Machine learning and dengue forecasting:Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-nationalscales in Colombia
The robust estimate and forecast capability of random forests (RF) has been widely recognized, however this ensemble machine learning method has not been widely used in mosquito-borne disease forecasting. In this study, two sets of RF models were developed at the national (pooled department-level da...
- Autores:
-
García Balaguera, César
Zhao, Naizhuo
Charland, Katia
Carabali, Mabel
Nsoesie, Elaine
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/33621
- Acceso en línea:
- https://doi.org/10.1371/journal.pntd.0008056
https://hdl.handle.net/20.500.12494/33621
- Palabra clave:
- Fiebre
Dengue
Previsión
Redes neuronales artificales
Dengue fever
Forecasting
Artificial neuronal networks
- Rights
- openAccess
- License
- Atribución