Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy
El suero de queso es un residuo producido en la industria láctea que genera problemas si se vierte directamente al alcantarillado debido a su alta carga orgánica. Una alternativa para el manejo del suero de queso es la digestión anaeróbica, un proceso biológico que transforma la materia orgánica en...
- Autores:
-
Caicedo Concha, Diana Milena
Casallas Ojeda, Miguel
Gómez, María F.
Torres Guevara, Luz Elba
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46547
- Palabra clave:
- Biocombustibles
Bioenergía
Economía circular
Ddigestión anaeróbica
Codigestión anaeróbica
Suero de queso
Digestato
Biofuels
Bioenergy
Circular economy
Anaerobic digestion
Cheese whey
Anaerobic co-digestion
Digestate
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_6119cb574e763dc3288ddd3edbd1ee16 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46547 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
title |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
spellingShingle |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy Biocombustibles Bioenergía Economía circular Ddigestión anaeróbica Codigestión anaeróbica Suero de queso Digestato Biofuels Bioenergy Circular economy Anaerobic digestion Cheese whey Anaerobic co-digestion Digestate |
title_short |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
title_full |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
title_fullStr |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
title_full_unstemmed |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
title_sort |
Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy |
dc.creator.fl_str_mv |
Caicedo Concha, Diana Milena Casallas Ojeda, Miguel Gómez, María F. Torres Guevara, Luz Elba |
dc.contributor.author.none.fl_str_mv |
Caicedo Concha, Diana Milena Casallas Ojeda, Miguel Gómez, María F. Torres Guevara, Luz Elba |
dc.subject.spa.fl_str_mv |
Biocombustibles Bioenergía Economía circular Ddigestión anaeróbica Codigestión anaeróbica Suero de queso Digestato |
topic |
Biocombustibles Bioenergía Economía circular Ddigestión anaeróbica Codigestión anaeróbica Suero de queso Digestato Biofuels Bioenergy Circular economy Anaerobic digestion Cheese whey Anaerobic co-digestion Digestate |
dc.subject.other.spa.fl_str_mv |
Biofuels Bioenergy Circular economy Anaerobic digestion Cheese whey Anaerobic co-digestion Digestate |
description |
El suero de queso es un residuo producido en la industria láctea que genera problemas si se vierte directamente al alcantarillado debido a su alta carga orgánica. Una alternativa para el manejo del suero de queso es la digestión anaeróbica, un proceso biológico que transforma la materia orgánica en biogás y digestato, dos productos con un importante potencial energético y agrícola. Este trabajo tuvo como objetivo contribuir a la construcción del conocimiento sobre la degradación anaeróbica del suero de queso, desarrollar un análisis bibliométrico y rastrear las tendencias en investigaciones relacionadas desde 2010 hasta el presente, utilizando PRISMA® para desarrollar una revisión sistemática basada en Scopus® y utilizando Excel® y software bibliométrico (VosViewer® y RefViz®) para la identificación de la información. Nuestros resultados muestran que la investigación en torno al suero de queso es relativamente reciente y que el mayor porcentaje de publicaciones es a partir de 2018. Se identificaron doce variables del proceso de degradación anaeróbica del suero de queso y se agruparon en cinco factores: sustrato, configuración del reactor, análisis de digestato, análisis microbiológico e inóculo. Asimismo, se identificó que la mayoría de los procesos anaeróbicos permiten implementar la economía circular en el sector lácteo. En conclusión, la aplicación de la digestión anaeróbica en el sector lácteo puede ayudar a cerrar los ciclos productivos, producir biocombustibles y reducir la contaminación. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11 |
dc.date.accessioned.none.fl_str_mv |
2022-09-29T12:55:55Z |
dc.date.available.none.fl_str_mv |
2022-09-29T12:55:55Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.isbn.spa.fl_str_mv |
20711050 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.3390/su132212892 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46547 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Casallas-Ojeda, Miguel, Luz Elba Torres-Guevara, Diana M. Caicedo-Concha, and María F. Gómez. (2021).Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy. Sustainability 13, no. 22: 12892. https://doi.org/10.3390/su132212892 |
identifier_str_mv |
20711050 Casallas-Ojeda, Miguel, Luz Elba Torres-Guevara, Diana M. Caicedo-Concha, and María F. Gómez. (2021).Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy. Sustainability 13, no. 22: 12892. https://doi.org/10.3390/su132212892 |
url |
https://doi.org/10.3390/su132212892 https://hdl.handle.net/20.500.12494/46547 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/13/22/12892 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainability |
dc.relation.references.spa.fl_str_mv |
FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; Volume 4, ISBN 1815-6797. Mollea, C.; Marmo, L.; Bosco, F. Valorisation of Cheese Whey, a By-Product from the Dairy Industry; Intechopen: London, UK, 2020; pp. 1–15. [CrossRef] Eurostast. Agriculture, Forestry and Fisheries Statistics; Eurostast: London, UK, 2018. Think USA Dairy Discover U.S. Dairy. Available online: https://www.thinkusadairy.org/industry-facts-and-figures/productportfolio (accessed on 15 August 2021). OECD-FAO. Chapter 7. Dairy and Dairy Products; FAO: Rome, Italy, 2018. Chatzipaschali, A.A.; Stamatis, A.G. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects. Energies 2012, 5, 3492–3525. [CrossRef] Bosco, F.; Carletto, R.A.; Marmo, L. An integrated cheese whey valorization process. Chem. Eng. Trans. 2018, 64, 379–384. [CrossRef] Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manage. 2012, 110, 48–68. [CrossRef] Asunis, F.; De Gioannis, G.; Dessì, P.; Isipato, M.; Lens, P.N.L.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. J. Environ. Manag. 2020, 276, 111240. [CrossRef] [PubMed] Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [CrossRef] Perna, V.; Castelló, E.; Wenzel, J.; Zampol, C.; Fontes Lima, D.M.; Borzacconi, L.; Varesche, M.B.; Zaiat, M.; Etchebehere, C. Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int. J. Hydrogen Energy 2013, 38, 54–62. [CrossRef] Cremonez, P.A.; Teleken, J.G.; Weiser Meier, T.R.; Alves, H.J. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. J. Environ. Manag. 2021, 281, 111854. [CrossRef] Chen, Y.; Xiao, K.; Jiang, X.; Shen, N.; Zeng, R.J.; Zhou, Y. Long solid retention time (SRT) has minor role in promoting methane production in a 65 ◦C single-stage anaerobic sludge digester. Bioresour. Technol. 2018, 247, 724–729. [CrossRef] Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [CrossRef] da Silva, L.F.M. Special Issue: 2nd International Conference on Materials Design and Applications 2018 (MDA 2018). Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 257. [CrossRef] Kılkı¸s, ¸S.; Kılkı¸s, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Clean. Prod. 2017, 167, 1084–1098. [CrossRef] Rosa, F. Waste Generated by Food Industry and Reuse in A Circular Economy Approach: The Whey Processing. Concepts Dairy Vet. Sci. 2018, 2, 171–173. [CrossRef] Komilis, D.; Barrena, R.; Lora, R.; Vogiatzi, V.; Sánchez, A.; Font, X. A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Rev. Environ. Sci. Bio/Technol. 2017, 16, 347–360. [CrossRef] Parra-Orobio, B.A.; Angulo-Mosquera, L.S.; Loaiza-Gualtero, J.S.; Torres-López, W.A.; Torres-Lozada, P. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J. Environ. Chem. Eng. 2018, 6, 1529–1535. [CrossRef] Rocha, J.M.; Guerra, A. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. Eur. Food Res. Technol. 2020, 246, 2161–2174. [CrossRef] UPME-UNAL. Estimación del Potencial de Conversión a Biogás de la Biomasa en Colombia y Su Aprovechamiento; Inf. Unidad planeación Min. Energética UPME-Universidad Nacional de Colombia: Bogotá, Colombia, 2018; pp. 1–216. Escalante, H.; Castro, L.; Amaya, M.P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manag. 2018, 71, 711–718. [CrossRef] [PubMed] De Albuquerque, J.N.; Paulinetti, A.P.; Lovato, G.; Albanez, R.; Ratusznei, S.M.; Rodrigues, J.A.D. Anaerobic Sequencing Batch Reactors Co-digesting Whey and Glycerin as a Possible Solution for Small and Mid-size Dairy Industries: Environmental Compliance and Methane Production. Appl. Biochem. Biotechnol. 2020, 192, 979–998. [CrossRef] Papirio, S.; Matassa, S.; Pirozzi, F.; Esposito, G. Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste. Energies 2020, 13, 2820. [CrossRef] Aghbashlo, M.; Tabatabaei, M.; Hosseini, S.S.; Dashti, B.; Mojarab Soufiyan, M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 2018, 171, 127–136. [CrossRef] IPCC. Climate Change 2014: Mitigation of Climate Change; OMM, PNUMA: Geneve, Switzerland, 2014. United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/es/goals (accessed on 29 June 2021). Shahriari, H.; Warith, M.; Hamoda, M.; Kennedy, K.J. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 2012, 32, 41–52. [CrossRef] [PubMed] Ogunmakinde A Review of Circular Economy Development Models in China, Germany and Japan. Recycling 2019, 4, 27. [CrossRef] Nußholz, J.L.K. Circular business models: Defining a concept and framing an emerging research field. Sustainability 2017, 9, 1810. [CrossRef] Nußholz, J.L.K. A circular business model mapping tool for creating value from prolonged product lifetime and closed material loops. J. Clean. Prod. 2018, 197, 185–194. [CrossRef] Prieto-Sandoval, V.; Torres-Guevara, L.E.; Ormazabal, M.; Jaca, C. Beyond the circular economy theory: Implementation methodology for industrial SMEs. J. Ind. Eng. Manag. 2021, 14, 425–438. [CrossRef] Kimming, M.; Sundberg, C.; Nordberg, Å.; Baky, A.; Bernesson, S.; Hansson, P.-A. Replacing fossil energy for organic milk production-potential biomass sources and greenhouse gas emission reductions. J. Clean. Prod. 2015, 106, 400–407. [CrossRef] Dolman, M.A.; Sonneveld, M.P.W.; Mollenhorst, H.; De Boer, I.J.M. Benchmarking the economic, environmental and societal performance of Dutch dairy farms aiming at internal recycling of nutrients. J. Clean. Prod. 2014, 73, 245–252. [CrossRef] Stanchev, P.; Vasilaki, V.; Egas, D.; Colon, J.; Ponsá, S.; Katsou, E. Multilevel environmental assessment of the anaerobic treatment of dairy processing effluents in the context of circular economy. J. Clean. Prod. 2020, 261, 121139. [CrossRef] Jaimes-Estévez, J.; Castro, L.; Escalante, H.; Carrillo, D.; Portillo, S.; Sotres, A.; Morán, A. Cheese whey co-digestion treatment in a tubular system: Microbiological behaviour along the axial axis. Biomass Convers. Biorefinery 2020, 4, 1–10. [CrossRef] Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [CrossRef] Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [CrossRef] Duriau, V.J.; Reger, R.K.; Pfarrer, M.D. A content analysis of the content analysis literature in organization studies: Research themes, data sources, and methodological refinements. Organ. Res. Methods 2007, 10, 5–34. [CrossRef] York, L.; Heffernan, C.; Rymer, C. A systematic review of policy approaches to dairy sector greenhouse gas (GHG) emission reduction. J. Clean. Prod. 2018, 172, 2216–2224. [CrossRef] Mancebo, R.; da Cunha Reis, A.; Medeiros Rios, E.; de Araújo Santos Martins, J.; Oliveira Soares, L.; Aparecida de Sá Machado, V.; Rodrigues de Moraes, D. Waste-to-Energy Technologies Towards Circular Economy: A Systematic Literature Review and Bibliometric Analysis. Water Air Soil Pollut. 2021, 7, 1–25. [CrossRef] Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [CrossRef] [PubMed] Tsai, F.M.; Bui, T.D.; Tseng, M.L.; Lim, M.K.; Hu, J. Municipal solid waste management in a circular economy: A data-driven bibliometric analysis. J. Clean. Prod. 2020, 275, 124132. [CrossRef] Soto-Paz, J.; Oviedo-Ocaña, R.; Torres-Lozada, P.; Fernando Marmolejo-Rebellón, L.; Manyoma-Velásquez, P.C. Composting of biowaste: Research trends and relevance in developing countries. Rev. DYNA 2017, 84, 334–342. [CrossRef] Parra Orobio, B.A.; Nieto Mendoza, M.; Rivera Henao, D.; Manyoma Vélasquez, P.C.; Torres Lozada, P.; Parra-Orobio, B.A.; NietoMendoza, M.; Rivera-Henao, D.; Manyoma-Velásquez, P.C.; Torres-Lozada, P. Selection of inocula conditioning methodologies for the anaerobic digestion of food waste. Rev. Fac. Ing. Univ. Antioq. 2019, 90, 9–18. [CrossRef] Jan van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [CrossRef] Chernicharo, C.; Van Lier, J.; Noyola, A. Anaerobic sewage treatment: State of the art, constraints and challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 649–679. [CrossRef] Silva-Martínez, R.D.; Sanches-Pereira, A.; Ortiz, W.; Gómez Galindo, M.F.; Coelho, S.T. The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities. Renew. Energy 2020, 156, 509–525. [CrossRef] Muscolo, A.; Settineri, G.; Papalia, T.; Attinà, E.; Basile, C.; Panuccio, M.R. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Sci. Total Environ. 2017, 586, 746–752. [CrossRef] Kassongo, J.; Shahsavari, E.; Ball, A.S. molecules Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation. Molecules 2020, 25, 5754. [CrossRef] [PubMed] Gameiro, T.; Novais, R.M.; Correia, C.L.; Carvalheiras, J.; Seabra, M.P.; Tarelho, L.A.C.; Labrincha, J.A.; Capela, I. Role of waste-based geopolymer spheres addition for pH control and efficiency enhancement of anaerobic digestion process. Bioprocess Biosyst. Eng. 2021, 1, 3. [CrossRef] [PubMed] Kaza, S.; Yao, L.; Bhada-Tata, P.; Van, W. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018; Volume 4, ISBN 9781464813290. Publications: Washington, DC, USA, 2018; Volume 4, ISBN 9781464813290. 45. Casallas-Ojeda, M.; Marmolejo-Rebellón, L.; Torres-Lozada, P. Identification of Factors and Variables that Influence the Anaerobic Digestion of Municipal Biowaste and Food Waste. Waste Biomass Valorization 2020, 1–16. [CrossRef] Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [CrossRef] Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [CrossRef] Kassongo, J.; Shahsavari, E.; Ball, A.S. Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity. Biomass Bioenergy 2020, 143, 105880. [CrossRef] Dareioti, M.A.; Kornaros, M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresour. Technol. 2015, 175, 553–562. [CrossRef] Treu, L.; Tsapekos, P.; Peprah, M.; Campanaro, S.; Giacomini, A.; Corich, V.; Kougias, P.G.; Angelidaki, I. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresour. Technol. 2019, 275, 375–385. [CrossRef] [PubMed] Liew, Y.X.; Chan, Y.J.; Manickam, S.; Chong, M.F.; Chong, S.; Tiong, T.J.; Lim, J.W.; Pan, G.T. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total Environ. 2020, 713, 136373. [CrossRef] [PubMed] Ribera-Pi, J.; Marina Badia-Fabregat, M.; Calderer, M.; Polášková, M.; Svojitka, J.; Rovira, M.; Jubany, I.; Xavier, M.-L. Anaerobic Membrane Bioreactor (AnMBR) for the Treatment of Cheese Whey for the Potential Recovery of Water and Energy. Waste Biomass Valorization 2020, 11, 1821–1835. [CrossRef] Fernández, C.; Cuetos, M.J.; Martínez, E.J.; Gómez, X. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass Bioenergy 2015, 81, 55–62. [CrossRef] Maragkaki, A.E.; Fountoulakis, M.; Kyriakou, A.; Lasaridi, K.; Manios, T. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manag. 2018, 71, 605–611. [CrossRef] Vavouraki, A.I.; Zakoura, M.V.; Dareioti, M.A.; Kornaros, M. Biodegradation of Polyphenolic Compounds from Olive Mill Wastewaters (OMW) During Two-Stage Anaerobic Co-digestion of Agro-industrial Mixtures. Waste Biomass Valorization 2020, 11, 5783–5791. [CrossRef] El Achkar, J.H.; Ziade, R.; Louka, N.; Maroun, R.G.; Hobaika, Z. Treatment of dairy waste by anaerobic digestion to produce methane as green energy. In Proceedings of the 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 9–30 June 2020; pp. 8–13. [CrossRef] Jung, H.; Kim, J.; Lee, C. Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes. Bioresour. Technol. 2016, 221, 366–374. [CrossRef] Pilarska, A.A.; Pilarski, K.; Witaszek, K.; Waliszewska, H.; Zborowska, M.; Waliszewska, B.; Kolasi ´nski, M.; Szwarc-Rzepka, K. Treatment of dairy waste by anaerobic co-digestion with sewage sludge. Ecol. Chem. Eng. S 2016, 23, 99–115. [CrossRef] Gomez-Romero, J.; Gonzalez-Garcia, A.; Chairez, I.; Torres, L.; García-Peña, E.I. Selective adaptation of an anaerobic microbial community: Biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int. J. Hydrogen Energy 2014, 39, 12541–12550. [CrossRef] Charalambous, P.; Vyrides, I. In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI). J. Environ. Manag. 2021, 280, 111651. [CrossRef] Cárdenas Cleves, L.M.; Parra Orobio, B.A.; Torres Lozada, P.; Vásquez Franco, C.H. Perspectivas del ensayo de Potencial Bioquímico de Metano—PBM para el control del proceso de digestión anaerobia de residuos. Rev. ION 2016, 29, 95–108. [CrossRef] Casallas-Ojeda, M.; Marmolejo-Rebellón, L.; Torres-Lozada, P. Evaluation of simultaneous incidence of head space and temperature on biochemical methane potential in food waste. Cogent Eng. 2020, 7, 1729514. [CrossRef] Gutiérrez, H.; De la Vara, R. Análisis y Diseño de Experimentos, 2nd ed.; McGraw Hill: Ciudad de México, Mexico, 2008; ISBN 970-10-6526-3 Raposo, F.; De La Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [CrossRef] Koch, K.; Lippert, T.; Drewes, J.E. The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresour. Technol. 2017, 243, 457–463. [CrossRef] Mirmohamadsadeghi, S.; Karimi, K.; Tabatabaei, M.; Aghbashlo, M. Biogas production from food wastes: A review on recent developments and future perspectives. Bioresour. Technol. Rep. 2019, 7, 100202. [CrossRef] Nohra, J.A.; Barrington, S.; Frigon, J.C.; Guiot, S.R. In storage psychrophilic anaerobic digestion of swine slurry. Resour. Conserv. Recycl. 2003, 38, 23–37. [CrossRef] Ohemeng-Ntiamoah, J.; Datta, T. Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. Sci. Total Environ. 2019, 664, 1052–1062. [CrossRef] Van Nguyen, Q.; Jensen, L.S.; Bol, R.; Wu, D.; Triolo, J.M.; Vazifehkhoran, A.H.; Bruun, S. Biogas digester hydraulic retention time affects oxygen consumption patterns and greenhouse gas emissions after application of digestate to soil. J. Environ. Qual. 2017, 46, 1114–1122. [CrossRef] Martí-Herrero, J.; Soria-Castellón, G.; Diaz-de-Basurto, A.; Alvarez, R.; Chemisana, D. Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renew. Energy 2019, 133, 676–684. [CrossRef] Yamashiro, T.; Lateef, S.A.; Chun, Y.; Nilmini Beneragama, Y.; Lukic, M.; Masahiro, I.; Ihara, I.; Nishida, T.; Umetsu, K. Anaerobic co-digestion of dairy cow manure and high concentrated food processing waste. J. Mater. Cycles Waste Manag. 2013, 15, 539–547. [CrossRef] Riggio, V.A.; Comino, E.; Rosso, M. Above ground part of common reed to enhance anaerobic co-digestion of farm biomasses: Potential, monitoring and efficiency. Ecol. Eng. 2015, 79, 35–41. [CrossRef] Carlini, M.; Castellucci, S.; Moneti, M. Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor. Energy Procedia 2015, 82, 811–818. [CrossRef] Brown, N.; Güttler, J.; Shilton, A. Overcoming the challenges of full scale anaerobic co-digestion of casein whey. Renew. Energy 2016, 96, 425–432. [CrossRef] Hallaji, S.M.; Kuroshkarim, M.; Moussavi, S.P. Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnol. 2019, 19, 1–10. [CrossRef] Marchetti, R.; Vasmara, C. Co-digestion of Deproteinized Dairy Waste With Pig Slurry: Effect of Recipe and Initial pH on Biogas and Volatile Fatty Acid Production. Bioenergy Res. 2020, 13, 643–658. [CrossRef] Iglesias-Iglesias, R.; Kennes, C.; Veiga, M.C. Valorization of sewage sludge in co-digestion with cheese whey to produce volatile fatty acids. Waste Manag. 2020, 118, 541–551. [CrossRef] Parawira, W. Anaerobic Treatment of Agricultural Residues and Wastewater Application of High-Rate Reactors. Ph.D. Thesis, Department of Biotechnology, Lund University, Lund, Sweden, 2004 Fernandes, T.V.; Keesman, K.J.; Zeeman, G.; van Lier, J.B. Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass Bioenergy 2014, 47, 316–323. [CrossRef] Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [CrossRef] Lu, X.; Jin, W.; Xue, S.; Wang, X. Effects of waste sources on performance of anaerobic co-digestion of complex organic wastes: Taking food waste as an example OPEN. Sci. Rep. 2017, 7, 15702. [CrossRef] [PubMed] Comino, E.; Riggio, V.A.; Rosso, M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour. Technol. 2012, 114, 46–53. [CrossRef] [PubMed] Flores-Mendoza, A.P.; Hernández-García, H.; Cocotle-Ronzón, Y.; Hernandez-Martinez, E. Methanogenesis of raw cheese whey: pH and substrate–inoculum ratio evaluation at mesophyll temperature range. J. Chem. Technol. Biotechnol. 2020, 95, 1946–1952. [CrossRef] Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [CrossRef] Parra-Orobio, B.A.; Rotavisky-Sinisterra, M.P.; Pérez-Vidal, A.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Physicochemical, microbiological characterization and phytotoxicity of digestates produced on single-stage and two-stage anaerobic digestion of food waste. Sustain. Environ. Res. 2021, 31, 1–10. [CrossRef] de Lemos Chernicharo, C.A. Anaerobic Reactors; IWA: London, UK, 2007; Volume 6, ISBN 9781843391647 Mata-Alvarez, J. Biomethanization of the Organic Fraction of Municipal Solid Wasteso Title; IWA: London, UK, 2002; ISBN 9781900222143. Nayono, S. Anerobic Digestion of Organic Solid Waste for Energy Production. Ph.D. Thesis, Universitat Fridericiana zu Karlsruhe, Karlsruhe, Germany, 2009 Pagliano, G.; Ventorino, V.; Panico, A.; Romano, I.; Pirozzi, F.; Pepe, O. Anaerobic Process for Bioenergy Recovery from Dairy Waste: Meta-Analysis and Enumeration of Microbial Community Related to Intermediates Production Anaerobic Dairy Waste Process for Bioenergy. Front. Microbiol. 2019, 3, 3229. [CrossRef] [PubMed] Diamantis, V.I.; Kapagiannidis, A.G.; Ntougias, S.; Tataki, V.; Melidis, P.; Aivasidis, A. Two-stage CSTR-UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem. Eng. J. 2014, 84, 45–52. [CrossRef] Yang, Y.; Tada, C.; Miah, M.S.; Tsukahara, K.; Yagishita, T.; Sawayama, S. Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Mater. Sci. Eng. C 2004, 24, 413–419. [CrossRef] Rico, C.; Muñoz, N.; Fernández, J.; Rico, J.L. High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: Limits in co-substrates ratio and organic loading rate. Chem. Eng. J. 2015, 262, 794–802. [CrossRef] Lovato, G.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M. Co-digestion of Whey with Glycerin in an AnSBBR for Biomethane Production. Appl. Biochem. Biotechnol. 2016, 178, 126–143. [CrossRef] [PubMed] Sánchez-Sánchez, C.; González-González, A.; Cuadros-Salcedo, F.; Cuadros-Blázquez, F. Using low-cost porous materials to increase biogas production: A case study in Extremadura (Spain). J. Clean. Prod. 2018, 198, 1165–1172. [CrossRef] Erdirencelebi, D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: Influence of recycle. J. Chem. Technol. Biotechnol. 2011, 86, 525–533. [CrossRef] Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic digestion: An alternative resource treatment option for food waste in China. Sci. Total Environ. 2021, 779, 146397. [CrossRef] [PubMed] Begum, S.; Anupoju, G.R.; Sridhar, S.; Bhargava, S.K.; Jegatheesan, V.; Eshtiaghi, N. Evaluation of single and two stage anaerobic digestion of landfill leachate: Effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresour. Technol. 2018, 251, 364–373. [CrossRef] [PubMed] Negri, C.; Ricci, M.; Zilio, M.; D’Imporzano, G.; Qiao, W.; Dong, R.; Adani, F. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review. Renew. Sustain. Energy Rev. 2020, 133, 110138. [CrossRef] Moguel-Castañeda, J.G.; González-Salomón, M.; Hernández-Garciá, H.; Morales-Zarate, E.; Puebla, H.; Hernandez-Martinez, E. Effect of organic loading rate on anaerobic digestion of raw cheese whey: Experimental evaluation and mathematical modeling. Int. J. Chem. React. Eng. 2020, 18. [CrossRef] Calero, R.; Iglesias-Iglesias, R.; Kennes, C.; Veiga, M.C. Organic loading rate effect on the acidogenesis of cheese whey: A comparison between UASB and SBR reactors. Environ. Technol. 2018, 39, 3046–3054. [CrossRef] [PubMed] |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.coverage.temporal.spa.fl_str_mv |
Vol. 13, No. 22 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Cali |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/64b56ade-d33f-4543-94f9-0af3485d37da/download https://repository.ucc.edu.co/bitstreams/00f15e6e-192e-4a30-b53a-aed7837cd1ec/download https://repository.ucc.edu.co/bitstreams/db85b4cc-a9c0-4f6e-bf5e-f8d1947a7a1c/download https://repository.ucc.edu.co/bitstreams/9eafceda-57d9-40fa-a159-1ebecd9687a1/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 39769e9400b79722b9560a8387bbdbb7 47fca217cc47379eefcf8241c6f96a70 30c2b72222f564fb1afb50d5095a799d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565605896060928 |
spelling |
Caicedo Concha, Diana MilenaCasallas Ojeda, MiguelGómez, María F.Torres Guevara, Luz ElbaVol. 13, No. 222022-09-29T12:55:55Z2022-09-29T12:55:55Z2021-1120711050https://doi.org/10.3390/su132212892https://hdl.handle.net/20.500.12494/46547Casallas-Ojeda, Miguel, Luz Elba Torres-Guevara, Diana M. Caicedo-Concha, and María F. Gómez. (2021).Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy. Sustainability 13, no. 22: 12892. https://doi.org/10.3390/su132212892El suero de queso es un residuo producido en la industria láctea que genera problemas si se vierte directamente al alcantarillado debido a su alta carga orgánica. Una alternativa para el manejo del suero de queso es la digestión anaeróbica, un proceso biológico que transforma la materia orgánica en biogás y digestato, dos productos con un importante potencial energético y agrícola. Este trabajo tuvo como objetivo contribuir a la construcción del conocimiento sobre la degradación anaeróbica del suero de queso, desarrollar un análisis bibliométrico y rastrear las tendencias en investigaciones relacionadas desde 2010 hasta el presente, utilizando PRISMA® para desarrollar una revisión sistemática basada en Scopus® y utilizando Excel® y software bibliométrico (VosViewer® y RefViz®) para la identificación de la información. Nuestros resultados muestran que la investigación en torno al suero de queso es relativamente reciente y que el mayor porcentaje de publicaciones es a partir de 2018. Se identificaron doce variables del proceso de degradación anaeróbica del suero de queso y se agruparon en cinco factores: sustrato, configuración del reactor, análisis de digestato, análisis microbiológico e inóculo. Asimismo, se identificó que la mayoría de los procesos anaeróbicos permiten implementar la economía circular en el sector lácteo. En conclusión, la aplicación de la digestión anaeróbica en el sector lácteo puede ayudar a cerrar los ciclos productivos, producir biocombustibles y reducir la contaminación.Cheese whey is a waste produced in the dairy industry which generates problems if it is dumped directly into the sewer due to its high organic load. An alternative for cheese whey management is anaerobic digestion, a biological process that transforms organic matter into biogas and digestate, two products with significant energy and agricultural potential. This work was aimed at contributing to the building of knowledge about the anaerobic degradation of cheese whey, developing a bibliometric analysis, and tracing trends in related research from 2010 up to the present, using PRISMA® to develop a systematic review based on Scopus® and using Excel® and bibliometric software (VosViewer® and RefViz®) for the identification of information. Our results show that the research around cheese whey is relatively recent and that the highest percentage of publications is from 2018 onwards. Twelve variables of the anaerobic cheese whey degradation process were identified and grouped into five factors: substrate, reactor configuration, digestate analysis, microbiological analysis, and inoculum. Likewise, it was identified that most of the anaerobic processes allow the implementation of the circular economy into the dairy sector. In conclusion, the application of anaerobic digestion in the dairy sector can help to close the productive cycles, produce biofuels, and reduce pollution.diana.caidedoc@campusucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, CaliIngeniería IndustrialCalihttps://www.mdpi.com/2071-1050/13/22/12892SustainabilityFAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; Volume 4, ISBN 1815-6797.Mollea, C.; Marmo, L.; Bosco, F. Valorisation of Cheese Whey, a By-Product from the Dairy Industry; Intechopen: London, UK, 2020; pp. 1–15. [CrossRef]Eurostast. Agriculture, Forestry and Fisheries Statistics; Eurostast: London, UK, 2018.Think USA Dairy Discover U.S. Dairy. Available online: https://www.thinkusadairy.org/industry-facts-and-figures/productportfolio (accessed on 15 August 2021).OECD-FAO. Chapter 7. Dairy and Dairy Products; FAO: Rome, Italy, 2018.Chatzipaschali, A.A.; Stamatis, A.G. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects. Energies 2012, 5, 3492–3525. [CrossRef]Bosco, F.; Carletto, R.A.; Marmo, L. An integrated cheese whey valorization process. Chem. Eng. Trans. 2018, 64, 379–384. [CrossRef]Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manage. 2012, 110, 48–68. [CrossRef]Asunis, F.; De Gioannis, G.; Dessì, P.; Isipato, M.; Lens, P.N.L.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. J. Environ. Manag. 2020, 276, 111240. [CrossRef] [PubMed]Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [CrossRef]Perna, V.; Castelló, E.; Wenzel, J.; Zampol, C.; Fontes Lima, D.M.; Borzacconi, L.; Varesche, M.B.; Zaiat, M.; Etchebehere, C. Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int. J. Hydrogen Energy 2013, 38, 54–62. [CrossRef]Cremonez, P.A.; Teleken, J.G.; Weiser Meier, T.R.; Alves, H.J. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. J. Environ. Manag. 2021, 281, 111854. [CrossRef]Chen, Y.; Xiao, K.; Jiang, X.; Shen, N.; Zeng, R.J.; Zhou, Y. Long solid retention time (SRT) has minor role in promoting methane production in a 65 ◦C single-stage anaerobic sludge digester. Bioresour. Technol. 2018, 247, 724–729. [CrossRef]Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [CrossRef]da Silva, L.F.M. Special Issue: 2nd International Conference on Materials Design and Applications 2018 (MDA 2018). Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 257. [CrossRef]Kılkı¸s, ¸S.; Kılkı¸s, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Clean. Prod. 2017, 167, 1084–1098. [CrossRef]Rosa, F. Waste Generated by Food Industry and Reuse in A Circular Economy Approach: The Whey Processing. Concepts Dairy Vet. Sci. 2018, 2, 171–173. [CrossRef]Komilis, D.; Barrena, R.; Lora, R.; Vogiatzi, V.; Sánchez, A.; Font, X. A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Rev. Environ. Sci. Bio/Technol. 2017, 16, 347–360. [CrossRef]Parra-Orobio, B.A.; Angulo-Mosquera, L.S.; Loaiza-Gualtero, J.S.; Torres-López, W.A.; Torres-Lozada, P. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J. Environ. Chem. Eng. 2018, 6, 1529–1535. [CrossRef]Rocha, J.M.; Guerra, A. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. Eur. Food Res. Technol. 2020, 246, 2161–2174. [CrossRef]UPME-UNAL. Estimación del Potencial de Conversión a Biogás de la Biomasa en Colombia y Su Aprovechamiento; Inf. Unidad planeación Min. Energética UPME-Universidad Nacional de Colombia: Bogotá, Colombia, 2018; pp. 1–216.Escalante, H.; Castro, L.; Amaya, M.P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manag. 2018, 71, 711–718. [CrossRef] [PubMed]De Albuquerque, J.N.; Paulinetti, A.P.; Lovato, G.; Albanez, R.; Ratusznei, S.M.; Rodrigues, J.A.D. Anaerobic Sequencing Batch Reactors Co-digesting Whey and Glycerin as a Possible Solution for Small and Mid-size Dairy Industries: Environmental Compliance and Methane Production. Appl. Biochem. Biotechnol. 2020, 192, 979–998. [CrossRef]Papirio, S.; Matassa, S.; Pirozzi, F.; Esposito, G. Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste. Energies 2020, 13, 2820. [CrossRef]Aghbashlo, M.; Tabatabaei, M.; Hosseini, S.S.; Dashti, B.; Mojarab Soufiyan, M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 2018, 171, 127–136. [CrossRef]IPCC. Climate Change 2014: Mitigation of Climate Change; OMM, PNUMA: Geneve, Switzerland, 2014.United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/es/goals (accessed on 29 June 2021).Shahriari, H.; Warith, M.; Hamoda, M.; Kennedy, K.J. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 2012, 32, 41–52. [CrossRef] [PubMed]Ogunmakinde A Review of Circular Economy Development Models in China, Germany and Japan. Recycling 2019, 4, 27. [CrossRef]Nußholz, J.L.K. Circular business models: Defining a concept and framing an emerging research field. Sustainability 2017, 9, 1810. [CrossRef]Nußholz, J.L.K. A circular business model mapping tool for creating value from prolonged product lifetime and closed material loops. J. Clean. Prod. 2018, 197, 185–194. [CrossRef]Prieto-Sandoval, V.; Torres-Guevara, L.E.; Ormazabal, M.; Jaca, C. Beyond the circular economy theory: Implementation methodology for industrial SMEs. J. Ind. Eng. Manag. 2021, 14, 425–438. [CrossRef]Kimming, M.; Sundberg, C.; Nordberg, Å.; Baky, A.; Bernesson, S.; Hansson, P.-A. Replacing fossil energy for organic milk production-potential biomass sources and greenhouse gas emission reductions. J. Clean. Prod. 2015, 106, 400–407. [CrossRef]Dolman, M.A.; Sonneveld, M.P.W.; Mollenhorst, H.; De Boer, I.J.M. Benchmarking the economic, environmental and societal performance of Dutch dairy farms aiming at internal recycling of nutrients. J. Clean. Prod. 2014, 73, 245–252. [CrossRef]Stanchev, P.; Vasilaki, V.; Egas, D.; Colon, J.; Ponsá, S.; Katsou, E. Multilevel environmental assessment of the anaerobic treatment of dairy processing effluents in the context of circular economy. J. Clean. Prod. 2020, 261, 121139. [CrossRef]Jaimes-Estévez, J.; Castro, L.; Escalante, H.; Carrillo, D.; Portillo, S.; Sotres, A.; Morán, A. Cheese whey co-digestion treatment in a tubular system: Microbiological behaviour along the axial axis. Biomass Convers. Biorefinery 2020, 4, 1–10. [CrossRef]Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [CrossRef]Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [CrossRef]Duriau, V.J.; Reger, R.K.; Pfarrer, M.D. A content analysis of the content analysis literature in organization studies: Research themes, data sources, and methodological refinements. Organ. Res. Methods 2007, 10, 5–34. [CrossRef]York, L.; Heffernan, C.; Rymer, C. A systematic review of policy approaches to dairy sector greenhouse gas (GHG) emission reduction. J. Clean. Prod. 2018, 172, 2216–2224. [CrossRef]Mancebo, R.; da Cunha Reis, A.; Medeiros Rios, E.; de Araújo Santos Martins, J.; Oliveira Soares, L.; Aparecida de Sá Machado, V.; Rodrigues de Moraes, D. Waste-to-Energy Technologies Towards Circular Economy: A Systematic Literature Review and Bibliometric Analysis. Water Air Soil Pollut. 2021, 7, 1–25. [CrossRef]Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [CrossRef] [PubMed]Tsai, F.M.; Bui, T.D.; Tseng, M.L.; Lim, M.K.; Hu, J. Municipal solid waste management in a circular economy: A data-driven bibliometric analysis. J. Clean. Prod. 2020, 275, 124132. [CrossRef]Soto-Paz, J.; Oviedo-Ocaña, R.; Torres-Lozada, P.; Fernando Marmolejo-Rebellón, L.; Manyoma-Velásquez, P.C. Composting of biowaste: Research trends and relevance in developing countries. Rev. DYNA 2017, 84, 334–342. [CrossRef]Parra Orobio, B.A.; Nieto Mendoza, M.; Rivera Henao, D.; Manyoma Vélasquez, P.C.; Torres Lozada, P.; Parra-Orobio, B.A.; NietoMendoza, M.; Rivera-Henao, D.; Manyoma-Velásquez, P.C.; Torres-Lozada, P. Selection of inocula conditioning methodologies for the anaerobic digestion of food waste. Rev. Fac. Ing. Univ. Antioq. 2019, 90, 9–18. [CrossRef]Jan van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [CrossRef]Chernicharo, C.; Van Lier, J.; Noyola, A. Anaerobic sewage treatment: State of the art, constraints and challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 649–679. [CrossRef]Silva-Martínez, R.D.; Sanches-Pereira, A.; Ortiz, W.; Gómez Galindo, M.F.; Coelho, S.T. The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities. Renew. Energy 2020, 156, 509–525. [CrossRef]Muscolo, A.; Settineri, G.; Papalia, T.; Attinà, E.; Basile, C.; Panuccio, M.R. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Sci. Total Environ. 2017, 586, 746–752. [CrossRef]Kassongo, J.; Shahsavari, E.; Ball, A.S. molecules Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation. Molecules 2020, 25, 5754. [CrossRef] [PubMed]Gameiro, T.; Novais, R.M.; Correia, C.L.; Carvalheiras, J.; Seabra, M.P.; Tarelho, L.A.C.; Labrincha, J.A.; Capela, I. Role of waste-based geopolymer spheres addition for pH control and efficiency enhancement of anaerobic digestion process. Bioprocess Biosyst. Eng. 2021, 1, 3. [CrossRef] [PubMed]Kaza, S.; Yao, L.; Bhada-Tata, P.; Van, W. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018; Volume 4, ISBN 9781464813290.Publications: Washington, DC, USA, 2018; Volume 4, ISBN 9781464813290. 45. Casallas-Ojeda, M.; Marmolejo-Rebellón, L.; Torres-Lozada, P. Identification of Factors and Variables that Influence the Anaerobic Digestion of Municipal Biowaste and Food Waste. Waste Biomass Valorization 2020, 1–16. [CrossRef]Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [CrossRef]Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [CrossRef]Kassongo, J.; Shahsavari, E.; Ball, A.S. Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity. Biomass Bioenergy 2020, 143, 105880. [CrossRef]Dareioti, M.A.; Kornaros, M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresour. Technol. 2015, 175, 553–562. [CrossRef]Treu, L.; Tsapekos, P.; Peprah, M.; Campanaro, S.; Giacomini, A.; Corich, V.; Kougias, P.G.; Angelidaki, I. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresour. Technol. 2019, 275, 375–385. [CrossRef] [PubMed]Liew, Y.X.; Chan, Y.J.; Manickam, S.; Chong, M.F.; Chong, S.; Tiong, T.J.; Lim, J.W.; Pan, G.T. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total Environ. 2020, 713, 136373. [CrossRef] [PubMed]Ribera-Pi, J.; Marina Badia-Fabregat, M.; Calderer, M.; Polášková, M.; Svojitka, J.; Rovira, M.; Jubany, I.; Xavier, M.-L. Anaerobic Membrane Bioreactor (AnMBR) for the Treatment of Cheese Whey for the Potential Recovery of Water and Energy. Waste Biomass Valorization 2020, 11, 1821–1835. [CrossRef]Fernández, C.; Cuetos, M.J.; Martínez, E.J.; Gómez, X. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass Bioenergy 2015, 81, 55–62. [CrossRef]Maragkaki, A.E.; Fountoulakis, M.; Kyriakou, A.; Lasaridi, K.; Manios, T. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manag. 2018, 71, 605–611. [CrossRef]Vavouraki, A.I.; Zakoura, M.V.; Dareioti, M.A.; Kornaros, M. Biodegradation of Polyphenolic Compounds from Olive Mill Wastewaters (OMW) During Two-Stage Anaerobic Co-digestion of Agro-industrial Mixtures. Waste Biomass Valorization 2020, 11, 5783–5791. [CrossRef]El Achkar, J.H.; Ziade, R.; Louka, N.; Maroun, R.G.; Hobaika, Z. Treatment of dairy waste by anaerobic digestion to produce methane as green energy. In Proceedings of the 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 9–30 June 2020; pp. 8–13. [CrossRef]Jung, H.; Kim, J.; Lee, C. Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes. Bioresour. Technol. 2016, 221, 366–374. [CrossRef]Pilarska, A.A.; Pilarski, K.; Witaszek, K.; Waliszewska, H.; Zborowska, M.; Waliszewska, B.; Kolasi ´nski, M.; Szwarc-Rzepka, K. Treatment of dairy waste by anaerobic co-digestion with sewage sludge. Ecol. Chem. Eng. S 2016, 23, 99–115. [CrossRef]Gomez-Romero, J.; Gonzalez-Garcia, A.; Chairez, I.; Torres, L.; García-Peña, E.I. Selective adaptation of an anaerobic microbial community: Biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int. J. Hydrogen Energy 2014, 39, 12541–12550. [CrossRef]Charalambous, P.; Vyrides, I. In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI). J. Environ. Manag. 2021, 280, 111651. [CrossRef]Cárdenas Cleves, L.M.; Parra Orobio, B.A.; Torres Lozada, P.; Vásquez Franco, C.H. Perspectivas del ensayo de Potencial Bioquímico de Metano—PBM para el control del proceso de digestión anaerobia de residuos. Rev. ION 2016, 29, 95–108. [CrossRef]Casallas-Ojeda, M.; Marmolejo-Rebellón, L.; Torres-Lozada, P. Evaluation of simultaneous incidence of head space and temperature on biochemical methane potential in food waste. Cogent Eng. 2020, 7, 1729514. [CrossRef]Gutiérrez, H.; De la Vara, R. Análisis y Diseño de Experimentos, 2nd ed.; McGraw Hill: Ciudad de México, Mexico, 2008; ISBN 970-10-6526-3Raposo, F.; De La Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [CrossRef]Koch, K.; Lippert, T.; Drewes, J.E. The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresour. Technol. 2017, 243, 457–463. [CrossRef]Mirmohamadsadeghi, S.; Karimi, K.; Tabatabaei, M.; Aghbashlo, M. Biogas production from food wastes: A review on recent developments and future perspectives. Bioresour. Technol. Rep. 2019, 7, 100202. [CrossRef]Nohra, J.A.; Barrington, S.; Frigon, J.C.; Guiot, S.R. In storage psychrophilic anaerobic digestion of swine slurry. Resour. Conserv. Recycl. 2003, 38, 23–37. [CrossRef]Ohemeng-Ntiamoah, J.; Datta, T. Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. Sci. Total Environ. 2019, 664, 1052–1062. [CrossRef]Van Nguyen, Q.; Jensen, L.S.; Bol, R.; Wu, D.; Triolo, J.M.; Vazifehkhoran, A.H.; Bruun, S. Biogas digester hydraulic retention time affects oxygen consumption patterns and greenhouse gas emissions after application of digestate to soil. J. Environ. Qual. 2017, 46, 1114–1122. [CrossRef]Martí-Herrero, J.; Soria-Castellón, G.; Diaz-de-Basurto, A.; Alvarez, R.; Chemisana, D. Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renew. Energy 2019, 133, 676–684. [CrossRef]Yamashiro, T.; Lateef, S.A.; Chun, Y.; Nilmini Beneragama, Y.; Lukic, M.; Masahiro, I.; Ihara, I.; Nishida, T.; Umetsu, K. Anaerobic co-digestion of dairy cow manure and high concentrated food processing waste. J. Mater. Cycles Waste Manag. 2013, 15, 539–547. [CrossRef]Riggio, V.A.; Comino, E.; Rosso, M. Above ground part of common reed to enhance anaerobic co-digestion of farm biomasses: Potential, monitoring and efficiency. Ecol. Eng. 2015, 79, 35–41. [CrossRef]Carlini, M.; Castellucci, S.; Moneti, M. Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor. Energy Procedia 2015, 82, 811–818. [CrossRef]Brown, N.; Güttler, J.; Shilton, A. Overcoming the challenges of full scale anaerobic co-digestion of casein whey. Renew. Energy 2016, 96, 425–432. [CrossRef]Hallaji, S.M.; Kuroshkarim, M.; Moussavi, S.P. Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnol. 2019, 19, 1–10. [CrossRef]Marchetti, R.; Vasmara, C. Co-digestion of Deproteinized Dairy Waste With Pig Slurry: Effect of Recipe and Initial pH on Biogas and Volatile Fatty Acid Production. Bioenergy Res. 2020, 13, 643–658. [CrossRef]Iglesias-Iglesias, R.; Kennes, C.; Veiga, M.C. Valorization of sewage sludge in co-digestion with cheese whey to produce volatile fatty acids. Waste Manag. 2020, 118, 541–551. [CrossRef]Parawira, W. Anaerobic Treatment of Agricultural Residues and Wastewater Application of High-Rate Reactors. Ph.D. Thesis, Department of Biotechnology, Lund University, Lund, Sweden, 2004Fernandes, T.V.; Keesman, K.J.; Zeeman, G.; van Lier, J.B. Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass Bioenergy 2014, 47, 316–323. [CrossRef]Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [CrossRef]Lu, X.; Jin, W.; Xue, S.; Wang, X. Effects of waste sources on performance of anaerobic co-digestion of complex organic wastes: Taking food waste as an example OPEN. Sci. Rep. 2017, 7, 15702. [CrossRef] [PubMed]Comino, E.; Riggio, V.A.; Rosso, M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour. Technol. 2012, 114, 46–53. [CrossRef] [PubMed]Flores-Mendoza, A.P.; Hernández-García, H.; Cocotle-Ronzón, Y.; Hernandez-Martinez, E. Methanogenesis of raw cheese whey: pH and substrate–inoculum ratio evaluation at mesophyll temperature range. J. Chem. Technol. Biotechnol. 2020, 95, 1946–1952. [CrossRef]Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [CrossRef]Parra-Orobio, B.A.; Rotavisky-Sinisterra, M.P.; Pérez-Vidal, A.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Physicochemical, microbiological characterization and phytotoxicity of digestates produced on single-stage and two-stage anaerobic digestion of food waste. Sustain. Environ. Res. 2021, 31, 1–10. [CrossRef]de Lemos Chernicharo, C.A. Anaerobic Reactors; IWA: London, UK, 2007; Volume 6, ISBN 9781843391647Mata-Alvarez, J. Biomethanization of the Organic Fraction of Municipal Solid Wasteso Title; IWA: London, UK, 2002; ISBN 9781900222143.Nayono, S. Anerobic Digestion of Organic Solid Waste for Energy Production. Ph.D. Thesis, Universitat Fridericiana zu Karlsruhe, Karlsruhe, Germany, 2009Pagliano, G.; Ventorino, V.; Panico, A.; Romano, I.; Pirozzi, F.; Pepe, O. Anaerobic Process for Bioenergy Recovery from Dairy Waste: Meta-Analysis and Enumeration of Microbial Community Related to Intermediates Production Anaerobic Dairy Waste Process for Bioenergy. Front. Microbiol. 2019, 3, 3229. [CrossRef] [PubMed]Diamantis, V.I.; Kapagiannidis, A.G.; Ntougias, S.; Tataki, V.; Melidis, P.; Aivasidis, A. Two-stage CSTR-UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem. Eng. J. 2014, 84, 45–52. [CrossRef]Yang, Y.; Tada, C.; Miah, M.S.; Tsukahara, K.; Yagishita, T.; Sawayama, S. Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Mater. Sci. Eng. C 2004, 24, 413–419. [CrossRef]Rico, C.; Muñoz, N.; Fernández, J.; Rico, J.L. High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: Limits in co-substrates ratio and organic loading rate. Chem. Eng. J. 2015, 262, 794–802. [CrossRef]Lovato, G.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M. Co-digestion of Whey with Glycerin in an AnSBBR for Biomethane Production. Appl. Biochem. Biotechnol. 2016, 178, 126–143. [CrossRef] [PubMed]Sánchez-Sánchez, C.; González-González, A.; Cuadros-Salcedo, F.; Cuadros-Blázquez, F. Using low-cost porous materials to increase biogas production: A case study in Extremadura (Spain). J. Clean. Prod. 2018, 198, 1165–1172. [CrossRef]Erdirencelebi, D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: Influence of recycle. J. Chem. Technol. Biotechnol. 2011, 86, 525–533. [CrossRef]Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic digestion: An alternative resource treatment option for food waste in China. Sci. Total Environ. 2021, 779, 146397. [CrossRef] [PubMed]Begum, S.; Anupoju, G.R.; Sridhar, S.; Bhargava, S.K.; Jegatheesan, V.; Eshtiaghi, N. Evaluation of single and two stage anaerobic digestion of landfill leachate: Effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresour. Technol. 2018, 251, 364–373. [CrossRef] [PubMed]Negri, C.; Ricci, M.; Zilio, M.; D’Imporzano, G.; Qiao, W.; Dong, R.; Adani, F. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review. Renew. Sustain. Energy Rev. 2020, 133, 110138. [CrossRef]Moguel-Castañeda, J.G.; González-Salomón, M.; Hernández-Garciá, H.; Morales-Zarate, E.; Puebla, H.; Hernandez-Martinez, E. Effect of organic loading rate on anaerobic digestion of raw cheese whey: Experimental evaluation and mathematical modeling. Int. J. Chem. React. Eng. 2020, 18. [CrossRef]Calero, R.; Iglesias-Iglesias, R.; Kennes, C.; Veiga, M.C. Organic loading rate effect on the acidogenesis of cheese whey: A comparison between UASB and SBR reactors. Environ. Technol. 2018, 39, 3046–3054. [CrossRef] [PubMed]BiocombustiblesBioenergíaEconomía circularDdigestión anaeróbicaCodigestión anaeróbicaSuero de quesoDigestatoBiofuelsBioenergyCircular economyAnaerobic digestionCheese wheyAnaerobic co-digestionDigestateOpportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular EconomyArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/64b56ade-d33f-4543-94f9-0af3485d37da/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2021_Opportunities_Production_Industry2021_Opportunities_Production_IndustryArtículoapplication/pdf1988310https://repository.ucc.edu.co/bitstreams/00f15e6e-192e-4a30-b53a-aed7837cd1ec/download39769e9400b79722b9560a8387bbdbb7MD51THUMBNAIL2021_Opportunities_Production_Industry.jpg2021_Opportunities_Production_Industry.jpgGenerated Thumbnailimage/jpeg5714https://repository.ucc.edu.co/bitstreams/db85b4cc-a9c0-4f6e-bf5e-f8d1947a7a1c/download47fca217cc47379eefcf8241c6f96a70MD53TEXT2021_Opportunities_Production_Industry.txt2021_Opportunities_Production_Industry.txtExtracted texttext/plain100502https://repository.ucc.edu.co/bitstreams/9eafceda-57d9-40fa-a159-1ebecd9687a1/download30c2b72222f564fb1afb50d5095a799dMD5420.500.12494/46547oai:repository.ucc.edu.co:20.500.12494/465472024-08-10 21:02:50.4restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |