Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia

The robust estimate and forecast capability of random forests (RF) has been widely recognized, however this ensemble machine learning method has not been widely used in mosquito-borne disease forecasting. In this study, two sets of RF models were developed at the national (pooled department-level da...

Full description

Autores:
García Balaguera, César
Zhao, Naizhuo
Charland, Katia
Carabali, Mabel
Nsoesie, Elaine
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/33621
Acceso en línea:
https://doi.org/10.1371/journal.pntd.0008056
https://hdl.handle.net/20.500.12494/33621
Palabra clave:
Fiebre
Dengue
Previsión
Redes neuronales artificales
Dengue fever
Forecasting
Artificial neuronal networks
Rights
openAccess
License
Atribución