Optimización robusta de portafolio empleando métodos Bayesianos
En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto...
- Autores:
-
Carmona Espejo, Diego Felipe
Gamboa Hidalgo, Jhonatan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Externado de Colombia
- Repositorio:
- Biblioteca Digital Universidad Externado de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:bdigital.uexternado.edu.co:001/15345
- Acceso en línea:
- https://bdigital.uexternado.edu.co/handle/001/15345
https://doi.org/10.18601/17941113.n21.05
- Palabra clave:
- Optimal portfolio;
Bayesian methods;
robust optimization
portafolio óptimo;
métodos bayesianos;
optimización robusta
- Rights
- openAccess
- License
- Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022
id |
uexternad2_bd8aecc7c1f73f2cdb58949c8247743b |
---|---|
oai_identifier_str |
oai:bdigital.uexternado.edu.co:001/15345 |
network_acronym_str |
uexternad2 |
network_name_str |
Biblioteca Digital Universidad Externado de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización robusta de portafolio empleando métodos Bayesianos |
dc.title.translated.eng.fl_str_mv |
Robust portfolio optimization using Bayesian methods |
title |
Optimización robusta de portafolio empleando métodos Bayesianos |
spellingShingle |
Optimización robusta de portafolio empleando métodos Bayesianos Optimal portfolio; Bayesian methods; robust optimization portafolio óptimo; métodos bayesianos; optimización robusta |
title_short |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_full |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_fullStr |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_full_unstemmed |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_sort |
Optimización robusta de portafolio empleando métodos Bayesianos |
dc.creator.fl_str_mv |
Carmona Espejo, Diego Felipe Gamboa Hidalgo, Jhonatan |
dc.contributor.author.spa.fl_str_mv |
Carmona Espejo, Diego Felipe Gamboa Hidalgo, Jhonatan |
dc.subject.eng.fl_str_mv |
Optimal portfolio; Bayesian methods; robust optimization |
topic |
Optimal portfolio; Bayesian methods; robust optimization portafolio óptimo; métodos bayesianos; optimización robusta |
dc.subject.spa.fl_str_mv |
portafolio óptimo; métodos bayesianos; optimización robusta |
description |
En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto de incertidumbre de tipo elipsoidal, bajo una distribución Wishart inversa. De esta forma, se incorpora la incertidumbre de los parámetros estimados para crear la contraparte robusta en el modelo de portafolio. El modelo propuesto utiliza una función de distribución Gamma, como generalización de la función Wishart. Los resultados confirman las conclusiones de Meucci y corroboran las propiedades atribuidas a este tipo de portafolios. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-12-14T10:23:26Z 2024-06-07T07:31:00Z |
dc.date.available.none.fl_str_mv |
2022-12-14T10:23:26Z 2024-06-07T07:31:00Z |
dc.date.issued.none.fl_str_mv |
2022-12-14 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.doi.none.fl_str_mv |
10.18601/17941113.n21.05 |
dc.identifier.eissn.none.fl_str_mv |
2346-2140 |
dc.identifier.issn.none.fl_str_mv |
1794-1113 |
dc.identifier.uri.none.fl_str_mv |
https://bdigital.uexternado.edu.co/handle/001/15345 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.18601/17941113.n21.05 |
identifier_str_mv |
10.18601/17941113.n21.05 2346-2140 1794-1113 |
url |
https://bdigital.uexternado.edu.co/handle/001/15345 https://doi.org/10.18601/17941113.n21.05 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13487 https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13488 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 21 , Año 2021 : Julio-Diciembre |
dc.relation.citationendpage.none.fl_str_mv |
104 |
dc.relation.citationissue.spa.fl_str_mv |
21 |
dc.relation.citationstartpage.none.fl_str_mv |
81 |
dc.relation.ispartofjournal.spa.fl_str_mv |
ODEON |
dc.relation.references.spa.fl_str_mv |
Avramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdf Bade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4 Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980 Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28 Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons. Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5 Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003 Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397 Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260 Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772 Hoffman, M., Brochu, E. y De Freitas, N. (2011). Portfolio allocation for ayesian optimi-zation. En Proceedings of the Twenty-Seventh Conference on Uncertainty in Ar¬tificial Intelligence, 327-336. https://dl.acm.org/doi/abs/10.5555/3020548.3020587 Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6 Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons. Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1 Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0 Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press. Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer. Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553 Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press. Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28. Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM. Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046 Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.ed Williams, J. (1938). The Theory of Investment Value. Harvard University Press. Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04 |
dc.rights.spa.fl_str_mv |
Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0 |
rights_invalid_str_mv |
Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022 http://purl.org/coar/access_right/c_abf2 http://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html |
dc.publisher.spa.fl_str_mv |
Universidad Externado de Colombia |
dc.source.spa.fl_str_mv |
https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490 |
institution |
Universidad Externado de Colombia |
bitstream.url.fl_str_mv |
https://bdigital.uexternado.edu.co/bitstreams/0d574170-016f-46d4-9228-17cc71b14f9d/download |
bitstream.checksum.fl_str_mv |
47bd85b0304bcfef6217357de15485f4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Universidad Externado de Colombia |
repository.mail.fl_str_mv |
metabiblioteca@metabiblioteca.org |
_version_ |
1814100417259241472 |
spelling |
Carmona Espejo, Diego FelipeGamboa Hidalgo, Jhonatan2022-12-14T10:23:26Z2024-06-07T07:31:00Z2022-12-14T10:23:26Z2024-06-07T07:31:00Z2022-12-14En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto de incertidumbre de tipo elipsoidal, bajo una distribución Wishart inversa. De esta forma, se incorpora la incertidumbre de los parámetros estimados para crear la contraparte robusta en el modelo de portafolio. El modelo propuesto utiliza una función de distribución Gamma, como generalización de la función Wishart. Los resultados confirman las conclusiones de Meucci y corroboran las propiedades atribuidas a este tipo de portafolios.In this paper we implemented a Bayesian robust optimization model to select an optimal investment portfolio. To do that, we extended the model developed by Meucci, which consists of incorporating the Bayesian approach into the robust portfolio model in order to define an ellipsoidal-type uncertainty set under an Inverse Wishart Distribution. Thus, the uncertainty of the estimated parameters for create the robust counterpart in the portfolio model. The proposed model uses a Gamma distribution function, as a generalization of the Wishart function. Results confirm Meucci’s conclusions and, it corroborates the properties attributed to those portfolios.application/pdftext/html10.18601/17941113.n21.052346-21401794-1113https://bdigital.uexternado.edu.co/handle/001/15345https://doi.org/10.18601/17941113.n21.05spaUniversidad Externado de Colombiahttps://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13487https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13488Núm. 21 , Año 2021 : Julio-Diciembre1042181ODEONAvramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdfBade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons.Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772Hoffman, M., Brochu, E. y De Freitas, N. (2011). Portfolio allocation for ayesian optimi-zation. En Proceedings of the Twenty-Seventh Conference on Uncertainty in Ar¬tificial Intelligence, 327-336. https://dl.acm.org/doi/abs/10.5555/3020548.3020587Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons.Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press.Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer.Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press.Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28.Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM.Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.edWilliams, J. (1938). The Theory of Investment Value. Harvard University Press.Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.http://creativecommons.org/licenses/by-nc-sa/4.0https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490Optimal portfolio;Bayesian methods;robust optimizationportafolio óptimo;métodos bayesianos;optimización robustaOptimización robusta de portafolio empleando métodos BayesianosRobust portfolio optimization using Bayesian methodsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2565https://bdigital.uexternado.edu.co/bitstreams/0d574170-016f-46d4-9228-17cc71b14f9d/download47bd85b0304bcfef6217357de15485f4MD51001/15345oai:bdigital.uexternado.edu.co:001/153452024-06-07 02:31:00.67http://creativecommons.org/licenses/by-nc-sa/4.0Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022https://bdigital.uexternado.edu.coUniversidad Externado de Colombiametabiblioteca@metabiblioteca.org |