Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
En este documento se presenta el análisis del comportamiento de los clientes con tarjetas de crédito de una institución financiera colombiana con base en su calificación de riesgo de crédito, a través de la aplicación del modelo de machine learning no supervisado denominado K-means. Se obtienen clú...
- Autores:
-
Barragán Garnica, Diego
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Externado de Colombia
- Repositorio:
- Biblioteca Digital Universidad Externado de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:bdigital.uexternado.edu.co:001/15348
- Acceso en línea:
- https://bdigital.uexternado.edu.co/handle/001/15348
https://doi.org/10.18601/17941113.n22.02
- Palabra clave:
- K-means;
machine learning;
credit cards;
credit score
modelo K-means;
machine learning;
tarjetas de crédito;
calificación de riesgo de crédito
- Rights
- openAccess
- License
- Diego Barragán Garnica - 2023
id |
uexternad2_a48621c17be117e4442d366c263a0cdf |
---|---|
oai_identifier_str |
oai:bdigital.uexternado.edu.co:001/15348 |
network_acronym_str |
uexternad2 |
network_name_str |
Biblioteca Digital Universidad Externado de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
dc.title.translated.eng.fl_str_mv |
Costumer behavior with credit cards with deterioration of the risk rating using K-means |
title |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
spellingShingle |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means K-means; machine learning; credit cards; credit score modelo K-means; machine learning; tarjetas de crédito; calificación de riesgo de crédito |
title_short |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
title_full |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
title_fullStr |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
title_full_unstemmed |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
title_sort |
Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means |
dc.creator.fl_str_mv |
Barragán Garnica, Diego |
dc.contributor.author.spa.fl_str_mv |
Barragán Garnica, Diego |
dc.subject.eng.fl_str_mv |
K-means; machine learning; credit cards; credit score |
topic |
K-means; machine learning; credit cards; credit score modelo K-means; machine learning; tarjetas de crédito; calificación de riesgo de crédito |
dc.subject.spa.fl_str_mv |
modelo K-means; machine learning; tarjetas de crédito; calificación de riesgo de crédito |
description |
En este documento se presenta el análisis del comportamiento de los clientes con tarjetas de crédito de una institución financiera colombiana con base en su calificación de riesgo de crédito, a través de la aplicación del modelo de machine learning no supervisado denominado K-means. Se obtienen clústeres de clientes que permiten identificar sus patrones de comportamiento. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-04T13:39:59Z 2024-06-07T07:31:02Z |
dc.date.available.none.fl_str_mv |
2023-07-04T13:39:59Z 2024-06-07T07:31:02Z |
dc.date.issued.none.fl_str_mv |
2023-07-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.doi.none.fl_str_mv |
10.18601/17941113.n22.02 |
dc.identifier.eissn.none.fl_str_mv |
2346-2140 |
dc.identifier.issn.none.fl_str_mv |
1794-1113 |
dc.identifier.uri.none.fl_str_mv |
https://bdigital.uexternado.edu.co/handle/001/15348 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.18601/17941113.n22.02 |
identifier_str_mv |
10.18601/17941113.n22.02 2346-2140 1794-1113 |
url |
https://bdigital.uexternado.edu.co/handle/001/15348 https://doi.org/10.18601/17941113.n22.02 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14884 https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14885 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 22 , Año 2022 : Enero-Junio |
dc.relation.citationendpage.none.fl_str_mv |
37 |
dc.relation.citationissue.spa.fl_str_mv |
22 |
dc.relation.citationstartpage.none.fl_str_mv |
7 |
dc.relation.ispartofjournal.spa.fl_str_mv |
ODEON |
dc.relation.references.spa.fl_str_mv |
Accenture (2019). 2019 Global Financial Services Consumer Study. Accenture. Adams, N. M., Hand, D. J. y Till, R. J. (2001). Mining for classes and patterns in be-havioural data. Journal of the Operational Research Society, 52 (9), 1017-1024. Banco de la República (2020). Informe especial riesgo de mercado. Banrep. Bakoben, M., Bellotti, T. y Adams, N. (2019). Identification of credit risk based on cluster analysis of account behaviours. Journal of the Operational Research Society, 0(0), 1-9. https://doi.org/10.1080/01605682.2019.1582586 Edelman, D. B. (1992). An application of cluster analysis in credit control. IMA Journal of Management Mathematics, 4(1), 81-87. https://doi.org/10.1093/imaman/4.1.81 Eduardo, C., López, B., Alfredo, J., García, J., Antonio, J. y López, V. (2019). Banca¬ria por métodos estadísticos y redes neuronales artificiales usando r. Resumen, 40(132), 43-63. Fisher, L. y Ness, J. W. V. (1971). Admissible clustering procedures. Biometrika, 58 (1), 91-104. Ge, Z., Member, S., Song, Z. y Ding, S. X. (2017). Data Mining and Analytics in the Process Industry: The Role of Machine Learning, IEEE access, 5. Grosan, C. (2011). Evolution of Modern Computational. En Intelligent Systems, Springer. 1-11. Hsieh, N. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27(4), 623-633. https://doi.org/10.1016/j.eswa.2004.06.007 Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., y Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. Jain, A. K. (2010). Data clustering: 50 years beyond K-means q. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011 Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in neural information processing systems, 15. Li, W., Wu, X., Sun, Y. y Zhang, Q. (2010). Credit card customer segmentation and target marketing based on data mining. Proceedings–2010 International Confe¬rence on Computational Intelligence and Security, cis 2010, 73-76. https://doi.org/10.1109/CIS.2010.23 Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. AAAI Publi¬cations, 53-60. Martins, M. C. y Cardoso, M. (2012). Cross-validation of segments of credit card holders. Journal of Retailing and Consumer Services, 19(6), 629-636. https://doi.org/10.1016/j.jretconser.2012.08.004 Minskyt, M. (s. d.). Steps Toward Artificial Intelligence. Proceedings of the IRE. Morissette, L. y Chartier, S. (2013). The k-means clustering technique: General consi-derations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9(1), 15-24. https://doi.org/10.20982/tqmp.09.1.p015 Paõ, U., Paõ, U., Vasco, Â., Modron, J. I., Paõ, U. y Paõ, U. (1998). Clients’ characte¬ristics and marketing of products: Some evidence from a financial institution. https://doi.org/10.1108/02652320310488420 Pelleg, D. y Moore, A. W. (2000). X-means: Extending k-means with efficient estimation of the number of clusters. Icml, 1, 727-734. Shefrin, H. y Nicols, C. M. (2014). Credit card behavior, financial styles, and heuris¬tics. Journal of Business Research, 67(8), 1679-1687. https://doi.org/10.1016/j.jbusres.2014.02.014 Scholkopf, B., Smola, A. y Muller, K. (1998). Non-linear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319. https://doi.org/10.1162/089976698300017467 Soeini, R. A. y Rodpysh, K. V. (2012). Applying Data Mining to Insurance Customer Churn Management, 30, 82-92. Soukal, I. y Hedvicaková, M. (2011). Procedia computer retail core banking services e-banking client cluster identification. Procedia Computer Science, 3, 1205-1210. https://doi.org/10.1016/j.procs.2010.12.195 Timón, C. E. (2017). Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo–Herramientas Open Source que permiten su uso (trabajo de de grado). Wallace, C. S. y Boulton, D. M. (1968). An information measure for classification. The Computer Journal, 11 (2), 185-194. Wallace, C. S. y Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal Statistical Society: Series B (Methodological), 49 (3), 240- 252. |
dc.rights.spa.fl_str_mv |
Diego Barragán Garnica - 2023 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0 |
rights_invalid_str_mv |
Diego Barragán Garnica - 2023 http://purl.org/coar/access_right/c_abf2 http://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html |
dc.publisher.spa.fl_str_mv |
Universidad Externado de Colombia |
dc.source.spa.fl_str_mv |
https://revistas.uexternado.edu.co/index.php/odeon/article/view/8873 |
institution |
Universidad Externado de Colombia |
bitstream.url.fl_str_mv |
https://bdigital.uexternado.edu.co/bitstreams/2cef4011-8a2c-47bd-b52a-fcdb44178215/download |
bitstream.checksum.fl_str_mv |
62eb04f75f644f333da8d330024cccdf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Universidad Externado de Colombia |
repository.mail.fl_str_mv |
metabiblioteca@metabiblioteca.org |
_version_ |
1814100360665497600 |
spelling |
Barragán Garnica, Diego2023-07-04T13:39:59Z2024-06-07T07:31:02Z2023-07-04T13:39:59Z2024-06-07T07:31:02Z2023-07-04En este documento se presenta el análisis del comportamiento de los clientes con tarjetas de crédito de una institución financiera colombiana con base en su calificación de riesgo de crédito, a través de la aplicación del modelo de machine learning no supervisado denominado K-means. Se obtienen clústeres de clientes que permiten identificar sus patrones de comportamiento.This document presents the analysis of the behavior of cardholders of a Colombian financial institution based on their credit risk rating through the application of the unsupervised machine learning model called K-means. Clusters of clients are obtained that allow identifying their behavior.application/pdftext/html10.18601/17941113.n22.022346-21401794-1113https://bdigital.uexternado.edu.co/handle/001/15348https://doi.org/10.18601/17941113.n22.02spaUniversidad Externado de Colombiahttps://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14884https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14885Núm. 22 , Año 2022 : Enero-Junio37227ODEONAccenture (2019). 2019 Global Financial Services Consumer Study. Accenture.Adams, N. M., Hand, D. J. y Till, R. J. (2001). Mining for classes and patterns in be-havioural data. Journal of the Operational Research Society, 52 (9), 1017-1024.Banco de la República (2020). Informe especial riesgo de mercado. Banrep.Bakoben, M., Bellotti, T. y Adams, N. (2019). Identification of credit risk based on cluster analysis of account behaviours. Journal of the Operational Research Society, 0(0), 1-9. https://doi.org/10.1080/01605682.2019.1582586Edelman, D. B. (1992). An application of cluster analysis in credit control. IMA Journal of Management Mathematics, 4(1), 81-87. https://doi.org/10.1093/imaman/4.1.81Eduardo, C., López, B., Alfredo, J., García, J., Antonio, J. y López, V. (2019). Banca¬ria por métodos estadísticos y redes neuronales artificiales usando r. Resumen, 40(132), 43-63.Fisher, L. y Ness, J. W. V. (1971). Admissible clustering procedures. Biometrika, 58 (1), 91-104.Ge, Z., Member, S., Song, Z. y Ding, S. X. (2017). Data Mining and Analytics in the Process Industry: The Role of Machine Learning, IEEE access, 5.Grosan, C. (2011). Evolution of Modern Computational. En Intelligent Systems, Springer. 1-11.Hsieh, N. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27(4), 623-633. https://doi.org/10.1016/j.eswa.2004.06.007Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., y Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.Jain, A. K. (2010). Data clustering: 50 years beyond K-means q. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in neural information processing systems, 15.Li, W., Wu, X., Sun, Y. y Zhang, Q. (2010). Credit card customer segmentation and target marketing based on data mining. Proceedings–2010 International Confe¬rence on Computational Intelligence and Security, cis 2010, 73-76. https://doi.org/10.1109/CIS.2010.23Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. AAAI Publi¬cations, 53-60.Martins, M. C. y Cardoso, M. (2012). Cross-validation of segments of credit card holders. Journal of Retailing and Consumer Services, 19(6), 629-636. https://doi.org/10.1016/j.jretconser.2012.08.004Minskyt, M. (s. d.). Steps Toward Artificial Intelligence. Proceedings of the IRE.Morissette, L. y Chartier, S. (2013). The k-means clustering technique: General consi-derations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9(1), 15-24. https://doi.org/10.20982/tqmp.09.1.p015Paõ, U., Paõ, U., Vasco, Â., Modron, J. I., Paõ, U. y Paõ, U. (1998). Clients’ characte¬ristics and marketing of products: Some evidence from a financial institution. https://doi.org/10.1108/02652320310488420Pelleg, D. y Moore, A. W. (2000). X-means: Extending k-means with efficient estimation of the number of clusters. Icml, 1, 727-734.Shefrin, H. y Nicols, C. M. (2014). Credit card behavior, financial styles, and heuris¬tics. Journal of Business Research, 67(8), 1679-1687. https://doi.org/10.1016/j.jbusres.2014.02.014Scholkopf, B., Smola, A. y Muller, K. (1998). Non-linear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319. https://doi.org/10.1162/089976698300017467Soeini, R. A. y Rodpysh, K. V. (2012). Applying Data Mining to Insurance Customer Churn Management, 30, 82-92.Soukal, I. y Hedvicaková, M. (2011). Procedia computer retail core banking services e-banking client cluster identification. Procedia Computer Science, 3, 1205-1210. https://doi.org/10.1016/j.procs.2010.12.195Timón, C. E. (2017). Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo–Herramientas Open Source que permiten su uso (trabajo de de grado).Wallace, C. S. y Boulton, D. M. (1968). An information measure for classification. The Computer Journal, 11 (2), 185-194.Wallace, C. S. y Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal Statistical Society: Series B (Methodological), 49 (3), 240- 252.Diego Barragán Garnica - 2023info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.http://creativecommons.org/licenses/by-nc-sa/4.0https://revistas.uexternado.edu.co/index.php/odeon/article/view/8873K-means;machine learning;credit cards;credit scoremodelo K-means;machine learning;tarjetas de crédito;calificación de riesgo de créditoPatrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-meansCostumer behavior with credit cards with deterioration of the risk rating using K-meansArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2642https://bdigital.uexternado.edu.co/bitstreams/2cef4011-8a2c-47bd-b52a-fcdb44178215/download62eb04f75f644f333da8d330024cccdfMD51001/15348oai:bdigital.uexternado.edu.co:001/153482024-06-07 02:31:03.034http://creativecommons.org/licenses/by-nc-sa/4.0Diego Barragán Garnica - 2023https://bdigital.uexternado.edu.coUniversidad Externado de Colombiametabiblioteca@metabiblioteca.org |