gender on pork quality. Fleischwirtschaft. 2017;97(7):92-97. Xing T, Gao F, Tume RK, Zhou G, Xu X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr Rev Food Sci Food Saf. 2019;18(2):380–401. Clariget J, Banchero G, Luzardo S, Fernández E, Pérez E, La Manna A, et al. Effect of pre-slaughter fasting duration on physiology, carcass and meat quality in beef cattle finished on pastures or feedlot. Res Vet Sci. 2021;136:158–65. Hafid H, Hasnudi, Bain HA, Nasiu F, Inderawati, Patriani P, et al. Effect of fasting time before slaughtering on body weight loss and carcass percentage of Bali cattle. IOP Conf Ser Earth Environ Sci. 2019;260(1). Contreras-Castillo C, Pinto AA, Souza GL, Beraquet NJ, Aguiar AP, Cipolli KMVAB, et al. Effects of feed withdrawal periods on carcass yield and breast meat quality of chickens reared using an alternative system. J Appl Poult Res. 2007;16(4):613–22. Xue G, Cheng S, Yin J, Zhang R, Su Y, Li X, et al. Influence of pre-slaughter fasting time on weight loss, meat quality and carcass contamination in broilers. Anim Biosci. 2021;34(6):1070–7. Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, et al. Welfare of cattle at slaughter. EFSA J. 2020;18(11). Juliet K, Wangalwa R, Grace KR, Grace KR, Joseph WM, Morgan A. Causes of losses and the economic loss estimates at post-harvest handling points along the beef value chain in Uganda. J Agric Ext Rural Dev. 2019;11(10):176–83. Birhanu AF, Mummed YY, Kurtu MY, O’Quinn T, Jiru YT. Level of Pre-slaughter stress and quality of beef from Arsi, Boran and Harar cattle breeds in Ethiopia. Cogent Food Agric. 2019;5(1). Schuetze SJ, Schwandt EF, Maghirang RG, Thomson DU. REVIEW: Transportation of commercial finished cattle and animal welfare considerations. Prof Anim Sci [Internet]. 2017;33(5):509–19. Disponible en: https://doi.org/10.15232/pas.2017-01620 Álvarez D, Garrido MD, Bañón S. Influence of pre-slaughter process on pork quality: An overview. Food Rev Int. 2009;25(3):233–50. Grandin T. Livestock Handling and Transport [Internet]. 5 ed. CABI; 2019 [Consultado Sept. 2021]. Disponible en: https://www.cabi.org/bookshop/book/9781786399151/ Grandin T. Lineamientos recomendados para el manejo animal y guía de auditorías. Un enfoque sistematico del Bienestar Animal. North Am Meat Inst. 2021;148:148–62. Dalla Costa OA, Dalla Costa FA, Feddern V, Lopes L dos S, Coldebella A, Gregory NG, et al. Risk factors associated with pig pre-slaughtering losses. Meat Sci [Internet]. 2019;155(April):61–8. Disponible en: https://doi.org/10.1016/j.meatsci.2019.04.020 Vitali M, Bosi P, Santacroce E, Trevisi P. The multivariate approach identifies relationships between pre-slaughter factors, body lesions, ham defects and carcass traits in pigs. PLoS One [Internet]. 2021; 16(5):e0251855. Disponible en: http://dx.doi.org/10.1371/journal.pone.0251855 Čobanović N, Bošković M, Vasilev D, Dimitrijević M, Parunović N, Djordjević J, et al. Effects of various pre-slaughter conditions on pig carcasses and meat quality in a low-input slaughter facility. South African J Anim Sci. 2016;46(4):380–90. Bethancourt-Garcia JA, Vaz RZ, Vaz FN, Silva WB, Pascoal LL, Mendonça FS, et al. Pre-slaughter factors affecting the incidence of severe bruising in cattle carcasses. Livest Sci [Internet]. 2019;222(February):41–8. Disponible en: https://doi.org/10.1016/j.livsci.2019.02.009 Teiga-Teixeira P, Moura D, García-Díez J, Esteves A. Characterization of carcass bruises in cattle in Northern Portugal, a preliminary study. Ital J Anim Sci [Internet]. 2021;20(1):1168–74. Disponible en: https://doi.org/10.1080/1828051X.2021.1957030 Diro M, Mekete B, Gebremedhin EZ. Effect of pre-slaughter beef cattle handling on welfare and beef quality in Ambo and Guder markets and abattoirs, Oromia Regional State, Ethiopia. Ethiop J Sci Technol. 2021;14(2):89–104. Rioja-Lang FC, Brown JA, Brockhoff EJ, Faucitano L. A review of swine transportation research on priority welfare issues: A canadian perspective. Front Vet Sci. 2019;6:36. Nannoni E, Liuzzo G, Serraino A, Giacometti F, Martelli G, Sardi L, et al. Evaluation of pre-slaughter losses of Italian heavy pigs. Anim Prod Sci. 2017;57(10):2072–81. Di Martino G, Capello K, Russo E, Mazzucato M, Mulatti P, Ferrè N, et al. Factors associated with pre-slaughter mortality in turkeys and end of lay hens. Animal. 2017;11(12):2295–300. Bonou GA, Ahounou SG, Salifou CFA, Paraïso FH, Bachabi K, Konsaka BM, et al. Influence of pre-slaughter transportation duration stress on carcass and meat quality of indigenous chicken reared under traditional system in Benin. Int. J. of Adv. Res. 2017;5(May):187-199. Bulitta FS, Aradom S, Gebresenbet G. Effect of Transport Time of up to 12 Hours on Welfare of Cows and Bulls. J Serv Sci Manag. 2015;08(02):161–82. Alende M, Volpi Lagreca G, Pordomingo A, Pighín D, Grigioni G, Carduza F, et al. Efectos del tiempo de transporte, espera pre-faena y maduración en novillos sobre indicadores de estrés, calidad instrumental y sensorial de la carne. Arch Med Vet. 2014;46(2):217–27. Leary S, Underwood W, Anthony R, Corey D, Grandin T, Gwaltnery-Brant S, et al. AVMA Guidelines for the Humane Slaughter of Animals: 2016 edition. 2016. 1–64 p. Chambers PG, Grandin T. Directrices para el manejo, transporte y sacrificio humanitario del ganado. [Internet]. [Consultado 26 Oct 2021] Disponible en: https://www.fao.org/3/X6909S/x6909s.htm Miranda-de la Lama GC. Transporte y logística pre-sacrificio: Principios y tendencias en bienestar animal y su relación con la calidad de la carne. Vet Mex. 2013;44(1):31–56. Dokmanovic M, Ivanovic J, Janjic J, Boskovic M, Laudanovic M, Pantic S, et al. Effect of lairage time, behaviour and gender on stress and meat quality parameters in pigs. Anim Sci J. 2017;88(3):500–6. de Oliveira Costa F, Brito G, de Lima JMS, Sant’Anna AC, da Costa MJRP, del Campo M. Lairage time effect on meat quality in Hereford steers in rangeland conditions. Rev Bras Zootec. 2019;48. Burns L V., Ramos AT, Cordova FM, Moron SE, Veiga APM, Zimermann FC, et al. Evaluation of muscle tissue and liver glycogen of cattle submitted to transport over long distances and subjected to emergency slaughter. Arq Bras Med Vet e Zootec. 2019;71(3):1067–75. Arik E, Karaca S. The effect of some pre-slaughter factors on meat quality of bulls slaughtered in a commercial abattoir in Turkey. Indian J Anim Res. 2017;51(3):557–63. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
46 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga |
dc.publisher.program.spa.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.spa.fl_str_mv |
Bucaramanga |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/63bfc8a1-1e7e-48d6-9261-37bf6be17d82/download https://repository.ucc.edu.co/bitstreams/6ef5df49-4f32-4b98-b415-b1c784628e00/download https://repository.ucc.edu.co/bitstreams/5d000e13-f364-45b2-807a-e90498e88dd1/download https://repository.ucc.edu.co/bitstreams/9b83609d-f5b8-4aef-a67e-39b315e4b0ee/download https://repository.ucc.edu.co/bitstreams/76d0a871-8451-4db7-9260-a5797858245d/download https://repository.ucc.edu.co/bitstreams/3b43ea18-82c4-4da8-9d52-856a94378806/download https://repository.ucc.edu.co/bitstreams/b47e90db-46d6-494e-b5af-da2fc2ae7f98/download https://repository.ucc.edu.co/bitstreams/83cf7d10-8567-4aaa-be1b-fb3a795ebc84/download https://repository.ucc.edu.co/bitstreams/cdb740ff-1f04-4782-91df-253814cb1614/download https://repository.ucc.edu.co/bitstreams/08599fc0-5b50-4148-aa39-f7ff9e8c8343/download |
bitstream.checksum.fl_str_mv |
ca8cab016a5d93dd88810a834b4bb361 7d54875e6ec0f8ae2100597cad8f498a c6a27ee0bcdc7342bcd45a39142b4f92 8a4605be74aa9ea9d79846c1fba20a33 a276c97863402108e27a5c6e1ef5b55c 8fdd5fc70fcecd131f948a00b886cada fd4f37a9a25d5f64b017701f6f0f51c8 4c8da203378f145ef5d651d153402f5e b52841f0771500b8cfab255be14f71cd face4278c8e7323b65dc317aea755f74 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246845096919040 |
spelling |
Cala Delgado, Daniel LeonardoMuñoz Salinas, LauraIrreño Barrera, Francisco JavierEscorcia Álvarez, Neila SofíaNavarro Gómez, Gary Mauricio2022-10-20T20:27:40Z2022-10-20T20:27:40Z2022-10-20https://hdl.handle.net/20.500.12494/46800Muñoz Salinas, L. Irreño Barrera, F. J. Escorcia Álvarez, N. S. Navarro Gómez, G. M. (2022) Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina. [Tesis de pregrado Universidad Cooperativa de Colombia] Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/46800El estrés en la etapa de prefaenado es un periodo crítico dentro de la cadena productiva al provocar pérdidas en el peso vivo del animal, afectaciones en el rendimiento y calidad de la canal y pérdida del bienestar animal debido a una alteración del homeóstasis del organismo por la exposición a situaciones estresantes. En la presente revisión se identifican y describen los factores estresores que se han reportado en los últimos 5 años como principales causas de deterioro de la calidad de la carne entre los cuales se incluyen actividades de manejo de los animales por parte del personal de granja o planta (transporte, carga y descarga, en planta de sacrificio), condiciones ambientales (temperatura, vibraciones), tiempo de espera previo al sacrificio y mezcla de lotes, periodo de ayuno de agua y comida, y estados de fatiga, así como los biomarcadores usados rutinariamente para el estudio de condiciones asociadas al estrés. Aunque las investigaciones sobre el tema son abundantes, aún no es totalmente claro los mecanismos bioquímicos involucrados en la obtención de ciertas características organolépticas de la carne con respecto a niveles de estrés y las variaciones individuales observables en diferentes grupos de animales, así mismo, se requiere mayor investigación en los biomarcadores de estrés que permitan una identificación y medición más específica, efectiva y no invasiva.Stress pre-slaughter is a critical period into the productive chain that promotes live animal weight loss, yield and meat quality, and loss of animal welfare due to failure of homeostasis of the organism by exposure to stressful situations. In the current review, we identify and describe stressors factors reports at the last 5 years such as main causes of meat quality, that include handling activities of animals by farm or plant staff (transportation, load and unload at the slaughterhouse), environmental conditions (temperature, vibrations), lairage time previous to slaughter and group mixing, fasting time of water and food, and fatigue states as well as routinely used biomarkers to study of conditions associated to stress. Although research about the subject is large, it is not clear the biochemical mechanisms involved in some orgnoleptic characteristics of meat associated with stress levels and individual observable variations in different groups of animals, it is required more research on stress biomarkers that allow a more specific, effective and non-invasive identification and measumerentResumen. – Abstract. – Introducción. -- Análisis global. -- Influencia del estrés prefaenado en la calidad de las carnes. -- Factores de estrés asociadas al prefaenado. -- Hambre, sed y fatiga. -- Carga, descarga y transporte del ganado. -- Mezcla de lotes y tiempo de espera en corrales. --Estrés térmico. -- Respuesta fisiológica general ante factores de estrés durante el prefaenado. --Bioindicadores de estrés prefaenado. -- Retos actuales y futuros. – Conclusiones. –Bibliografía.laura.munozs@campusucc.edu.cofrancisco.irrenob@campusucc.edu.coneila.escorcia@campusucc.edu.cogary.navarrog@campusucc.edu.co46 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, BucaramangaMedicina veterinaria y zootecniaBucaramangaBienestar animalEstrésPrefaenadoCalidad de la carneBiomarcadoresTG 2022 MVZ 46800Animal welfaremeat qualityStressBiomarkerspre slaughterInfluencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcinaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Górska-Warsewicz H, Laskowski W, Kulykovets O, Kudlińska-Chylak A, Czeczotko M, Rejman K. Food products as sources of protein and amino acids—The case of Poland. Nutrients. 2018;10(12):1977.FAO. Meat market review. Food Agric Organ United Nations [Internet]. 2020;(December):1–13. Disponible en: http://www.fao.org/3/ca3880en/ca3880en.pdfGreenwood PL. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal [Internet]. 2021;(14):100295. Disponible en: https://doi.org/10.1016/j.animal.2021.100295Rahmat S, Cheong CB, Hamid MSRBA. Challenges of Developing Countries in Complying Quality and Enhancing Standards in Food Industries. Procedia - Soc Behav Sci. 2016; 224:445–51.Gutema FD, Agga GE, Abdi RD, Jufare A, Duchateau L, De Zutter L, et al. Assessment of hygienic practices in beef cattle slaughterhouses and retail shops in bishoftu, ethiopia: Implications for public health. Int J Environ Res Public Health. 2021;18(5): 2729.Wazir Shafi M. Review on application of hazard analysis critical control point in ethiopian slaughtering plant. Int J Vet Sci Res. 2021;7:040–056.Hasanah N, Indrawan D. Food Safety Monitoring System using IoT in the Poultry Slaughterhouse. IOP Conf Ser Earth Environ Sci. 2020;519(1):012043.Edwards-Callaway LN, Calvo-Lorenzo MS. Animal welfare in the U.S. slaughter industry-a focus on fed cattle. J Anim Sci. 2020;98(4):1–21.Trevisan L, Brum JS. Incidence of pale, soft and exudative (PSE) pork meat in reason of extrinsic stress factors. An Acad Bras Cienc. 2020;92(3):1–9.Karunanayaka DS, Jayasena DD, Jo C. Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. J Anim Sci Technol [Internet]. 2016; 58:27. Disponible en: http://dx.doi.org/10.1186/s40781-016-0110-8Ponnampalam EN, Hopkins DL, Bruce H, Li D, Baldi G, Bekhit AE din. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr Rev Food Sci Food Saf. 2017;16(3):400–30.Chauhan SS, Rashamol VP, Bagath M, Sejian V, Dunshea FR. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int J Biometeorol. 2021;65(7):1231–44.Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci [Internet]. 2020;162:108025. Available from: https://doi.org/10.1016/j.meatsci.2019.108025Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front Vet Sci. 2021;8(July):699081.Fernandes RTV, De Arruda AMV, Melo ADS, Marinho JBM, Fernandes RTV, De Figueiredo LC. Chemical composition and pH of the meat of broilers submitted to pre-slaughter heat stress. J Anim Behav Biometeorol. 2016;4(4):93–5.Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R. Physiological adaptability of livestock to heat stress: an updated review. J Anim Behav Biometeorol. 2018;6(3):62–71.Zaboli G, Huang X, Feng X, Ahn DU. How can heat stress affect chicken meat quality? - A review. Poult Sci. 2019;98(3):1551–6.Chen S, Yong Y, Ju X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J Therm Biol [Internet]. 2021;99(April):103019. Available from: https://doi.org/10.1016/j.jtherbio.2021.103019Brossi C, Montes-Villanueva N, Rios-Mera J, Delgado E, Menten J, Contreras-Castillo C. Acute heat stress detrimental effects transpose high mortality rate and affecting broiler breast meat quality. Sci Agropecu. 2018;9(3):305–11.Simonetti A, Perna A, Giudice R, Cappuccio A, Gambacorta E. The effect of high pre-slaughter environmental temperature on meat quality traits of Italian autochthonous pig Suino Nero Lucano. Anim Sci J. 2018;89(7):1020–6.Spurio RS, Soares AL, Carvalho RH, Silveira Junior V, Grespan M, Oba A, et al. Improving transport container design to reduce broiler chicken PSE (pale, soft, exudative) meat in Brazil. Anim Sci J. 2016;87(2):277–83.Freitas Lima LG, Bueno CP, Rodrigues LM, De Aquino Gontijo LM, Da Costa Ferro DA, Coelho KO, et al. Losses caused by carcass bruising in a packing plant in Goiás State. Semin Cienc Agrar. 2019;40(6):3729–40.Burdick NC, Randel RD, Carroll JA, Welsh TH. Interactions between temperament, stress, and immune function in cattle. Int J Zool. 2011;2011.Mota-Rojas D, Napolitano F, Strappini A, Orihuela A, Ghezzi MD, Hernández-ávalos I, et al. Pain at the slaughterhouse in ruminants with a focus on the neurobiology of sensitisation. Animals. 2021;11(4):1085.Brown EJ, Vosloo A. The involvement of the hypothalamo-pituitary-adrenocortical axis in stress physiology and its significance in the assessment of animal welfare in cattle. Onderstepoort J Vet Res. 2017;84(1):e1–e9.Njisane YZ, Muchenje V. Farm to abattoir conditions, animal factors and their subsequent effects on cattle behavioural responses and beef quality - A review. Asian-Australasian J Anim Sci. 2017;30(6):755–64.Bozzo G, Barrasso R, Marchetti P, Roma R, Samoilis G, Tantillo G, et al. Analysis of stress indicators for evaluation of animal welfare and meat quality in traditional and Jewish slaughtering. Animals. 2018;8(4):43.Gardner GE, Mcgilchrist P, Pethick DW. Ruminant glycogen metabolism. Anim Prod Sci. 2014;54(10):1575–83.Peres LM, Bridi AM, da Silva CA, Andreo N, Tarsitano MA, Stivaletti ELT. Effect of low or high stress in pre-slaughter handling on pig carcass and meat quality. Rev Bras Zootec. 2014;43(7):363–8.Matarneh SK, England EM, Scheffler TL, Gerrard DE. The Conversion of Muscle to Meat. Lawrie’s Meat Sci Eighth Ed. 2017;159–85.Collier RJ, Renquist BJ, Xiao Y. A 100-Year Review: Stress physiology including heat stress. J Dairy Sci [Internet]. 2017;100(12):10367–80. Disponible en: http://dx.doi.org/10.3168/jds.2017-13676Turner AI, Tilbrook AJ. Stress, cortisol and reproduction in female pigs. Soc Reprod Fertil Suppl. 2006;62(Goldstein 1987):191–203.Machado, S. T., de Alencar Naas, I., dos Reis, J. G. M., & de Oliveira Costa Neto, P. L. Quality Economic Losses in Brazil’s Pork Industry. Lecture Notes in Business Information Processing. 2018. 262. https://doi.org/10.1007/978-3-319-73758-4_13Titto CG, Negrão JA, Canaes T de S, Titto RM, Leme-dos Santos TM da C, Henrique FL, et al. Heat stress and ACTH administration on cortisol and insulin-like growth factor I (IGF-I) levels in lactating Holstein cows. J Appl Anim Res [Internet]. 2017;45(1):1–7. Disponible en: https://doi.org/10.1080/09712119.2015.1091326Freitas-de-Melo A, Ungerfeld R. Progesterona y respuesta de estrés: mecanismos de acción y sus repercusiones en rumiantes domésticos. Revisión. Rev Mex Ciencias Pecu. 2016;7(2):185-199.Martínez-Miró S, Tecles F, Ramón M, Escribano D, Hernández F, Madrid J, et al. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet Res [Internet]. 2016;12(1):171. Disponible en: http://dx.doi.org/10.1186/s12917-016-0791-8Yuki M, Aoyama R, Hirano T, Tawada R, Ogawa M, Naitoh E, et al. Investigation of serum cortisol concentration as a potential prognostic marker in hospitalized dogs: A prospective observational study in a primary care animal hospital. BMC Vet Res. 2019;15(1):170.Cockrem JF. Individual variation in glucocorticoid stress responses in animals. Gen Comp Endocrinol [Internet]. 2013;181(1):45–58. Disponible en: http://dx.doi.org/10.1016/j.ygcen.2012.11.025Ericsson M, Jensen P. Domestication and ontogeny effects on the stress response in young chickens (Gallus gallus). Sci Rep [Internet]. 2016;6:35818. Disponible en: http://dx.doi.org/10.1038/srep35818Baier F, Grandin T, Engle T, Edwards-Callaway L. Evaluation of hair characteristics and animal age on the impact of hair cortisol concentration in feedlot steers. Front Vet Sci. 2019;6:323.Boumans IJMM, de Boer IJM, Hofstede GJ, la Fleur SE, Bokkers EAM. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs. Horm Behav [Internet]. 2017;93:82–93. Disponible en: http://dx.doi.org/10.1016/j.yhbeh.2017.05.003O’Neill HA. A review on the involvement of catecholamines in animal behaviour. South African J Anim Sci. 2019;49(1):1–8.Zupan M, Zanella AJ. Peripheral regulation of stress and fear responses in pigs from tail-biting pens. Rev Bras Zootec. 2017;46(1):33–8.Benincasa NC, Sakamoto KS, Silva IJO, Lobos CMV. Animal welfare: impacts of pre-slaughter operations on the current poultry industry. J Anim Behav Biometeorol. 2020; 8(2):104–10.Myers MJ, Smith ER, Turfle PG. Biomarkers in Veterinary Medicine∗. Annu Rev Anim Biosci. 2017;5:65–87.de Almeida AM, Zachut M, Hernández-Castellano LE, Šperanda M, Gabai G, Mobasheri A. Biomarkers of fitness and welfare in dairy animals: healthy living. Journal of Dairy Research 2019;86:379–87.Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, et al. Biomarkers in stress related diseases/disorders: Diagnostic, prognostic, and therapeutic values. Front Mol Biosci. 2019; 6:91.Widiyanto S, Widiyono I, Putro PP, ... Stress Estimation of Pre-Slaughter and Slaughtered by Means of Fourier Transform Infrared Spectroscopy Analysis Through Measurement of Cortisol and means of fourier transform infrared spectroscopy analysis through measurement of cortisol and catecholamine level in female cattle urine. Anim Prod [Internet]. 2014;16(3):193–201. Disponible en: http://animalproduction.net/index.php/JAP/article/view/468Sharma A, Umapathy G, Kumar V, Phillips CJC. Hair Cortisol in Sheltered Cows and Its Association with Other Welfare Indicators. Animals. 2019;9(5):248.Koomkrong N, Boonkaewwan C, Laenoi W, Kayan A. Blood haematology, muscle pH and serum cortisol changes in pigs with different levels of drip loss. Asian-Australasian J Anim Sci. 2017;30(12):1751–5.Wirthgen E, Kunze M, Goumon S, Walz C, Hö C, Spitschak M, et al. Interference of stress with the somatotropic axis in pigs – lights on new biomarkers. Sci Rep.2017;7:12055.Stajković S, Teodorović V, Baltić M, Karabasil N. Pre-slaughter stress and pork quality. IOP Conf Ser Earth Environ Sci. 2017;85(1):012034.Sardi L, Gastaldo A, Borciani M, Bertolini A, Musi V, Martelli G, et al. Identification of possible pre-slaughter indicators to predict stress and meat quality: A study on heavy pigs. Animals. 2020;10(6):945.Heimbürge S, Kanitz E, Otten W. The use of hair cortisol for the assessment of stress in animals. Gen Comp Endocrinol [Internet]. 2019;270:10–7. Disponible en: https://doi.org/10.1016/j.ygcen.2018.09.016Karabasil N, Boskovic T, Vicic I, Cobanović N, Dimitrijevic M, Teodorovic V. Meat quality: Impact of various pre-slaughter conditions. IOP Conf Ser Earth Environ Sci. 2019; 333(1).Morgan L, Itin-Shwartz B, Koren L, Meyer JS, Matas D, Younis A, et al. Physiological and economic benefits of abandoning invasive surgical procedures and enhancing animal welfare in swine production. Sci Rep. 2019;9(1):16093.Carroll GA, Boyle LA, Hanlon A, Palmer MA, Collins L, Griffin K, et al. Identifying physiological measures of lifetime welfare status in pigs: Exploring the usefulness of haptoglobin, C- reactive protein and hair cortisol sampled at the time of slaughter. Ir Vet J. 2018;71:8.Chulayo AY, Muchenje V. The effects of pre-slaughter stress and season on the activity of plasma creatine kinase and mutton quality from different sheep breeds slaughtered at a smallholder abattoir. Asian-Australasian J Anim Sci. 2013;26(12):1762–72.Berridge BR, Van Vleet JF, Herman E. Cardiac, Vascular, and Skeletal Muscle Systems [Internet]. Third Edit. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Elsevier; 2013. 1567–1665 p. Disponible en: http://dx.doi.org/10.1016/B978-0-12-415759-0.00046-7Chulayo AY, Muchenje V. Activities of some stress enzymes as indicators of slaughter cattle welfare and their relationship with physico-chemical characteristics of beef. Animal. 2017;11(9):1645–52.Lu X, Zhang Y, Qin L, Ma W, Zhu L, Luo X. Association of ultimate pH and stress-related blood variables in cattle. Meat Sci [Internet]. 2018;139:228–30. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2018.02.004Choe J. Pre-slaughter stress, animal welfare, and its implication on meat quality. Kjoas [Internet].2018;45(1):58–65.Death RB, Turner SP, Kurt E, Evans G, Thölking L, Looft H, et al. Pigs’ aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality. Animal. 2010;4(4):604–16.Larios-Cueto S, Ramírez-Valverde R, Aranda-Osorio G, Ortega-Cerrilla ME, García-Ortiz JC. Stress indicators in cattle in response to loading, transport and unloading practices. Rev Mex Ciencias Pecu. 2019;10(4):885–902.Chulayo AY, Bradley G, Muchenje V. Effects of transport distance, lairage time and stunning efficiency on cortisol, glucose, HSPA1A and how they relate with meat quality in cattle. Meat Sci [Internet]. 2016;117:89–96. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.03.001Frimpong S, Gebresenbet G, Bobobee E, Aklaku ED, Hamdu I. Effect of transportation and pre-slaughter handling on welfare and meat quality of cattle: Case study of Kumasi Abattoir, Ghana. Vet Sci. 2014;1(3):174–91.Brandt P, Aaslyng MD. Welfare measurements of finishing pigs on the day of slaughter: A review. Meat Sci [Internet]. 2015;103:13–23. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2014.12.004Tothova C, Nagy O, Kovac G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: A review. Vet Med (Praha). 2014;59(4):163–80.Cray C, Zaias J, Altman NH. Acute phase response in animals: A review. Comp Med. 2009;59(6):517–26.Bastos BL, Rocha-Filho JTR, Santana ÍP, Meyer R, Guimarães JE. Aplicabilidade da proteína haptoglobina como bioindicador de saúde na bovinocultura de corte e leite. Pubvet. 2018;12(3):1–13.Marcato F, van den Brand H, Kemp B, Engel B, Wolthuis-Fillerup M, van Reenen K. Effects of pretransport diet, transport duration, and type of vehicle on physiological status of young veal calves. J Dairy Sci [Internet]. 2020;103(4):3505–20. Disponible en: http://dx.doi.org/10.3168/jds.2019-17445Soler L, Gutiérrez A, Escribano D, Fuentes M, Cerón JJ. Response of salivary haptoglobin and serum amyloid A to social isolation and short road transport stress in pigs. Res Vet Sci [Internet]. 2013;95(1):298–302. Disponible en: http://dx.doi.org/10.1016/j.rvsc.2013.03.007Flores-Peinado S, Mota-Rojas D, Guerrero-Legarreta I, Mora-Medina P, Cruz-Monterrosa R, Gómez-Prado J, et al. Physiological responses of pigs to preslaughter handling: infrared and thermal imaging applications. Int J Vet Sci Med [Internet]. 2020;8(1):71–84. Disponible en: https://doi.org/10.1080/23144599.2020.1821574Mato A, Rodríguez-Vázquez R, López-Pedrouso M, Bravo S, Franco D, Zapata C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genomics. 2019;20(1):590.Piras C, Roncada P, Rodrigues PM, Bonizzi L, Soggiu A. Proteomics in food: Quality, safety, microbes, and allergens. Proteomics. 2016;16(5):799–815.Holman BWB, Kerry JP, Hopkins DL. Meat packaging solutions to current industry challenges: A review. Meat Sci [Internet]. 2018;144(February):159–68. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2018.04.026Carrasco-García AA, Pardío-Sedas VT, León-Banda GG, Ahuja-Aguirre C, Paredes-Ramos P, Hernández-Cruz BC, et al. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australasian J Anim Sci. 2020; 33(10):1656–65.Čobanović N, Stajković S, Blagojević B, Betić N, Dimitrijević M, Vasilev D, et al. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int J Biometeorol. 2020;64(11):1899–909.Smith SB. Muscle biology and meat quality - challenges, innovations, and sustainability. Anim Agric Sustain Challenges Innov. 2019;381–91.Kutsanedzie FYH, Guo Z, Chen Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. Food Rev Int [Internet]. 2019;35(6):536–62. Disponible en: https://doi.org/10.1080/87559129.2019.1584814Ribeiro DM, Martins CF, Costa M, Coelho D, Pestana J, Alfaia C, et al. Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods. 2021;10(12):2961.Alam MR, Islam MJ, Amin A, Shaikat AH, Pasha MR, Doyle RE. Animal-Based Welfare Assessment of Cattle and Water Buffalo in Bangladeshi Slaughterhouses. J Appl Anim Welf Sci [Internet]. 2020;23(2):219–30. Available from: https://doi.org/10.1080/10888705.2019.1620608Alonso ME, González-Montaña JR, Lomillos JM. Consumers’ concerns and perceptions of farm animal welfare. Animals. 2020;10(3):385.Teixeira A, Rodrigues S. More than Beef, Pork and Chicken – The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet. More than Beef, Pork Chick – Prod Process Qual Trait Other Sources Meat Hum Diet. 2019;21–9.Bonnet C, Bouamra-Mechemache Z, Réquillart V, Treich N. Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy [Internet]. 2020;97(February):101847. Disponible en: https://doi.org/10.1016/j.foodpol.2020.101847Sarkis J, Zhu Q. Environmental sustainability and production: taking the road less travelled. Int J Prod Res [Internet]. 2018;56(1–2):743–59. Disponible en: http://doi.org/10.1080/00207543.2017.1365182Salami SA, Luciano G, O’Grady MN, Biondi L, Newbold CJ, Kerry JP, et al. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim Feed Sci Technol [Internet]. 2019;251(February):37–55. Disponible: https://doi.org/10.1016/j.anifeedsci.2019.02.006Wu JY, Hsiao HI. Food quality and safety risk diagnosis in the food cold chain through failure mode and effect analysis. Food Control [Internet]. 2021;120:107501. Disponible en: https://doi.org/10.1016/j.foodcont.2020.107501Saucier L. Microbial spoilage, quality and safety within the context of meat sustainability. Meat Sci [Internet]. 2016;120:78–84. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.04.027Jiang G, Ameer K, Kim H, Lee E-J, Ramachandraiah K, Hong G. Strategies for Sustainable Substitution of Livestock Meat. Foods. 2020;9(9):1227.Ismail I, Hwang YH, Joo ST. Meat analog as future food: A review. J Anim Sci Technol. 2020;62(2):111–20.Lynch J, Pierrehumbert R. Climate Impacts of Cultured Meat and Beef Cattle. Front Sustain Food Syst. 2019;3:5.Chriki S, Hocquette JF. The Myth of Cultured Meat: A Review. Front Nutr. 2020;7:7. Disponible en: https://doi.org/10.3389/fnut.2020.00007Alexander P, Brown C, Arneth A, Dias C, Finnigan J, Moran D, et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob Food Sec [Internet]. 2017;15:22–32. Disponible en: http://dx.doi.org/10.1016/j.gfs.2017.04.001Zhang P, Hou H, Yang J, Zhang D. Study on appreciation strategy of meat cold chain in China. Int Conf Logist Informatics Serv Sci LISS.2016:1-5.20.Marlyn Romero P, Jorge Sánchez V. Bienestar animal durante el transporte y su relación con la calidad de la carne bovina. Rev MVZ Cordoba. 2012;17(1):2936–44.Lara LJ, Rostagno MH. Animal welfare and food safety in modern animal production. Advances in Agricultural Animal Welfare: Science and Practice.2018: 91–108 p. Disponible en: http://dx.doi.org/10.1016/B978-0-08-101215-4.00005-5Gallo CB, Huertas SM. Main animal welfare problems in ruminant livestock during preslaughter operations: A South American view. Animal. 2016; 10(2):357-64. doi: 10.1017/S1751731115001597.Ferguson DM, Warner RD. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci. 2008;80(1):12–9.Birhanu AF. Pre-Slaughter Stress, Management of Stress and Its Effect on Meat and Carcass Quality. Int J Food Sci Agric. 2020;4(1):30–7.Saraiva S, Esteves A, Oliveira I, Mitchell M, Stilwell G. Impact of pre-slaughter factors on welfare of broilers. Vet Anim Sci [Internet]. 2020;10(October):100146. Disponible en: https://doi.org/10.1016/j.vas.2020.100146Driessen B, Freson L, Buyse J. Fasting finisher pigs before slaughter influences pork safety, pork quality and animal welfare. Animals. 2020;10(12):2206.Sabaw AB, Muhammed TS. Meat Quality and Carcass Characteristics Assessments in Broiler Chickens Subjected to Different Pre-Slaughter Feed Withdrawal Times. IOP Conf Ser Earth Environ Sci. 2021;761(1):012112.Šímová V, Večerek V, Passantino A, Voslářová E. Pre-transport factors affecting the welfare of cattle during road transport for slaughter - A review. Acta Vet Brno. 2016;85(3):303–18.Faucitano L, Conte S, Pomar C, Paiano D, Duan Y, Zhang P, et al. Application of extended feed withdrawal time preslaughter and its effects on animal welfare and carcass and meat quality of enriched-housed pigs. Meat Sci [Internet]. 2020;167(December 2019):108163. Disponible en: https://doi.org/10.1016/j.meatsci.2020.108163Vermeulen L, Van de Perre V, Permentier L, De Bie S, Verbeke G, Geers R. Pre-slaughter sound levels and pre-slaughter handling from loading at the farm till slaughter influence pork quality. Meat Sci [Internet]. 2016;116:86–90. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.02.007Romero MH, Rodríguez-Palomares M, Sánchez JA. Animal-based measurements to assess the welfare of dairy cull cows during pre-slaughter. Animals. 2020;10(10):1802.Mendonça FS, Vaz RZ, Cardoso FF, Restle J, Vaz FN, Pascoal LL, et al. Pre-slaughtering factors related to bruises on cattle carcasses. Anim Prod Sci. 2018;58(2):385–92.Córdoba CP, Correa G, Barahona R, Tarazona A. Comportamiento de machos cebú em corrales presacrificio y su relación con el pH de la carne. Archivos de Zootecnia. 2017;66(256):579–86.Goumon S, Faucitano L. Influence of loading handling and facilities on the subsequent response to pre-slaughter stress in pigs. Livest Sci [Internet]. 2017; 200(March):6–13. Disponible en: http://dx.doi.org/10.1016/j.livsci.2017.03.021ggLoudon KMW, Tarr G, Lean IJ, Polkinghorne R, Mcgilchrist P, Dunshea FR, et al. The Impact of Pre-Slaughter Stress on Beef Eating Quality. Animals (Basel).2019;9(9):612.Claudia Terlouw EM, Picard B, Deiss V, Berri C, Hocquette JF, Lebret B, et al. Understanding the determination of meat quality using biochemical characteristics of the muscle: Stress at slaughter and other missing keys. Foods. 2021; 10(1):84.Zhang M, Dunshea FR, Warner RD, DiGiacomo K, Osei-Amponsah R, Chauhan SS. Impacts of heat stress on meat quality and strategies for amelioration: a review. Int J Biometeorol. 2020;64:1613-28. Disponible en https://doi.org/10.1007/s00484-020-01929-6Zhao L, McMillan RP, Xie G, Giridhar SGLW, Baumgard LH, El-Kadi S, et al. Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am J Physiol - Regul Integr Comp Physiol. 2018;315(6):R1096–106.BRADEN, K.W. Converting muscle to meat: the physiology of rigor. In: KERTH, C.R. (Ed.). The science of meat quality. Iowa: J. Wiley & Sons, 2013. p.79-97. DOI: https://doi.org/10.1002/9781118530726.ch5Wicks J, Beline M, Gomez JFM, Luzardo S, Silva SL, Gerrard D. Muscle energy metabolism, growth, and meat quality in beef cattle. Agric. 2019;9(9):195.Boland, M.; Kaur, L.; Chian, F.M.; Astruc, T. Muscle proteins. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2018; pp. 164–179. (41)Mir NA, Rafiq A, Kumar F, Singh V, Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. J Food Sci Technol. 2017;54(10):2997–3009.Álvarez C, Morán L, Keenan DF, Mullen AM, Delgado-Pando G. Mechanical and Biochemical Methods for Rigor Measurement: Relationship with Eating Quality. J Food Qual. 2019. https://doi.org/10.1155/2019/1894543Bowker B. Developments in our understanding of water-holding capacity [Internet]. Poultry Quality Evaluation: Quality Attributes and Consumer Values. Elsevier Ltd; 2017. 77–113 p. Disponible en: http://dx.doi.org/10.1016/B978-0-08-100763-1.00004-0Sánchez-Macías D, Cevallos-Velastegui L, Nuñez-Valle D, Morales-delaNuez A. First report of postmortem pH evolution and rigor mortis in guinea pigs. Livest Sci [Internet]. 2019;229(May):22–7. Disponible en: https://doi.org/10.1016/j.livsci.2019.09.014Rodrigues LM, Fontes PR, Ramos EM. Rigor development and meat quality of Murrah buffalo from different production systems. Res., Soc. Dev. [Internet].2021; 10(6):e42810615814. Disponible en: https://rsdjournal.org/index.php/rsd/article/view/15814Zhang Y, Mao Y, Li K, Luo X, Hopkins DL. Effect of Carcass Chilling on the Palatability Traits and Safety of Fresh Red Meat. Compr Rev Food Sci Food Saf. 2019;18(6):1676–704.Ertbjerg P, Puolanne E. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci [Internet]. 2017;132:139–52. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2017.04.261Jorquera-Chavez M, Fuentes S, Dunshea FR, Jongman EC, Warner RD. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Sci [Internet]. 2019;156:11–22. Disponible en: https://doi.org/10.1016/j.meatsci.2019.05.007Losada-Espinosa N, Villarroel M, María GA, Miranda-de la Lama GC. Pre-slaughter cattle welfare indicators for use in commercial abattoirs with voluntary monitoring systems: A systematic review. Meat Sci [Internet]. 2018;138:34–48. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2017.12.004Díaz-Luis A, Díaz F, Diñeiro Y, González-Blanco L, Arias E, Coto-Montes A, et al. Nuevos indicadores de carnes DFD: estrés oxidativo, autofagia y apoptosis. Inf Tec Econ Agrar. 2021;117:3–18.García-Torres S, de Vaca MC, Tejerina D, Romero-Fernández MP, Ortiz A, Franco D, et al. Assessment of stress by serum biomarkers in calves and their relationship to ultimate ph as an indicator of meat quality. Animals. 2021;11(8):2291.Manalo MR, Gabriel AA. Influence of antemortem and slaughtering practices on the pH of pork and chicken meats. Philipp J Sci. 2020;149(1):1–19Lees AM, Sejian V, Wallage AL, Steel CC, Mader TL, Lees JC, et al. The impact of heat load on cattle. Animals. 2019;9(6):322.Zhang X, Owens CM, Schilling MW. Meat: The edible flesh from mammals only or does it include poultry, fish, and seafood? Anim Front. 2017;7(4):12–8.Ijaz M, Li X, Zhang D, Hussain Z, Ren C, Bai Y, et al. Association between meat color of DFD beef and other quality attributes. Meat Sci [Internet]. 2020;161:107954. Disponible en: https://doi.org/10.1016/j.meatsci.2019.107954Keenan DF. Pork Meat Quality, Production and Processing on [Internet]. 1st ed. Encyclopedia of Food and Health. Elsevier Ltd.; 2016. 419–431 p. Disponible en: http://dx.doi.org/10.1016/B978-0-12-384947-2.00551-1Wang RH, Liang RR, Lin H, Zhu LX, Zhang YM, Mao YW, et al. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci. 2017;96(3):738–46.Shimokomaki M, Ida EI, Soares AL, Oba A., Kato T, Pedrão MR, Coró FAG., Carvalho RH. Animal Welfare and Meat Quality: Methodologies to Reduce Pre-slaughter Stress in Broiler Chicken. Global Food Security and Wellness. Springer. 2017; pp.301-313. Disponible en: https://doi.org/10.1007/978-1-4939-6496-3_16Jordan D, Gorjanc G, Štuhec I, Žgur S. Improvement of pork characteristics under commercial conditions with small amount of straw or hay. J Appl Anim Res. 2018;46(1):1317–22.Çelen MF, Sögüt B, Zorba Ö, Demirulus H, Tekeli A. Comparison of normal and PSE turkey breast meat for chemical composition, pH, color, myoglobin, and drip loss. Rev Bras Zootec. 2016;45(8):441–4.Ismail I, Joo ST. Poultry meat quality in relation to muscle growth and muscle fiber characteristics. Korean J Food Sci Anim Resour. 2017;37(6):873–83.Lebret B, Čandek-Potokar M. Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal. 2021:100402. doi: 10.1016/j.animal.2021.100402.Odeón M, Romera S. Estrés en ganado: causas y consecuencias. Rev Vet. 2017; 28 (1): 69-77Gallo C, Tadich B. Bienestar animal y calidad de carne durante los manejos previos al faenamiento en bovinos. REDVET. 2008; IX (10B).Urrea VM, Bridi AM, Ceballos MC, Paranhos da Costa MJR, Faucitano L. Behavior, blood stress indicators, skin lesions, and meat quality in pigs transported to slaughter at different loading densities. J Anim Sci. 2021; 99(6):skab119. doi: 10.1093/jas/skab119.Schwartzkopf GK, Faucitano L, Dadgar S, Shand P, González L, Crowe T. Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review. Meat Science. 2012; 92 (3) 227–243. doi: 10.1016/j.meatsci.2012.04.010Dalla Costa FA, Devillers N, Paranhos da Costa MJR, Faucitano L. Effects of applying preslaughter feed withdrawal at the abattoir on behaviour, blood parameters and meat quality in pigs. Meat Sci [Internet]. 2016;119:89–94. Disponible en: http://dx.doi.org/10.1016/j.meatsci.2016.03.033Rybarczyk A, Lupkowska A, Hartuna B, A S. Effect of pre-slaughter fasting and gender on pork quality. Fleischwirtschaft. 2017;97(7):92-97.Xing T, Gao F, Tume RK, Zhou G, Xu X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr Rev Food Sci Food Saf. 2019;18(2):380–401.Clariget J, Banchero G, Luzardo S, Fernández E, Pérez E, La Manna A, et al. Effect of pre-slaughter fasting duration on physiology, carcass and meat quality in beef cattle finished on pastures or feedlot. Res Vet Sci. 2021;136:158–65.Hafid H, Hasnudi, Bain HA, Nasiu F, Inderawati, Patriani P, et al. Effect of fasting time before slaughtering on body weight loss and carcass percentage of Bali cattle. IOP Conf Ser Earth Environ Sci. 2019;260(1).Contreras-Castillo C, Pinto AA, Souza GL, Beraquet NJ, Aguiar AP, Cipolli KMVAB, et al. Effects of feed withdrawal periods on carcass yield and breast meat quality of chickens reared using an alternative system. J Appl Poult Res. 2007;16(4):613–22.Xue G, Cheng S, Yin J, Zhang R, Su Y, Li X, et al. Influence of pre-slaughter fasting time on weight loss, meat quality and carcass contamination in broilers. Anim Biosci. 2021;34(6):1070–7.Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, et al. Welfare of cattle at slaughter. EFSA J. 2020;18(11).Juliet K, Wangalwa R, Grace KR, Grace KR, Joseph WM, Morgan A. Causes of losses and the economic loss estimates at post-harvest handling points along the beef value chain in Uganda. J Agric Ext Rural Dev. 2019;11(10):176–83.Birhanu AF, Mummed YY, Kurtu MY, O’Quinn T, Jiru YT. Level of Pre-slaughter stress and quality of beef from Arsi, Boran and Harar cattle breeds in Ethiopia. Cogent Food Agric. 2019;5(1).Schuetze SJ, Schwandt EF, Maghirang RG, Thomson DU. REVIEW: Transportation of commercial finished cattle and animal welfare considerations. Prof Anim Sci [Internet]. 2017;33(5):509–19. Disponible en: https://doi.org/10.15232/pas.2017-01620Álvarez D, Garrido MD, Bañón S. Influence of pre-slaughter process on pork quality: An overview. Food Rev Int. 2009;25(3):233–50.Grandin T. Livestock Handling and Transport [Internet]. 5 ed. CABI; 2019 [Consultado Sept. 2021]. Disponible en: https://www.cabi.org/bookshop/book/9781786399151/Grandin T. Lineamientos recomendados para el manejo animal y guía de auditorías. Un enfoque sistematico del Bienestar Animal. North Am Meat Inst. 2021;148:148–62.Dalla Costa OA, Dalla Costa FA, Feddern V, Lopes L dos S, Coldebella A, Gregory NG, et al. Risk factors associated with pig pre-slaughtering losses. Meat Sci [Internet]. 2019;155(April):61–8. Disponible en: https://doi.org/10.1016/j.meatsci.2019.04.020Vitali M, Bosi P, Santacroce E, Trevisi P. The multivariate approach identifies relationships between pre-slaughter factors, body lesions, ham defects and carcass traits in pigs. PLoS One [Internet]. 2021; 16(5):e0251855. Disponible en: http://dx.doi.org/10.1371/journal.pone.0251855Čobanović N, Bošković M, Vasilev D, Dimitrijević M, Parunović N, Djordjević J, et al. Effects of various pre-slaughter conditions on pig carcasses and meat quality in a low-input slaughter facility. South African J Anim Sci. 2016;46(4):380–90.Bethancourt-Garcia JA, Vaz RZ, Vaz FN, Silva WB, Pascoal LL, Mendonça FS, et al. Pre-slaughter factors affecting the incidence of severe bruising in cattle carcasses. Livest Sci [Internet]. 2019;222(February):41–8. Disponible en: https://doi.org/10.1016/j.livsci.2019.02.009Teiga-Teixeira P, Moura D, García-Díez J, Esteves A. Characterization of carcass bruises in cattle in Northern Portugal, a preliminary study. Ital J Anim Sci [Internet]. 2021;20(1):1168–74. Disponible en: https://doi.org/10.1080/1828051X.2021.1957030Diro M, Mekete B, Gebremedhin EZ. Effect of pre-slaughter beef cattle handling on welfare and beef quality in Ambo and Guder markets and abattoirs, Oromia Regional State, Ethiopia. Ethiop J Sci Technol. 2021;14(2):89–104.Rioja-Lang FC, Brown JA, Brockhoff EJ, Faucitano L. A review of swine transportation research on priority welfare issues: A canadian perspective. Front Vet Sci. 2019;6:36.Nannoni E, Liuzzo G, Serraino A, Giacometti F, Martelli G, Sardi L, et al. Evaluation of pre-slaughter losses of Italian heavy pigs. Anim Prod Sci. 2017;57(10):2072–81.Di Martino G, Capello K, Russo E, Mazzucato M, Mulatti P, Ferrè N, et al. Factors associated with pre-slaughter mortality in turkeys and end of lay hens. Animal. 2017;11(12):2295–300.Bonou GA, Ahounou SG, Salifou CFA, Paraïso FH, Bachabi K, Konsaka BM, et al. Influence of pre-slaughter transportation duration stress on carcass and meat quality of indigenous chicken reared under traditional system in Benin. Int. J. of Adv. Res. 2017;5(May):187-199.Bulitta FS, Aradom S, Gebresenbet G. Effect of Transport Time of up to 12 Hours on Welfare of Cows and Bulls. J Serv Sci Manag. 2015;08(02):161–82.Alende M, Volpi Lagreca G, Pordomingo A, Pighín D, Grigioni G, Carduza F, et al. Efectos del tiempo de transporte, espera pre-faena y maduración en novillos sobre indicadores de estrés, calidad instrumental y sensorial de la carne. Arch Med Vet. 2014;46(2):217–27.Leary S, Underwood W, Anthony R, Corey D, Grandin T, Gwaltnery-Brant S, et al. AVMA Guidelines for the Humane Slaughter of Animals: 2016 edition. 2016. 1–64 p.Chambers PG, Grandin T. Directrices para el manejo, transporte y sacrificio humanitario del ganado. [Internet]. [Consultado 26 Oct 2021] Disponible en: https://www.fao.org/3/X6909S/x6909s.htmMiranda-de la Lama GC. Transporte y logística pre-sacrificio: Principios y tendencias en bienestar animal y su relación con la calidad de la carne. Vet Mex. 2013;44(1):31–56.Dokmanovic M, Ivanovic J, Janjic J, Boskovic M, Laudanovic M, Pantic S, et al. Effect of lairage time, behaviour and gender on stress and meat quality parameters in pigs. Anim Sci J. 2017;88(3):500–6.de Oliveira Costa F, Brito G, de Lima JMS, Sant’Anna AC, da Costa MJRP, del Campo M. Lairage time effect on meat quality in Hereford steers in rangeland conditions. Rev Bras Zootec. 2019;48.Burns L V., Ramos AT, Cordova FM, Moron SE, Veiga APM, Zimermann FC, et al. Evaluation of muscle tissue and liver glycogen of cattle submitted to transport over long distances and subjected to emergency slaughter. Arq Bras Med Vet e Zootec. 2019;71(3):1067–75.Arik E, Karaca S. The effect of some pre-slaughter factors on meat quality of bulls slaughtered in a commercial abattoir in Turkey. Indian J Anim Res. 2017;51(3):557–63.PublicationORIGINAL2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina.pdf2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina.pdfTrabajo de gradoapplication/pdf375947https://repository.ucc.edu.co/bitstreams/63bfc8a1-1e7e-48d6-9261-37bf6be17d82/downloadca8cab016a5d93dd88810a834b4bb361MD512022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Acta.pdf2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Acta.pdfActa de sustentaciónapplication/pdf639321https://repository.ucc.edu.co/bitstreams/6ef5df49-4f32-4b98-b415-b1c784628e00/download7d54875e6ec0f8ae2100597cad8f498aMD522022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Licenciauso.pdf2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Licenciauso.pdfLicencia de usoapplication/pdf215702https://repository.ucc.edu.co/bitstreams/5d000e13-f364-45b2-807a-e90498e88dd1/downloadc6a27ee0bcdc7342bcd45a39142b4f92MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/9b83609d-f5b8-4aef-a67e-39b315e4b0ee/download8a4605be74aa9ea9d79846c1fba20a33MD54THUMBNAIL2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina.pdf.jpg2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina.pdf.jpgGenerated Thumbnailimage/jpeg3283https://repository.ucc.edu.co/bitstreams/76d0a871-8451-4db7-9260-a5797858245d/downloada276c97863402108e27a5c6e1ef5b55cMD552022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Acta.pdf.jpg2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Acta.pdf.jpgGenerated Thumbnailimage/jpeg5045https://repository.ucc.edu.co/bitstreams/3b43ea18-82c4-4da8-9d52-856a94378806/download8fdd5fc70fcecd131f948a00b886cadaMD562022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Licenciauso.pdf.jpg2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Licenciauso.pdf.jpgGenerated Thumbnailimage/jpeg5247https://repository.ucc.edu.co/bitstreams/b47e90db-46d6-494e-b5af-da2fc2ae7f98/downloadfd4f37a9a25d5f64b017701f6f0f51c8MD57TEXT2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina.pdf.txt2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina.pdf.txtExtracted texttext/plain81188https://repository.ucc.edu.co/bitstreams/83cf7d10-8567-4aaa-be1b-fb3a795ebc84/download4c8da203378f145ef5d651d153402f5eMD582022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Acta.pdf.txt2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Acta.pdf.txtExtracted texttext/plain1154https://repository.ucc.edu.co/bitstreams/cdb740ff-1f04-4782-91df-253814cb1614/downloadb52841f0771500b8cfab255be14f71cdMD592022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Licenciauso.pdf.txt2022_Muñoz_Salinas_Irreño Barrera_Escorse_Alvarez_Navarro_Gomez_Influencia del estrés prefaenado sobre la calidad de la carne bovina, aviar y porcina_Licenciauso.pdf.txtExtracted texttext/plain6073https://repository.ucc.edu.co/bitstreams/08599fc0-5b50-4148-aa39-f7ff9e8c8343/downloadface4278c8e7323b65dc317aea755f74MD51020.500.12494/46800oai:repository.ucc.edu.co:20.500.12494/468002024-08-09 12:51:16.29open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |