Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia

The robust estimate and forecast capability of random forests (RF) has been widely recognized, however this ensemble machine learning method has not been widely used in mosquito-borne disease forecasting. In this study, two sets of RF models were developed at the national (pooled department-level da...

Full description

Autores:
García Balaguera, César
Zhao, Naizhuo
Charland, Katia
Carabali, Mabel
Nsoesie, Elaine
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/33621
Acceso en línea:
https://doi.org/10.1371/journal.pntd.0008056
https://hdl.handle.net/20.500.12494/33621
Palabra clave:
Fiebre
Dengue
Previsión
Redes neuronales artificales
Dengue fever
Forecasting
Artificial neuronal networks
Rights
openAccess
License
Atribución
id COOPER2_5ad4ba1bd0853ad16a5adf7ef00b37b0
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/33621
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
title Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
spellingShingle Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
Fiebre
Dengue
Previsión
Redes neuronales artificales
Dengue fever
Forecasting
Artificial neuronal networks
title_short Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
title_full Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
title_fullStr Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
title_full_unstemmed Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
title_sort Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
dc.creator.fl_str_mv García Balaguera, César
Zhao, Naizhuo
Charland, Katia
Carabali, Mabel
Nsoesie, Elaine
dc.contributor.author.none.fl_str_mv García Balaguera, César
Zhao, Naizhuo
Charland, Katia
Carabali, Mabel
Nsoesie, Elaine
dc.subject.spa.fl_str_mv Fiebre
Dengue
Previsión
Redes neuronales artificales
topic Fiebre
Dengue
Previsión
Redes neuronales artificales
Dengue fever
Forecasting
Artificial neuronal networks
dc.subject.other.spa.fl_str_mv Dengue fever
Forecasting
Artificial neuronal networks
description The robust estimate and forecast capability of random forests (RF) has been widely recognized, however this ensemble machine learning method has not been widely used in mosquito-borne disease forecasting. In this study, two sets of RF models were developed at the national (pooled department-level data) and department level in Colombia to predict weekly dengue cases for 12-weeks ahead. A pooled national model based on artificial neural networks (ANN) was also developed and used as a comparator to the RF models. The various predictors included historic dengue cases, satellite-derived estimates for vegetation, precipitation, and air temperature, as well as population counts, income inequality, and education. Our RF model trained on the pooled national data was more accurate for department-specific weekly dengue cases estimation compared to a local model trained only on the department’s data. Additionally, the forecast errors of the national RF model were smaller to those of the national pooled ANN model and were increased with the forecast horizon increasing from one-week-ahead (mean absolute error, MAE: 9.32) to 12-weeks ahead (MAE: 24.56). There was considerable variation in the relative importance of predictors dependent on forecast horizon. The environmental and meteorological predictors were relatively important for short-term dengue forecast horizons while socio-demographic predictors were relevant for longer-term forecast horizons. This study demonstrates the potential of RF in dengue forecasting with a feasible approach of using a national pooled model to forecast at finer spatial scales. Furthermore, including sociodemographic predictors is likely to be helpful in capturing longer-term dengue trends
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09-24
dc.date.accessioned.none.fl_str_mv 2021-03-12T19:43:26Z
dc.date.available.none.fl_str_mv 2021-03-12T19:43:26Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.isbn.spa.fl_str_mv 1935-2735
dc.identifier.issn.spa.fl_str_mv 1935-2727
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1371/journal.pntd.0008056
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/33621
dc.identifier.bibliographicCitation.spa.fl_str_mv Zhao, N., Charland, K., Carabali, M., Nsoesie, E.O., Maheu-Giroux, M., Rees, E., et al. (2020) Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl Trop Dis 14(9): e0008056. https://doi.org/10.1371/journal.pntd.0008056
identifier_str_mv 1935-2735
1935-2727
Zhao, N., Charland, K., Carabali, M., Nsoesie, E.O., Maheu-Giroux, M., Rees, E., et al. (2020) Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl Trop Dis 14(9): e0008056. https://doi.org/10.1371/journal.pntd.0008056
url https://doi.org/10.1371/journal.pntd.0008056
https://hdl.handle.net/20.500.12494/33621
dc.relation.ispartofseries.spa.fl_str_mv 14
dc.relation.isversionof.spa.fl_str_mv https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008056
dc.relation.seriesnumber.spa.fl_str_mv 3
dc.relation.ispartofjournal.spa.fl_str_mv PLoS Neglected Tropical Disease
dc.relation.references.spa.fl_str_mv Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical Diseases 2010; 4(5): e646. https://doi. org/10.1371/journal.pntd.0000646 PMID: 20520794
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CLet.al. The global distribution and burden of dengue. Nature 2013; 496:504–507. https://doi.org/10.1038/nature12060 PMID: 23563266
Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environmental Health Perspectives 2013; 121(11–12): 1264. https://doi.org/10.1289/ehp.1306556 PMID: 24058050
Shepard DS, Undurraga EA, Hallasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infectious Diseases 2016; 16:935–941. https://doi.org/10.1016/S1473-3099 (16)00146-8 PMID: 27091092
Soyiri IN, Reidpath DD. An overview of health forecasting. Environmental Health and Preventive Medicine 2013; 18(1):1–9. https://doi.org/10.1007/s12199-012-0294-6 PMID: 22949173
RaclozV,RamseyR,TongS,HuW.Surveillanceof denguefevervirus:A reviewof epidemiologicalmodelsandearlywarningsystems.PLoSNeglectedTropicalDiseases 2012;6(5):e1648. https://doi.org/10.1371/journal.pntd.0001648PMID:22629476
GambhirS,MalikSK,KumarY,Thediagnosisof denguedisease:Anevaluationof threemachinelearningapproaches. InternationalJournalof HealthcareInformation SystemsandInformatics2018;13:1–19.https://doi.org/10.4018/ijhisi.2018040101PMID:32913425
NaishS,DaleP,MackenzieJS,McBrideJ, Mengersen K,TongS,Climatechangeanddengue:a criti-calandsystematicreviewof quantitativemodelling approaches. BMCInfectiousDiseases 2014;14:167.https://doi.org/10.1186/1471-2334-14-167PMID:24669859
GharbiM,QuenelP,GustaveJ, CassadouS,RucheGL,GirdaryL, et al.Timeseriesanalysisof den-gueincidencein Guadeloupe, FrenchWestIndies:Forecastingmodelsusingclimatevariablesaspre-dictors.BMCInfectiousDiseases2011;11:166.https://doi.org/10.1186/1471-2334-11-166PMID:21658238
HuW,ClementsA,WilliamsG,TongS,DenguefeverandEl Niño/Southern Oscillationin Queensland,Australia:a timeseriespredictivemodel.Occupational& EnvironmentalMedicine2010;67:307–311
DomNC,HassanAA,LatifZA,IsmailR,Generating temporalmodelusingclimatevariablesforthepre-dictionof denguecasesin SubangJaya,Malasia.AsianPacificJournalof TropicalDisease2013;3:352–361.
CortesF, TurchiMartelliCM,ArraesdeAlencarXimenes R,MontarroyosUR,SiqueiraJuniorJB,Gon-c ̧alvesCruzO,et al.Timeseriesanalysisof denguesurveillance datain twoBraziliancities.ActaTro-pica.2018;182:190–7.https://doi.org/10.1016/j.actatropica.2018.03.006PMID:29545150
JohanssonMA,ReichNG,HotaA,Brownstein JS,SantillanaM,Evaluatingtheperformance of infec-tiousdiseaseforecasts: A comparisonof climate-drivenandseasonaldengueforecastsforMexico.Sci-entificReports2016;6:33707.https://doi.org/10.1038/srep33707PMID:27665707
NiuM,WangY,SunS,Li Y,A novelhybriddecomposition-and-ensemblemodelbasedonCEEMDandGWOforshort-termPM2.5concentrationforecasting. Atmospheric Environment2016;134:168–180
ChenM-Y,ChenB-T,A hybridfuzzytimeseriesmodelbasedongranularcomputingforstockpriceforecasting. Information Sciences2015;294:227–241
WangP,ZhangH,QinZ, ZhangG,A novelhybrid-GarchmodelbasedonARIMAandSVMforPM2.5concentrationsforecasting. AtmosphericPollutionResearch2017;8: 850–860
ZhaoN,LiuY,VanosJK,CaoG,Day-of-weekandseasonalpatterns of PM2.5concentrationsovertheUnitedStates:Time-seriesanalysesusingtheProphetprocedure.Atmospheric Environment2018;192:116–127
BreimanL. Statisticalmodeling: thetwocultures(withcommentsanda rejoinderbytheauthor).Statisti-calScience2001;16(3):199–231.
MurphyKP.MachineLearning:a probabilisticperspective.MITPress,2012
GuoP,LiuT, ZhangQ,WangL, XiaoJ, ZhangQ,et al.Developinga dengueforecastmodelusingmachinelearning:A casestudyin China.PLoSNeglectedTropicalDiseases2017;11:e0005973.https://doi.org/10.1371/journal.pntd.0005973PMID:29036169
ScavuzzoJM,TruccoF, EspinosaM,TauroCB,AbrilM,Scavuzzo CM,et al.Modelingdenguevectorpopulationusingremotelysenseddataandmachinelearning.ActaTropica2018;185:167–175.https://doi.org/10.1016/j.actatropica.2018.05.003PMID:2977765
AlthouseBM,NgYY,CummingsDAT,Predictionof dengueincidenceusingserachquerysurveillance.PLoSNeglectedTropicalDiseases2011;5:e1258.https://doi.org/10.1371/journal.pntd.0001258PMID:21829744
Laureano-RosarioAE,DuncvanAP,Mendez-LazaroPA,Garcia-RejonJE,Gomez-CarroS,Farfan-AleJ, et al.Applicationof artificial neuralnetworks fordenguefeveroutbreakpredictionsin thenorthwestcoastof Yucatan,MexicoandSanJuan,PuertoRico.TropicalMedicineandInfectiousDisease2018;3:5
RaczkoE,ZagajewskiB,Comparisonof supportvectormachine,randomforestandneuralnetworkclassifiersfortreespeciesclassificationonairbornehyperspectralAPEXimages.EuropeanJournalofRemoteSensing2017;50:144–154.
MeyerH,KulhnleinM,AppelhansT, NaussT, Comparisonof fourmachinelearningalgorithmsfortheirapplicabilityin satellite-basedopticalrainfallretrievals.AtmosphericResearch2016;169:424–433.
Rodriguez-GalianoV,Sanchez-CastilloM,Chica-Olmo M,Chica-RivasM,Machinelearningpredictivemodelsformineralprospectivity: Anevaluationof neuralnetworks, randomforest,regressiontreesandsupportvectormachines. OreGeologyReviews2015;71:804–818.
StatnikovA,WangL, AliferisCF,A comprehensivecomparisonof randomforestsandsupportvectormachinesformicroarray-basedcancerclassification.BMCBioinformatics 2008;9:319.https://doi.org/10.1186/1471-2105-9-319PMID:18647401
NsoesieEO,BeckmanR,MaratheM,LewisB,Predictionof anepidemic curve:A supervisedclassifica-tionapproach. Statisticalcommunicationsin infectiousdiseases.2011;3(1):5.https://doi.org/10.2202/1948-4690.1038PMID:22997545
VasquezP,LoriaA,SanchezF, BarbozaLA,Climate-drivenstatisticalmodelsaseffectivepredictors oflocaldengueincidencein CostaRica:A generalizedadditivemodelandrandomforestapproach.arXiv2019;1907.13095
OlmoguezILG,CatindigMAC,AmongosMFL,LazanAF,Developinga dengueforecastingmodel:Acasestudyin Iligancity.InternationalJournalof AdvancedComputerScienceandApplications2019;10(9):281–286
CarvajalTM,ViacrusisKM,HernandezLFT,HoHT,AmalinDM,WatanabeK,Machinelearningmeth-odsrevealthetemporalpatternof dengueincidenceusingmeteorologicalfactorsin metropolitanManila,Philippines.BMCInfectiousDiseases 2018;18:183.https://doi.org/10.1186/s12879-018-3066-0 PMID:29665781
RehmanNA,KalyanaramanS,AhmadT, PervaizF, SaifU,SubramanianL, Fine-graineddenguefore-castingusingtelephonetriageservices.ScienceAdvances2016;2(7):e1501215.https://doi.org/10.1126/sciadv.1501215 PMID:27419226
FreezeJ, ErraguntlaM,VermaA,Dataintegrationandpredictiveanalysissystemfordiseaseprophy-laxis:Incorporatingdenguefeverforecasts.Proceedingsof the51stHawaiiInternationalConferenceonSystemScience2018;913–922.
DinhL, ChowellG,Rothenberg R,Growthscalingfortheearlydynamicsof HIV/AIDSepidemicsin Bra-zilandtheinfluenceof socio-demographicfactors.Journalof TheoreticalBiology2018;442:79–86.https://doi.org/10.1016/j.jtbi.2017.12.030PMID:29330056
ChretienJ-P,RileyS,GeorgeDB,Mathematicalmodelingof theWestAfticaEbolaepidemic. eLIFE2015;4:e09186. https://doi.org/10.7554/eLife.09186PMID:26646185
Cardona-OspinaJA,Villamil-Go ́mezWE,Jimenez-CanizalesCE,Castañeda-Herna ́ndezDM,Rodrı ́-guez-MoralesAJ.Estimatingtheburdenof diseaseandtheeconomiccostattributable to chikungunya,Colombia,2014.Transactions of theRoyalSocietyof TropicalMedicineandHygiene2015;109(12):793–802.https://doi.org/10.1093/trstmh/trv094PMID:26626342
VillarLA,RojasDP,Besada-LombanaS,SartiE.Epidemiologicaltrendsof denguediseasein Colom-bia(2000–2011): a systematicreview.PLoSNeglectedTropicalDiseases2015;9(3):e0003499.https://doi.org/10.1371/journal.pntd.0003499PMID:25790245
OspinaMartinezML,MartinezDuranME,PachecoGarcı ́a OE,BonillaHQ,Pe ́rezNT.,Protocolodevigilanciaensaludpu ́blicaenfermedadporvirusZika.PRO-R02.056.Bogota(Colombia): InstitutoNacionaldeSalud,2017.Available from:http://bvs.minsa.gob.pe/local/MINSA/3449.pdf(lastaccessedDecember 16,2019).
BeketovMA,YurchenkoYA,BelevichOE,LiessM,Whatenvironmentalfactorsareimportant determi-nantsof structure,speciesrichness,andabundance of mosquitoassemblages? Journalof MedicalEntomology2010;47:129–139.https://doi.org/10.1603/me09150 PMID:20380292
JoyceRJCMORPH:A methodthatproduces globalprecipitationestimatesfrompassive microwaveandinfrareddataat highspatialandtemporalresolution.Journalof Hydrometeorology2004;5:487–503.
KoyadunS,ButrapornP,KittayapongP,Ecologic andsociodemographicriskdeterminantsfordenguetransmissionin urbanareasin Thailand.InterdisciplinaryPerspectivesonInfectiousDiseases2012;2012:907494. https://doi.org/10.1155/2012/907494PMID:23056042
ReiterP,Climatechangeandmosquito-bornedisease.EnvironmentalHealthPerspectives2001;109(supplement1):141–161.https://doi.org/10.1289/ehp.01109s1141PMID:11250812
SoghaierMA,HimattS,OsmanKE,OkouedSI,SeidahmedOE,BeattyME,et al.,Cross-sectionalcommunity-basedstudyof thesocio-demographicfactorsassociatedwiththeprevalence of dengueintheeasternpartof Sudanin 2011.BMCPublicHealth2015;15:558.https://doi.org/10.1186/s12889-015-1913-0 PMID:26084275
KannanMaharajanM,RajiahK,SingcoBelotindosJA,BasesMS.Socialdeterminantspredictingtheknowledge,attitudes,andpracticesof womentowardzikavirusinfectionFrontiers in PublicHealth2020;8:170.https://doi.org/10.3389/fpubh.2020.00170PMID:32582602
CouseQuinnS,KumarS.Healthinequalitiesandinfectiousdiseaseepidemics:A challengeforglobalhealthsecurity.BiosecurityandBioterrorism:Biodefense Srategy,Practice,andScience2014;12(5):263–273.
BreimanL, Randomforests.Machinelearning2001;45(1):5–32.
HulmeM,NewM.Dependenceof large-scaleprecipitationclimatologiesontemporalandspatialsam-pling.Journalof Climate,1997;10:1099–1113,
PapacharalampousGA,TyralisH,Evaluationof randomforestsandprophetfordailystreamflowfore-casting.Advancesin Geosciences2018;45:201–208.
LuL, LinH,TianL, YangW,SunJ, LiuQ,Timeseriesanalysisof denguefeverandweatherin Guang-zhou,China,BMCPublicHealth2009;9:395.https://doi.org/10.1186/1471-2458-9-395PMID:19860867
ChenS-C.LiaoC-M,ChioC-P,ChouH-H,YouS-H,ChengY-H,laggedtemperature effectwithmos-quitotransmissionpotentialexplainsdenguevariabilityin southernTaiwan:Insightsfroma statisticalanalysis.Scienceof TheTotalEnvironment 2010;408(19):469–4075.
CheongYL,BurkartK,LeitaoPJ,LakesT, Assessingweathereffectsondenguediseasein Malaysia,InternationalJournalof EnvironmentalResearchandPublicHealth2013;10(12):6319–6334. https://doi.org/10.3390/ijerph10126319PMID:24287855
ChangK,ChenC-D,ShihC-M,LeeT-C,WuM-T,WuD-C,et al.,Time-lagginginterplayeffectandexcessriskof meteorological/mosquitoparametersandpetrochemicalgasexplosionondengueinci-dence.Scientificreports2016;6:35028.https://doi.org/10.1038/srep35028PMID:27733774
ChenY,OngJHY,RajarethinamJ, YapG,NgLC,CookAR.Neighbourhoodlevelreal-timeforecastingof denguecasesin tropicalurbanSingapore. BMCMedicine2018;16(1):129.https://doi.org/10.1186/s12916-018-1108-5PMID:30078378
EastinMD,DelmelleE,CasasI, WexlerJ, SelfC,Intra-andinterseasonalautoregressivepredictionofdengueoutbreaks usinglocalweatherandregionalclimatefora tropicalenvironment in Colombia.TheAmericanJournalof TropicalMedicineandHygiene2014;91(3):598–610.https://doi.org/10.4269/ajtmh.13-0303PMID:24957546
BostanN,JavedS,AmenN,EqaniSAMAS,TahirF, BokhariH,Denguefevervirusin Pakistan:effectsof seasonalpatternandtemperature changeondistributionof vectorandvirus.Reviewsin MedicalVirology2017;27(1):e1899
OidtmanRJ,LaiS,HuangZ, YangJ, SirajAS,ReinerRC,et al.,Inter-annual variationin seasonalden-gueepidemicsdrivenbymultipleinteractingfactorsin Guangzhou,China,NatureCommunications2019;10:1148. https://doi.org/10.1038/s41467-019-09035-xPMID:30850598
HastieT, Tibshirani R,FriedmanJ. Theelementsof statistical learning.Spring,Berlin,2008
LiawA,WienerM.Breiman andCulter’srandomforestsforclassificationandregression.2018.Avail-ablefrom:https://cran.r-project.org/web/packages/randomForest/randomForest.pdf(lastaccessedMay7, 2020).
PengZ, LetuH,WangT, ShiC,ZhaoC,TanaG,ZhaoN,DaiT, TangR,ShangH,ShiJ, ChenL. Esti-mationof shortwavesolarradiationusingtheartificialneuralnetworkfromHimawari-8satelliteimageryoverChina.Journalof QuantitativeSpectroscopyandRadiativeTransfer2020;240:106672.
Hyndman RJ,KhandakarY.Automatictimeseriesforecasting: TheforecastpackageforR.JournalofStatisticalSoftware2008;27:1–22.
ReichNG,LesslerJ, SakrejdaK,LauerSA,Iamsirithaworn S,CummingsDAT.Casestudyin evaluat-ingtimeseriespredictionmodelsusingtherelativemeanabsoluteerror.TheAmericanStatistician2016;70:285–292. https://doi.org/10.1080/00031305.2016.1148631PMID:28138198
LiuY,CaoG,ZhaoN,MulliganK,YeX.Improveground-levelPM2.5concentrationmappingusingarandomforests-basedgeostatisticalapproach. EnvironmentalPollution2018;235:272–282.https://doi.org/10.1016/j.envpol.2017.12.070PMID:29291527
GrziwotzF, StraußJF,HsiehC-h,TelschowA.Empiricaldynamicmodelling identifiesdifferentresponses ofAedesPolynesiensissubpopulationsto naturalenvironmentalvariables. ScientificReports2018;8: 16768.https://doi.org/10.1038/s41598-018-34972-wPMID:30425277
da Cruz Ferreira DA,DegenerCM,deAlmeidaMarques-ToledoC,BendatiMM,FetzerLO,TeixeiraCP,EirasAE.Meteorological variablesandmosquitomonitoringaregoodpredictorsforinfestationtrendsof Aedesaegypti,thevectorof dengue,chikungunyaandZika.ParasitesVectors2017;10:78.https://doi.org/10.1186/s13071-017-2025-8PMID:28193291
ManicaM,Filipponi F, D’Alessandro A,ScretiA,NetelerM,RosàR,et al.SpatialandTemporal HotSpotsofAedesalbopictusAbundance insideandoutsidea SouthEuropeanMetropolitanArea.PLoSNeglectedTropicalDiseases2016;10(6):e0004758.https://doi.org/10.1371/journal.pntd.0004758PMID:27333276
MulliganK,DixonJ, SinnC-LJ, ElliottSJ.Is denguea diseaseof poverty?A systematicreview.Patho-gensandGlobalHealth2015;109(1):10–18.https://doi.org/10.1179/2047773214Y.0000000168PMID:25546339
Tapia-ConyerR,Me ́ndez-Galva ́n JF,Gallardo-Rinco ́n H.Thegrowingburdenof denguein LatinAmer-ica.Journalof ClinicalVirology2009;46:S3–S6.https://doi.org/10.1016/S1386-6532(09)70286-0PMID:19800563
AdamsEA,BoatengGO,AmoyawJA.Socioeconomic anddemographicpredictors of potablewaterandsanitationaccessin Ghana.SocialIndicatorsResearch2016;126(2):673–687.
deJanvryA,SadouletE.Growth,poverty,andinequalityin LatinAmerica:A causalanalysis,1970–94.Thereviewof IncomeandWealth2000;46(3):267–287.
Najafabadi MM,VillanustreF, KhoshgoftaarTM,SeliyaN,WaldR,MuharemagicE.Deeplearningapplicationsandchallenges in bigdataanalytics.Journalof BigData2015;2:1
OngJ, LiuX,RajarethinamJ, KokSY,LiangS,TangCS,et al.,Mappingdengueriskin Singaporeusingrandomforest.PLoSNeglectedTropicalDiseases2018;12(6):e0006587.https://doi.org/10.1371/journal.pntd.0006587PMID:29912940
WilliamsRJ,ZipserD,A learningalgorithmforcontinually runningfullyrecurrentneuralnetworks.Neu-ralComputation1989;1(2):270–280.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-16
dc.coverage.temporal.spa.fl_str_mv 14-9
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/af7dac0a-9ccd-45ea-aef5-6d4938635d14/download
https://repository.ucc.edu.co/bitstreams/b837de38-bd73-4ee9-936b-f4b2ef35d1ae/download
https://repository.ucc.edu.co/bitstreams/15336c0b-e0e7-4156-89be-cf3542a1f074/download
https://repository.ucc.edu.co/bitstreams/db90c7ef-a570-4136-8e0f-c6b0259da24f/download
https://repository.ucc.edu.co/bitstreams/685ff642-3555-4317-b17e-2d7182168ee0/download
https://repository.ucc.edu.co/bitstreams/5ca30d49-6970-454d-acc0-ff58519c0306/download
https://repository.ucc.edu.co/bitstreams/e077fe3f-b45d-4e6b-984c-f869e27ba6cd/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
b2ce7c8ff6451109859fcef3a1f70278
0e51a8f31ddd7ac34eddb9ee0083128e
60b17a273fb2e3be9688997747879ad9
910a90cb4b18964de4b22960aff8b240
881ade4dffae608891afa318aa4b88a2
2e8d955a5ccabe20f367d7568352647f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565662647091200
spelling García Balaguera, CésarZhao, NaizhuoCharland, KatiaCarabali, MabelNsoesie, Elaine14-92021-03-12T19:43:26Z2021-03-12T19:43:26Z2020-09-241935-27351935-2727https://doi.org/10.1371/journal.pntd.0008056https://hdl.handle.net/20.500.12494/33621Zhao, N., Charland, K., Carabali, M., Nsoesie, E.O., Maheu-Giroux, M., Rees, E., et al. (2020) Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl Trop Dis 14(9): e0008056. https://doi.org/10.1371/journal.pntd.0008056The robust estimate and forecast capability of random forests (RF) has been widely recognized, however this ensemble machine learning method has not been widely used in mosquito-borne disease forecasting. In this study, two sets of RF models were developed at the national (pooled department-level data) and department level in Colombia to predict weekly dengue cases for 12-weeks ahead. A pooled national model based on artificial neural networks (ANN) was also developed and used as a comparator to the RF models. The various predictors included historic dengue cases, satellite-derived estimates for vegetation, precipitation, and air temperature, as well as population counts, income inequality, and education. Our RF model trained on the pooled national data was more accurate for department-specific weekly dengue cases estimation compared to a local model trained only on the department’s data. Additionally, the forecast errors of the national RF model were smaller to those of the national pooled ANN model and were increased with the forecast horizon increasing from one-week-ahead (mean absolute error, MAE: 9.32) to 12-weeks ahead (MAE: 24.56). There was considerable variation in the relative importance of predictors dependent on forecast horizon. The environmental and meteorological predictors were relatively important for short-term dengue forecast horizons while socio-demographic predictors were relevant for longer-term forecast horizons. This study demonstrates the potential of RF in dengue forecasting with a feasible approach of using a national pooled model to forecast at finer spatial scales. Furthermore, including sociodemographic predictors is likely to be helpful in capturing longer-term dengue trends0000584894201005042460https://orcid.org/0000-0002-0750-5541COL0096201cesar.garcia@campusucc.edu.cohttps://scholar.google.es/citations?user=CZo1nV4AAAAJ&hl=es1-16Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, VillavicencioMedicinaVillavicencio14https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.00080563PLoS Neglected Tropical DiseaseLambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical Diseases 2010; 4(5): e646. https://doi. org/10.1371/journal.pntd.0000646 PMID: 20520794Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CLet.al. The global distribution and burden of dengue. Nature 2013; 496:504–507. https://doi.org/10.1038/nature12060 PMID: 23563266Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environmental Health Perspectives 2013; 121(11–12): 1264. https://doi.org/10.1289/ehp.1306556 PMID: 24058050Shepard DS, Undurraga EA, Hallasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infectious Diseases 2016; 16:935–941. https://doi.org/10.1016/S1473-3099 (16)00146-8 PMID: 27091092Soyiri IN, Reidpath DD. An overview of health forecasting. Environmental Health and Preventive Medicine 2013; 18(1):1–9. https://doi.org/10.1007/s12199-012-0294-6 PMID: 22949173RaclozV,RamseyR,TongS,HuW.Surveillanceof denguefevervirus:A reviewof epidemiologicalmodelsandearlywarningsystems.PLoSNeglectedTropicalDiseases 2012;6(5):e1648. https://doi.org/10.1371/journal.pntd.0001648PMID:22629476GambhirS,MalikSK,KumarY,Thediagnosisof denguedisease:Anevaluationof threemachinelearningapproaches. InternationalJournalof HealthcareInformation SystemsandInformatics2018;13:1–19.https://doi.org/10.4018/ijhisi.2018040101PMID:32913425NaishS,DaleP,MackenzieJS,McBrideJ, Mengersen K,TongS,Climatechangeanddengue:a criti-calandsystematicreviewof quantitativemodelling approaches. BMCInfectiousDiseases 2014;14:167.https://doi.org/10.1186/1471-2334-14-167PMID:24669859GharbiM,QuenelP,GustaveJ, CassadouS,RucheGL,GirdaryL, et al.Timeseriesanalysisof den-gueincidencein Guadeloupe, FrenchWestIndies:Forecastingmodelsusingclimatevariablesaspre-dictors.BMCInfectiousDiseases2011;11:166.https://doi.org/10.1186/1471-2334-11-166PMID:21658238HuW,ClementsA,WilliamsG,TongS,DenguefeverandEl Niño/Southern Oscillationin Queensland,Australia:a timeseriespredictivemodel.Occupational& EnvironmentalMedicine2010;67:307–311DomNC,HassanAA,LatifZA,IsmailR,Generating temporalmodelusingclimatevariablesforthepre-dictionof denguecasesin SubangJaya,Malasia.AsianPacificJournalof TropicalDisease2013;3:352–361.CortesF, TurchiMartelliCM,ArraesdeAlencarXimenes R,MontarroyosUR,SiqueiraJuniorJB,Gon-c ̧alvesCruzO,et al.Timeseriesanalysisof denguesurveillance datain twoBraziliancities.ActaTro-pica.2018;182:190–7.https://doi.org/10.1016/j.actatropica.2018.03.006PMID:29545150JohanssonMA,ReichNG,HotaA,Brownstein JS,SantillanaM,Evaluatingtheperformance of infec-tiousdiseaseforecasts: A comparisonof climate-drivenandseasonaldengueforecastsforMexico.Sci-entificReports2016;6:33707.https://doi.org/10.1038/srep33707PMID:27665707NiuM,WangY,SunS,Li Y,A novelhybriddecomposition-and-ensemblemodelbasedonCEEMDandGWOforshort-termPM2.5concentrationforecasting. Atmospheric Environment2016;134:168–180ChenM-Y,ChenB-T,A hybridfuzzytimeseriesmodelbasedongranularcomputingforstockpriceforecasting. Information Sciences2015;294:227–241WangP,ZhangH,QinZ, ZhangG,A novelhybrid-GarchmodelbasedonARIMAandSVMforPM2.5concentrationsforecasting. AtmosphericPollutionResearch2017;8: 850–860ZhaoN,LiuY,VanosJK,CaoG,Day-of-weekandseasonalpatterns of PM2.5concentrationsovertheUnitedStates:Time-seriesanalysesusingtheProphetprocedure.Atmospheric Environment2018;192:116–127BreimanL. Statisticalmodeling: thetwocultures(withcommentsanda rejoinderbytheauthor).Statisti-calScience2001;16(3):199–231.MurphyKP.MachineLearning:a probabilisticperspective.MITPress,2012GuoP,LiuT, ZhangQ,WangL, XiaoJ, ZhangQ,et al.Developinga dengueforecastmodelusingmachinelearning:A casestudyin China.PLoSNeglectedTropicalDiseases2017;11:e0005973.https://doi.org/10.1371/journal.pntd.0005973PMID:29036169ScavuzzoJM,TruccoF, EspinosaM,TauroCB,AbrilM,Scavuzzo CM,et al.Modelingdenguevectorpopulationusingremotelysenseddataandmachinelearning.ActaTropica2018;185:167–175.https://doi.org/10.1016/j.actatropica.2018.05.003PMID:2977765AlthouseBM,NgYY,CummingsDAT,Predictionof dengueincidenceusingserachquerysurveillance.PLoSNeglectedTropicalDiseases2011;5:e1258.https://doi.org/10.1371/journal.pntd.0001258PMID:21829744Laureano-RosarioAE,DuncvanAP,Mendez-LazaroPA,Garcia-RejonJE,Gomez-CarroS,Farfan-AleJ, et al.Applicationof artificial neuralnetworks fordenguefeveroutbreakpredictionsin thenorthwestcoastof Yucatan,MexicoandSanJuan,PuertoRico.TropicalMedicineandInfectiousDisease2018;3:5RaczkoE,ZagajewskiB,Comparisonof supportvectormachine,randomforestandneuralnetworkclassifiersfortreespeciesclassificationonairbornehyperspectralAPEXimages.EuropeanJournalofRemoteSensing2017;50:144–154.MeyerH,KulhnleinM,AppelhansT, NaussT, Comparisonof fourmachinelearningalgorithmsfortheirapplicabilityin satellite-basedopticalrainfallretrievals.AtmosphericResearch2016;169:424–433.Rodriguez-GalianoV,Sanchez-CastilloM,Chica-Olmo M,Chica-RivasM,Machinelearningpredictivemodelsformineralprospectivity: Anevaluationof neuralnetworks, randomforest,regressiontreesandsupportvectormachines. OreGeologyReviews2015;71:804–818.StatnikovA,WangL, AliferisCF,A comprehensivecomparisonof randomforestsandsupportvectormachinesformicroarray-basedcancerclassification.BMCBioinformatics 2008;9:319.https://doi.org/10.1186/1471-2105-9-319PMID:18647401NsoesieEO,BeckmanR,MaratheM,LewisB,Predictionof anepidemic curve:A supervisedclassifica-tionapproach. Statisticalcommunicationsin infectiousdiseases.2011;3(1):5.https://doi.org/10.2202/1948-4690.1038PMID:22997545VasquezP,LoriaA,SanchezF, BarbozaLA,Climate-drivenstatisticalmodelsaseffectivepredictors oflocaldengueincidencein CostaRica:A generalizedadditivemodelandrandomforestapproach.arXiv2019;1907.13095OlmoguezILG,CatindigMAC,AmongosMFL,LazanAF,Developinga dengueforecastingmodel:Acasestudyin Iligancity.InternationalJournalof AdvancedComputerScienceandApplications2019;10(9):281–286CarvajalTM,ViacrusisKM,HernandezLFT,HoHT,AmalinDM,WatanabeK,Machinelearningmeth-odsrevealthetemporalpatternof dengueincidenceusingmeteorologicalfactorsin metropolitanManila,Philippines.BMCInfectiousDiseases 2018;18:183.https://doi.org/10.1186/s12879-018-3066-0 PMID:29665781RehmanNA,KalyanaramanS,AhmadT, PervaizF, SaifU,SubramanianL, Fine-graineddenguefore-castingusingtelephonetriageservices.ScienceAdvances2016;2(7):e1501215.https://doi.org/10.1126/sciadv.1501215 PMID:27419226FreezeJ, ErraguntlaM,VermaA,Dataintegrationandpredictiveanalysissystemfordiseaseprophy-laxis:Incorporatingdenguefeverforecasts.Proceedingsof the51stHawaiiInternationalConferenceonSystemScience2018;913–922.DinhL, ChowellG,Rothenberg R,Growthscalingfortheearlydynamicsof HIV/AIDSepidemicsin Bra-zilandtheinfluenceof socio-demographicfactors.Journalof TheoreticalBiology2018;442:79–86.https://doi.org/10.1016/j.jtbi.2017.12.030PMID:29330056ChretienJ-P,RileyS,GeorgeDB,Mathematicalmodelingof theWestAfticaEbolaepidemic. eLIFE2015;4:e09186. https://doi.org/10.7554/eLife.09186PMID:26646185Cardona-OspinaJA,Villamil-Go ́mezWE,Jimenez-CanizalesCE,Castañeda-Herna ́ndezDM,Rodrı ́-guez-MoralesAJ.Estimatingtheburdenof diseaseandtheeconomiccostattributable to chikungunya,Colombia,2014.Transactions of theRoyalSocietyof TropicalMedicineandHygiene2015;109(12):793–802.https://doi.org/10.1093/trstmh/trv094PMID:26626342VillarLA,RojasDP,Besada-LombanaS,SartiE.Epidemiologicaltrendsof denguediseasein Colom-bia(2000–2011): a systematicreview.PLoSNeglectedTropicalDiseases2015;9(3):e0003499.https://doi.org/10.1371/journal.pntd.0003499PMID:25790245OspinaMartinezML,MartinezDuranME,PachecoGarcı ́a OE,BonillaHQ,Pe ́rezNT.,Protocolodevigilanciaensaludpu ́blicaenfermedadporvirusZika.PRO-R02.056.Bogota(Colombia): InstitutoNacionaldeSalud,2017.Available from:http://bvs.minsa.gob.pe/local/MINSA/3449.pdf(lastaccessedDecember 16,2019).BeketovMA,YurchenkoYA,BelevichOE,LiessM,Whatenvironmentalfactorsareimportant determi-nantsof structure,speciesrichness,andabundance of mosquitoassemblages? Journalof MedicalEntomology2010;47:129–139.https://doi.org/10.1603/me09150 PMID:20380292JoyceRJCMORPH:A methodthatproduces globalprecipitationestimatesfrompassive microwaveandinfrareddataat highspatialandtemporalresolution.Journalof Hydrometeorology2004;5:487–503.KoyadunS,ButrapornP,KittayapongP,Ecologic andsociodemographicriskdeterminantsfordenguetransmissionin urbanareasin Thailand.InterdisciplinaryPerspectivesonInfectiousDiseases2012;2012:907494. https://doi.org/10.1155/2012/907494PMID:23056042ReiterP,Climatechangeandmosquito-bornedisease.EnvironmentalHealthPerspectives2001;109(supplement1):141–161.https://doi.org/10.1289/ehp.01109s1141PMID:11250812SoghaierMA,HimattS,OsmanKE,OkouedSI,SeidahmedOE,BeattyME,et al.,Cross-sectionalcommunity-basedstudyof thesocio-demographicfactorsassociatedwiththeprevalence of dengueintheeasternpartof Sudanin 2011.BMCPublicHealth2015;15:558.https://doi.org/10.1186/s12889-015-1913-0 PMID:26084275KannanMaharajanM,RajiahK,SingcoBelotindosJA,BasesMS.Socialdeterminantspredictingtheknowledge,attitudes,andpracticesof womentowardzikavirusinfectionFrontiers in PublicHealth2020;8:170.https://doi.org/10.3389/fpubh.2020.00170PMID:32582602CouseQuinnS,KumarS.Healthinequalitiesandinfectiousdiseaseepidemics:A challengeforglobalhealthsecurity.BiosecurityandBioterrorism:Biodefense Srategy,Practice,andScience2014;12(5):263–273.BreimanL, Randomforests.Machinelearning2001;45(1):5–32.HulmeM,NewM.Dependenceof large-scaleprecipitationclimatologiesontemporalandspatialsam-pling.Journalof Climate,1997;10:1099–1113,PapacharalampousGA,TyralisH,Evaluationof randomforestsandprophetfordailystreamflowfore-casting.Advancesin Geosciences2018;45:201–208.LuL, LinH,TianL, YangW,SunJ, LiuQ,Timeseriesanalysisof denguefeverandweatherin Guang-zhou,China,BMCPublicHealth2009;9:395.https://doi.org/10.1186/1471-2458-9-395PMID:19860867ChenS-C.LiaoC-M,ChioC-P,ChouH-H,YouS-H,ChengY-H,laggedtemperature effectwithmos-quitotransmissionpotentialexplainsdenguevariabilityin southernTaiwan:Insightsfroma statisticalanalysis.Scienceof TheTotalEnvironment 2010;408(19):469–4075.CheongYL,BurkartK,LeitaoPJ,LakesT, Assessingweathereffectsondenguediseasein Malaysia,InternationalJournalof EnvironmentalResearchandPublicHealth2013;10(12):6319–6334. https://doi.org/10.3390/ijerph10126319PMID:24287855ChangK,ChenC-D,ShihC-M,LeeT-C,WuM-T,WuD-C,et al.,Time-lagginginterplayeffectandexcessriskof meteorological/mosquitoparametersandpetrochemicalgasexplosionondengueinci-dence.Scientificreports2016;6:35028.https://doi.org/10.1038/srep35028PMID:27733774ChenY,OngJHY,RajarethinamJ, YapG,NgLC,CookAR.Neighbourhoodlevelreal-timeforecastingof denguecasesin tropicalurbanSingapore. BMCMedicine2018;16(1):129.https://doi.org/10.1186/s12916-018-1108-5PMID:30078378EastinMD,DelmelleE,CasasI, WexlerJ, SelfC,Intra-andinterseasonalautoregressivepredictionofdengueoutbreaks usinglocalweatherandregionalclimatefora tropicalenvironment in Colombia.TheAmericanJournalof TropicalMedicineandHygiene2014;91(3):598–610.https://doi.org/10.4269/ajtmh.13-0303PMID:24957546BostanN,JavedS,AmenN,EqaniSAMAS,TahirF, BokhariH,Denguefevervirusin Pakistan:effectsof seasonalpatternandtemperature changeondistributionof vectorandvirus.Reviewsin MedicalVirology2017;27(1):e1899OidtmanRJ,LaiS,HuangZ, YangJ, SirajAS,ReinerRC,et al.,Inter-annual variationin seasonalden-gueepidemicsdrivenbymultipleinteractingfactorsin Guangzhou,China,NatureCommunications2019;10:1148. https://doi.org/10.1038/s41467-019-09035-xPMID:30850598HastieT, Tibshirani R,FriedmanJ. Theelementsof statistical learning.Spring,Berlin,2008LiawA,WienerM.Breiman andCulter’srandomforestsforclassificationandregression.2018.Avail-ablefrom:https://cran.r-project.org/web/packages/randomForest/randomForest.pdf(lastaccessedMay7, 2020).PengZ, LetuH,WangT, ShiC,ZhaoC,TanaG,ZhaoN,DaiT, TangR,ShangH,ShiJ, ChenL. Esti-mationof shortwavesolarradiationusingtheartificialneuralnetworkfromHimawari-8satelliteimageryoverChina.Journalof QuantitativeSpectroscopyandRadiativeTransfer2020;240:106672.Hyndman RJ,KhandakarY.Automatictimeseriesforecasting: TheforecastpackageforR.JournalofStatisticalSoftware2008;27:1–22.ReichNG,LesslerJ, SakrejdaK,LauerSA,Iamsirithaworn S,CummingsDAT.Casestudyin evaluat-ingtimeseriespredictionmodelsusingtherelativemeanabsoluteerror.TheAmericanStatistician2016;70:285–292. https://doi.org/10.1080/00031305.2016.1148631PMID:28138198LiuY,CaoG,ZhaoN,MulliganK,YeX.Improveground-levelPM2.5concentrationmappingusingarandomforests-basedgeostatisticalapproach. EnvironmentalPollution2018;235:272–282.https://doi.org/10.1016/j.envpol.2017.12.070PMID:29291527GrziwotzF, StraußJF,HsiehC-h,TelschowA.Empiricaldynamicmodelling identifiesdifferentresponses ofAedesPolynesiensissubpopulationsto naturalenvironmentalvariables. ScientificReports2018;8: 16768.https://doi.org/10.1038/s41598-018-34972-wPMID:30425277da Cruz Ferreira DA,DegenerCM,deAlmeidaMarques-ToledoC,BendatiMM,FetzerLO,TeixeiraCP,EirasAE.Meteorological variablesandmosquitomonitoringaregoodpredictorsforinfestationtrendsof Aedesaegypti,thevectorof dengue,chikungunyaandZika.ParasitesVectors2017;10:78.https://doi.org/10.1186/s13071-017-2025-8PMID:28193291ManicaM,Filipponi F, D’Alessandro A,ScretiA,NetelerM,RosàR,et al.SpatialandTemporal HotSpotsofAedesalbopictusAbundance insideandoutsidea SouthEuropeanMetropolitanArea.PLoSNeglectedTropicalDiseases2016;10(6):e0004758.https://doi.org/10.1371/journal.pntd.0004758PMID:27333276MulliganK,DixonJ, SinnC-LJ, ElliottSJ.Is denguea diseaseof poverty?A systematicreview.Patho-gensandGlobalHealth2015;109(1):10–18.https://doi.org/10.1179/2047773214Y.0000000168PMID:25546339Tapia-ConyerR,Me ́ndez-Galva ́n JF,Gallardo-Rinco ́n H.Thegrowingburdenof denguein LatinAmer-ica.Journalof ClinicalVirology2009;46:S3–S6.https://doi.org/10.1016/S1386-6532(09)70286-0PMID:19800563AdamsEA,BoatengGO,AmoyawJA.Socioeconomic anddemographicpredictors of potablewaterandsanitationaccessin Ghana.SocialIndicatorsResearch2016;126(2):673–687.deJanvryA,SadouletE.Growth,poverty,andinequalityin LatinAmerica:A causalanalysis,1970–94.Thereviewof IncomeandWealth2000;46(3):267–287.Najafabadi MM,VillanustreF, KhoshgoftaarTM,SeliyaN,WaldR,MuharemagicE.Deeplearningapplicationsandchallenges in bigdataanalytics.Journalof BigData2015;2:1OngJ, LiuX,RajarethinamJ, KokSY,LiangS,TangCS,et al.,Mappingdengueriskin Singaporeusingrandomforest.PLoSNeglectedTropicalDiseases2018;12(6):e0006587.https://doi.org/10.1371/journal.pntd.0006587PMID:29912940WilliamsRJ,ZipserD,A learningalgorithmforcontinually runningfullyrecurrentneuralnetworks.Neu-ralComputation1989;1(2):270–280.FiebreDenguePrevisiónRedes neuronales artificalesDengue feverForecastingArtificial neuronal networksMachine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in ColombiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/af7dac0a-9ccd-45ea-aef5-6d4938635d14/download3bce4f7ab09dfc588f126e1e36e98a45MD53ORIGINALMACHINE LEARNING FORECASTING 2020.pdfMACHINE LEARNING FORECASTING 2020.pdfArtículoapplication/pdf1552130https://repository.ucc.edu.co/bitstreams/b837de38-bd73-4ee9-936b-f4b2ef35d1ae/downloadb2ce7c8ff6451109859fcef3a1f70278MD51Licencia de uso RI MACHINE FORECASTING.pdfLicencia de uso RI MACHINE FORECASTING.pdfLicencia de usoapplication/pdf211691https://repository.ucc.edu.co/bitstreams/15336c0b-e0e7-4156-89be-cf3542a1f074/download0e51a8f31ddd7ac34eddb9ee0083128eMD52THUMBNAILMACHINE LEARNING FORECASTING 2020.pdf.jpgMACHINE LEARNING FORECASTING 2020.pdf.jpgGenerated Thumbnailimage/jpeg5961https://repository.ucc.edu.co/bitstreams/db90c7ef-a570-4136-8e0f-c6b0259da24f/download60b17a273fb2e3be9688997747879ad9MD54Licencia de uso RI MACHINE FORECASTING.pdf.jpgLicencia de uso RI MACHINE FORECASTING.pdf.jpgGenerated Thumbnailimage/jpeg5118https://repository.ucc.edu.co/bitstreams/685ff642-3555-4317-b17e-2d7182168ee0/download910a90cb4b18964de4b22960aff8b240MD55TEXTMACHINE LEARNING FORECASTING 2020.pdf.txtMACHINE LEARNING FORECASTING 2020.pdf.txtExtracted texttext/plain65578https://repository.ucc.edu.co/bitstreams/5ca30d49-6970-454d-acc0-ff58519c0306/download881ade4dffae608891afa318aa4b88a2MD56Licencia de uso RI MACHINE FORECASTING.pdf.txtLicencia de uso RI MACHINE FORECASTING.pdf.txtExtracted texttext/plain5953https://repository.ucc.edu.co/bitstreams/e077fe3f-b45d-4e6b-984c-f869e27ba6cd/download2e8d955a5ccabe20f367d7568352647fMD5720.500.12494/33621oai:repository.ucc.edu.co:20.500.12494/336212024-08-10 22:47:54.003restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=