Análisis del uso de técnicas supervisadas de aprendizaje automático y profundo en la detección de fraude financiero

En el mundo moderno se hace necesario el uso de técnicas, metodologías y acciones en busca de la integración de los diversos avances, herramientas y elementos vigentes para el trabajo conjunto en la solución a las problemáticas que afectan las finanzas de las organizaciones, puesto que ellas hacen q...

Full description

Autores:
Hernández Aros, Ludivia
Gutierrez Portela, Fernando
Rodriguez Tovar, Katherin Lizeth
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/53345
Acceso en línea:
https://doi.org/10.18845/tm.v36i8.6927
https://hdl.handle.net/20.500.12494/53345
Palabra clave:
Fraude financiero
Inteligencia Artificial (IA)
Factores incidentes
Exactitud
Detección.
Financial fraud
Artificial Intelligence (AI)
Incident factors
Accuracy
Detection
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
Description
Summary:En el mundo moderno se hace necesario el uso de técnicas, metodologías y acciones en busca de la integración de los diversos avances, herramientas y elementos vigentes para el trabajo conjunto en la solución a las problemáticas que afectan las finanzas de las organizaciones, puesto que ellas hacen que exista una dinámica empresarial, creando valor económico. Teniendo en cuenta lo anterior, en este estudio se analiza la prevención de fraudes empresariales, mediante el uso de técnicas de aprendizaje automático y profundo para generar prevención, tratamiento y resolución a los fraudes llevados a cabo en sistemas del orden financiero. A nivel metodológico, se obtuvo información en bases de datos a nivel documental, con fuentes fidedignas y estudios de caso, donde se prueba la efectividad en el uso de las técnicas anteriormente nombradas en la detección temprana del fraude empresarial. Los resultados obtenidos en los documentos consultados expresan que los algoritmos que presentan mayor efectividad en la prevención de estos fraudes son árbol de decisión, C5.0-SVM, Naïve Bayes y Random Forest, con porcentajes de: 92%, 83.15%, 80,4% y 76, 7% respectivamente. Frente al aprendizaje profundo, la literatura mostró que al hacer uso de unidades lógicas aritméticas neuronales y realizando la correcta clasificación de las neuronas iNALU y ReLU el porcentaje de efectividad incrementa en gran proporción.En la parte final de este documento se presentan y consolidan resultados y conclusiones, todo en el marco de la temática abordada, además la información recopilada en este documento está debidamente respaldada por los derechos de autor a quien corresponde.