How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
the Biotic Pump Theory, as set forward by Drs. Makarieva and Gorshkov, states that the primary force driving surface winds, certainly in the tropics, is induced by the negative changes in atmospheric pressure caused by condensation of water vapour when clouds form. A high rate of condensation is nec...
- Autores:
-
Bunyard, Peter
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2014
- Institución:
- Universidad Sergio Arboleda
- Repositorio:
- Repositorio U. Sergio Arboleda
- Idioma:
- eng
- OAI Identifier:
- oai:repository.usergioarboleda.edu.co:11232/397
- Acceso en línea:
- http://hdl.handle.net/11232/397
https://doi.org/10.22518/9789588745886
- Palabra clave:
- Climatología
Circulación atmosférica
Ciclo hidrológico
Teoría de la bomba biótica
Climatology
Atmospheric circulation
Hydrologic cycle
OTHER Biotic pump theory
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id |
sergioarb2_da1a827041a54e2544839994b1b09bb5 |
---|---|
oai_identifier_str |
oai:repository.usergioarboleda.edu.co:11232/397 |
network_acronym_str |
sergioarb2 |
network_name_str |
Repositorio U. Sergio Arboleda |
repository_id_str |
|
dc.title.eng.fl_str_mv |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
title |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
spellingShingle |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. Climatología Circulación atmosférica Ciclo hidrológico Teoría de la bomba biótica Climatology Atmospheric circulation Hydrologic cycle OTHER Biotic pump theory |
title_short |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
title_full |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
title_fullStr |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
title_full_unstemmed |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
title_sort |
How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. |
dc.creator.fl_str_mv |
Bunyard, Peter |
dc.contributor.author.spa.fl_str_mv |
Bunyard, Peter |
dc.subject.lemb.spa.fl_str_mv |
Climatología Circulación atmosférica Ciclo hidrológico Teoría de la bomba biótica |
topic |
Climatología Circulación atmosférica Ciclo hidrológico Teoría de la bomba biótica Climatology Atmospheric circulation Hydrologic cycle OTHER Biotic pump theory |
dc.subject.lemb.eng.fl_str_mv |
Climatology Atmospheric circulation Hydrologic cycle OTHER Biotic pump theory |
description |
the Biotic Pump Theory, as set forward by Drs. Makarieva and Gorshkov, states that the primary force driving surface winds, certainly in the tropics, is induced by the negative changes in atmospheric pressure caused by condensation of water vapour when clouds form. A high rate of condensation is necessary and therefore the theory requires that a suffciently high rate of evapotranspiration from large areas of forest provides the "fuel" for the process. The theory therefore runs contrary to the traditional view, as introduced in climate models, that surface winds are the sole products of differences in surface heating as well as of latent heat release during the process of condensation. Indeed, Makarieva and her colleagues claim that transitions in the phases of water play a far more important role in driving atmospheric dynamics than is currently recognised |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014 |
dc.date.issued.spa.fl_str_mv |
2014-02 |
dc.date.accessioned.spa.fl_str_mv |
2015-08-21T18:53:51Z 2016-05-11T14:38:11Z 2017-05-16T19:01:51Z |
dc.date.available.spa.fl_str_mv |
2015-08-21T18:53:51Z 2016-05-11T14:38:11Z 2017-05-16T19:01:51Z |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.*.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.redcol.*.fl_str_mv |
http://purl.org/redcol/resource_type/LIB |
dc.type.local.spa.fl_str_mv |
Libro completo |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.isbn.spa.fl_str_mv |
978-958-8745-89-3 |
dc.identifier.uri.eng.fl_str_mv |
http://hdl.handle.net/11232/397 |
dc.identifier.doi.eng.fl_str_mv |
https://doi.org/10.22518/9789588745886 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Sergio Arboleda |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Sergio Arboleda |
dc.identifier.repourl.*.fl_str_mv |
repourl:https://repository.usergioarboleda.edu.co/ |
identifier_str_mv |
978-958-8745-89-3 instname:Universidad Sergio Arboleda reponame:Repositorio Institucional Universidad Sergio Arboleda repourl:https://repository.usergioarboleda.edu.co/ |
url |
http://hdl.handle.net/11232/397 https://doi.org/10.22518/9789588745886 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Investigación |
dc.relation.references.spa.fl_str_mv |
Avissar, R., & Werth, D. (2005). Global Hydroclimatological Teleconnections Resulting from Tropical Deforestation. Journal of Hydrometeorology, 6(2), 134-145. doi: 10.1175/JHM406.1 Bunyard, P. (2014). How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. Bogotá : Universidad Sergio Arboleda Betts, R. A., Sanderson, M., & Woodward, S. (2008). Effects of large-scale Amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transactions of the Royal Society B, 363(1498), 1873-1880. doi: 10.1098/rstb.2007.0027 Betts, R. A., Cox, P.M., Collins, M., Gash, J.H., Harris, P.P., Huntingford, C., Jones, C.D., et al. (2002). Amazonian forest die-backin the Hadley Centre coupled climate-vegetation model. Exeter, UK: UK Met Office, Hadley Centre. Blyth, E., Gash, J., Lloyd, A., Pryor M., Weedon, G. P., & Shuttleworth, J. (2010). Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data. Journal of Hydrometeorology, 11, 509-519. doi:10.1175/2009JHM1183.1 Boyce, C. K., Brodribb, T. J., Feild, T. S., & Zwieniecki, M. A. (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of The Royal Society B, 276(1663), 1771-1776. doi: 10.1098/rspb.2008.1919 Boyce, C. K., & Lee, J. E. (2010). An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of Royal Society B, 277, 3437-3443. doi: 10.1098/rspb.2010.0485 Boyce, C. K., Lee, J. E., Feild, T. S., Brodribb, T. J., & Zwieniecki, M. A. (2010). Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Annals of the Missouri Botanical Garden, 97(4), 527-540. doi: 10.3417/2009143 Brubaker, K. L, Dara E., & Eagleston, P. S. (1993). Estimation of Continental Precipitation Recycling. Journal of Climate, 6(6), 1077-1089. doi: 10.1175/15200442(1993)006<1077:EOCPR>2.0.CO;2 Bunyard, P. (2011). ¿Es aleatorio que la tierra ha retenido su agua?. Recovery from http:// www.almamater.edu.co / sitio / Archivos / Documentos /Documentos/00000534.pdf Bunyard, P. (2012). Biotic Pump, Fiction or Reality?. Awaiting publication. Bunyard, P., Netchev, P., Peña, C., & Redondo, J. (2012). The Barometric tidal wave, what is it?. Work presented at Tunis. Butler, R. (2010). The Amazongate fiasco. Recovery from http://news.mongabay.com/2010/0204-amazongate.html Charney, J., Quirk, W., Chow, S., & Kornfield, J. (1977). A comparative study of the effects of albedo change on drought in semiarid regions. Journal of Atmospheric Sciences, 34, 1366-1385. doi:10.1175/15200469(1977)034<1366:ACSOTE>2.0.CO;2 Collatz, G. J., Ribas-Carbfdbo, M. & Berry, J. A. (1992). Coupled Photosynthesis- Stomatal conductance model for Australian Journal of Plant Physiology, 19(5), 519-538. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global-warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. doi: 10.1038/35041539 Cox, P. M., Huntingford, C., & Harding, R. J., (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212- 213, 79-94. doi: 10.1016/S0022-1694(98)00203-0 Cowling, S. A., Maslin, M. A., & Sykes, M. T. (2001). Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation. Quaternary Research, 55(2), 140-149. doi: 10.1006/qres.2000.2197 Cowling, S. A., Shin, Y., Pinto, E., & Jones C. D. (2008). Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation–climate interactions. Philosophical Transactions of The Royal Society B, 363(1498), 1865-1871. Cruiziat, P. (2006). The Cohesion–Tension Theory at Work. In L. Taiz & E. Zeiger (Eds.) Plant Physiology (5ft Edition). Sunderland, USA: Sinauer Associates. Fearnside, P. M. (2000). Global warming and tropical landuse change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46(1-2), 115-158. Feller, U. (2006). Stomatal Opening at Elevated underestimated regulatory mechanism? General and Applied Plant Physiology, 1-2, 19-31. Feller, U., Anders, I., & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59(7), 1615-1624. doi: 10.1093/jxb/erm242 Fletcher, A. (2012). Operation OASIS = Overseas Arid Soil Irrigation Solution. Recovery from http://andrewkfletchers.blogspot.co.uk/ 2012/03/operation-oasis-andrew-k-fletcher.html Garcia-Carreras, L., & Parker, J. D. (2011). How does local tropical deforestation affect rainfall? Geophysical Research Letters, 38(19). doi:10.1029/2011GL049099 Gat, J. R., & Matsui, E. (1991). Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. Journal of Geophysical Research, 96(D7), 13179-13188. doi:10.1029/91JD00054 Hutyra, L. R., Munger, J. W., Nobre, C. A., Saleska, S. R., Vieira, S. A., & Wofsy, S. C. (2005). Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32(24), L24712.doi:10.1029/2005GL024981 Jacobs, C. (1994). Direct impact of atmospheric CO2 enrichment on regional transpiration (PhD thesis, Wageningen Agricultural University). Kigomo, B. N. (2003). Forests and Woodlands degradation in dryland Africa: a case for urgent global attention. Paper submitted to the XII Forestry Congress, Québec City, Canada. Kishore. (February, 2010). Definition of Stomata. Recovery from http://www.kish.in/stomata/ Kleidon, A, & Heimann, M. (2000). Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics, 16(2-3), 183-199. Kleidon, A. (2002). Testing the Effect of Life on Earth’s Functioning: How Gaian Is the Earth System? Climatic Change, 52(4), 383-389. doi: 10.1023/A:1014213811518 Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027 Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027 Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013-1033. doi:10.5194/hess-11-1013-2007 Makarieva, A. M., & Gorshkov, V. G. (2009a). Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Physics Letters A, 373(32), 2801-2804. doi:10.1016/j.physleta.2009.05.057 Makarieva, A. M., & Gorshkov, V. G. (2009b). Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Physics Letters A, 373(46), 4201-4205. doi: 10.1016/j.physleta.2009.09.023 Makarieva, A. M., & Gorshkov, V. G. (2009c). Reply to A. G. C. A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 13(17), 1307–1311. doi: 10.5194/hess-13-1307-2009 Makarieva, A. M., & Gorshkov, V. G. (2010). Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales. Biotic Regulation. Recovery fromarXiv:1003.5466v1 . Makarieva, A. M., Gorshkov, V. G., & Li, B. (2006). Conservation of water cycle on land via restoration of closed-canopy forests: implications for regional landscape planning. Ecological Research, 21(6), 897-906. doi:10.1007/s11284-006-0036-6 Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2013). Revisiting forest impact on atmospheric water vapor transport and precipitation. Theoretical and Applied Climatology, 111(1-2), 79-96. doi: 10.1007/s00704-012-0643-9 Marengo, J. A. (2004). Interdecadal and long term rainfall variability in the Amazon basin. Theoretical and Applied Climatology, 78(1-3), 79-96. doi:10.1007/s00704-004-0045-8 Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19. Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19. Marengo, J. A., Nobre, C.A., Tomasella, J., Cardoso, M.F, & Oyama, M.D. (2008). Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of The Royal Society B Biological Sciences, 363(1498), 1773-1778. doi: 10.1098/rstb.2007.0015 Maslin, A. M., Ettwein, V. J., Boot, C. S., Bendle, J., & Pancost, R. D. (2012). Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis? Journal of Quaternary Science, 27 (5), 451-460. doi: 10.1002/jqs.1567. Meteorological Office (s.f.). Meteorological data from 1961 to 2011 of Finland. Molion, L. C. (1989). The Amazonian Forests and Climatic Stability Impact of deforestation on Amazonia. The Ecologist, 19(6), 207-210. Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., et al. (2014). Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 506(7487),221-224. doi: 10.1038/nature13006 Penman, H. L. (1963). Vegetation and Hydrology. Farnham Royal: Commonwealth Agricultural Bureau . Phillips, O. L., Aragão, L., Lewis, S. L., Fisher, J. B., Lloyd J., LópezGonzález, G., Malhi Y., et al. (2009). Drought Sensitivity of the Amazon Rainforest. Science, 323(5919), 1344-1347. doi: 10.1126/science.1164033 Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., et al. (1998). Changes in the carbon balance of tropical forests: Evidence from long term plots. Science, 282(5388), 439-442. doi: 10.1126/science.282.5388.439 Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, D. K., et al. (2010). Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329(5998), 1513-1516.doi: 10.1126/science.1191056 Poveda, G., & Mesa, J. O. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophyscal Research Letters, 27(11), 1675-1678. doi:10.1029/1999GL006091 Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37(8), 2169-2178. doi: 10.1029/2000WR900395 Poveda, G., Jaramillo, L., & Vallejo, L.F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. doi: 10.1002/2013WR014087 Ramos da Silva, R., & Avissar, R. (2006). The Hydrometeorology of a Deforested Region of the Amazon Basin. Journal of Hydrometeorology, 7(5), 1028-1042. doi: 10.1175/JHM537.1 Rind, D. (1984). The influence of vegetation on the hydrologic cycle in a Global Climate Model. In J. E. Hansen, & T. Takahashi (Eds.) Climate Processes and Climate Sensitivity (Vol. 5) (pp. 73-91). Washington: American Geophysical Union. Roy, S., & Avissar, R. (2000). Scales of response of the convective boundary layer to land surface heterogeneity. Geophysical Research Letters, 27(4), 533-536. doi: 10.1029/1999GL010971 Roy, S., & Avissar, R. (2002). Impact of land use/land cover change on regional hydrometeorology in Amazonia. Journal of Geophysical Research, 107(D20), LBA 4-1 – LBA 4-12. doi: 10.1029/2000JD000266 Salati, E. (1987). The forest and the hydrological cycle. In R. Dickinson (Ed.), The Geophysiology of Amazonia, Vegetation and Climate Interactions, (pp.273-296). New York: Wiley-Insterscience Publication. Salati, E., & Vose, P. B. (1984). Amazon basin: A system in Equilibrium. Science, 225(4658), 129-138. doi: 10.1126/science.225.4658.129 Salazar, J. F., & Poveda, G. (2008). Role of a simplified hydrological cycle and clouds in regulating the climate-biota system of Daisyworld. Tellus B,61(2), 483-497. doi: 10.1111/j.1600-0889.2008.00411.x Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy Reflectance, Photosynthesis, and Transpiration. III. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme. Remote Sensing of Environment, 42(3), 187-216. doi:10.1016/0034-4257(92)90102-P Shuttleworth, W. J. (1988). Evaporation from Amazonian Rainforest. Proceedings of The Royal Society B, 233(1272), 321-346. doi: 10.1098/rspb.1988.0024 Spracklen, D. V., Arnold, S. R, & Taylor, C. M. (2012). Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282-285. doi: 10.1038/nature11390 Tyree, M. T. (1997). The Cohesion-Tension theory of sap ascent: current controversies. Journal of Experimental Botany, 48(315), 1753-176. University of Wyoming. (s.f.). Atmospheric Soundings. Recovery from http:// weather.uwyo.edu/upperair/sounding.html Van der Hammen, T., & Absy, M. L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2-4), 247-261.doi: 10.1016/0031-0182(94)90178-3 Werth, D., & Avissar, R. (2002). The local and global effects of Amazon deforestation. Journal of Geophysical Research: Atmospheres, 107(D20), LBA55-1 – LBA 55-8. doi: 10.1029/2001JD000717 Werth, D., & Avissar, R. (2004). The regional evapotranspiration of the Amazon. Journal of Hydrometeorology, 5(1), 100-109. doi:10.1175/15257541(2004)005<0100:TREOTA>2.0.CO;2 Wood, R., Bretherton, C. S., Hartmann, D. L. (2002). Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophysical Research Letters, 29(23), 7-1 – 7-4. doi: 10.1029/2002GL015371 Xue, Y., Liou, K., & Kasahara, A. (1990). Investigation ofBiogeophysical Feedback on the African Climate Using a Twodimensional Model. Journal of Climatology, 3(3), 337-352. doi:10.1175/15200442(1990)003<0337:IOBFOT>2.0.CO;2 |
dc.relation.citationstartpage.spa.fl_str_mv |
3 |
dc.relation.citationendpage.spa.fl_str_mv |
114 |
dc.rights.license.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.coar.*.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
114 |
dc.format.medium.spa.fl_str_mv |
Digital |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Sergio Arboleda |
dc.publisher.program.spa.fl_str_mv |
Instituto de Estudios y Servicios Ambientales - IDEASA |
institution |
Universidad Sergio Arboleda |
bitstream.url.fl_str_mv |
https://repository.usergioarboleda.edu.co/bitstream/11232/397/1/license.txt https://repository.usergioarboleda.edu.co/bitstream/11232/397/6/How%20the%20biotic%20pump.pdf.jpg https://repository.usergioarboleda.edu.co/bitstream/11232/397/4/How%20the%20biotic%20pump.pdf.txt https://repository.usergioarboleda.edu.co/bitstream/11232/397/7/How%20the%20biotic%20pump.pdf |
bitstream.checksum.fl_str_mv |
97a964ad860602f11de1a47e333f3c18 eb7f8d9b741e4f438e4d11bd00ca5f53 ff865702090d338554582be80afea54b 4aae9d4256d17191be8c36edceeff0a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Sergio Arboleda |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1814076314609516544 |
spelling |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)http://repository.usergioarboleda.edu.co/bitstream/id/5bccc72d-7e6d-4f64-ab18-bad93c49a567/license.txthttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Bunyard, Peter2015-08-21T18:53:51Z2016-05-11T14:38:11Z2017-05-16T19:01:51Z2015-08-21T18:53:51Z2016-05-11T14:38:11Z2017-05-16T19:01:51Z20142014-02978-958-8745-89-3http://hdl.handle.net/11232/397https://doi.org/10.22518/9789588745886instname:Universidad Sergio Arboledareponame:Repositorio Institucional Universidad Sergio Arboledarepourl:https://repository.usergioarboleda.edu.co/the Biotic Pump Theory, as set forward by Drs. Makarieva and Gorshkov, states that the primary force driving surface winds, certainly in the tropics, is induced by the negative changes in atmospheric pressure caused by condensation of water vapour when clouds form. A high rate of condensation is necessary and therefore the theory requires that a suffciently high rate of evapotranspiration from large areas of forest provides the "fuel" for the process. The theory therefore runs contrary to the traditional view, as introduced in climate models, that surface winds are the sole products of differences in surface heating as well as of latent heat release during the process of condensation. Indeed, Makarieva and her colleagues claim that transitions in the phases of water play a far more important role in driving atmospheric dynamics than is currently recognisedLa teoría de la bomba biótica , establece que la primera fuerza motriz de los vientos de superficie, sobre todo en los trópicos , es inducida por los cambios negativos en la presión atmosférica causada por la condensación de vapor de agua cuando las nubes se forman. Una alta velocidad de condensación es necesaria y por lo tanto, la teoría requiere que una alta evapotranspiración de grandes áreas de bosques que proporcionan el "combustible" para el proceso. Por consiguiente, la teoría va en contra de la visión tradicional , como se presentó en los modelos climáticos , que los vientos de superficie son los únicos productos de diferencias de calentamiento de la superficie, así como de la liberación del calor latente durante el proceso de condensación. De hecho , Makarieva y sus colegas afirman que las transiciones en las fases de agua juegan un papel más importante en el impulso de la dinámica atmosférica de lo que se reconoce actualmente.114Digitalapplication/pdfengUniversidad Sergio ArboledaInstituto de Estudios y Servicios Ambientales - IDEASAInvestigaciónAvissar, R., & Werth, D. (2005). Global Hydroclimatological Teleconnections Resulting from Tropical Deforestation. Journal of Hydrometeorology, 6(2), 134-145. doi: 10.1175/JHM406.1Bunyard, P. (2014). How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. Bogotá : Universidad Sergio ArboledaBetts, R. A., Sanderson, M., & Woodward, S. (2008). Effects of large-scale Amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transactions of the Royal Society B, 363(1498), 1873-1880. doi: 10.1098/rstb.2007.0027Betts, R. A., Cox, P.M., Collins, M., Gash, J.H., Harris, P.P., Huntingford, C., Jones, C.D., et al. (2002). Amazonian forest die-backin the Hadley Centre coupled climate-vegetation model. Exeter, UK: UK Met Office, Hadley Centre.Blyth, E., Gash, J., Lloyd, A., Pryor M., Weedon, G. P., & Shuttleworth, J. (2010). Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data. Journal of Hydrometeorology, 11, 509-519. doi:10.1175/2009JHM1183.1Boyce, C. K., Brodribb, T. J., Feild, T. S., & Zwieniecki, M. A. (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of The Royal Society B, 276(1663), 1771-1776. doi: 10.1098/rspb.2008.1919Boyce, C. K., & Lee, J. E. (2010). An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of Royal Society B, 277, 3437-3443. doi: 10.1098/rspb.2010.0485Boyce, C. K., Lee, J. E., Feild, T. S., Brodribb, T. J., & Zwieniecki, M. A. (2010). Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Annals of the Missouri Botanical Garden, 97(4), 527-540. doi: 10.3417/2009143Brubaker, K. L, Dara E., & Eagleston, P. S. (1993). Estimation of Continental Precipitation Recycling. Journal of Climate, 6(6), 1077-1089. doi: 10.1175/15200442(1993)006<1077:EOCPR>2.0.CO;2Bunyard, P. (2011). ¿Es aleatorio que la tierra ha retenido su agua?. Recovery from http:// www.almamater.edu.co / sitio / Archivos / Documentos /Documentos/00000534.pdfBunyard, P. (2012). Biotic Pump, Fiction or Reality?. Awaiting publication.Bunyard, P., Netchev, P., Peña, C., & Redondo, J. (2012). The Barometric tidal wave, what is it?. Work presented at Tunis.Butler, R. (2010). The Amazongate fiasco. Recovery from http://news.mongabay.com/2010/0204-amazongate.htmlCharney, J., Quirk, W., Chow, S., & Kornfield, J. (1977). A comparative study of the effects of albedo change on drought in semiarid regions. Journal of Atmospheric Sciences, 34, 1366-1385. doi:10.1175/15200469(1977)034<1366:ACSOTE>2.0.CO;2Collatz, G. J., Ribas-Carbfdbo, M. & Berry, J. A. (1992). Coupled Photosynthesis- Stomatal conductance model for Australian Journal of Plant Physiology, 19(5), 519-538.Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global-warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. doi: 10.1038/35041539Cox, P. M., Huntingford, C., & Harding, R. J., (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212- 213, 79-94. doi: 10.1016/S0022-1694(98)00203-0Cowling, S. A., Maslin, M. A., & Sykes, M. T. (2001). Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation. Quaternary Research, 55(2), 140-149. doi: 10.1006/qres.2000.2197Cowling, S. A., Shin, Y., Pinto, E., & Jones C. D. (2008). Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation–climate interactions. Philosophical Transactions of The Royal Society B, 363(1498), 1865-1871.Cruiziat, P. (2006). The Cohesion–Tension Theory at Work. In L. Taiz & E. Zeiger (Eds.) Plant Physiology (5ft Edition). Sunderland, USA: Sinauer Associates.Fearnside, P. M. (2000). Global warming and tropical landuse change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46(1-2), 115-158.Feller, U. (2006). Stomatal Opening at Elevated underestimated regulatory mechanism? General and Applied Plant Physiology, 1-2, 19-31.Feller, U., Anders, I., & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59(7), 1615-1624. doi: 10.1093/jxb/erm242Fletcher, A. (2012). Operation OASIS = Overseas Arid Soil Irrigation Solution. Recovery from http://andrewkfletchers.blogspot.co.uk/ 2012/03/operation-oasis-andrew-k-fletcher.htmlGarcia-Carreras, L., & Parker, J. D. (2011). How does local tropical deforestation affect rainfall? Geophysical Research Letters, 38(19). doi:10.1029/2011GL049099Gat, J. R., & Matsui, E. (1991). Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. Journal of Geophysical Research, 96(D7), 13179-13188. doi:10.1029/91JD00054Hutyra, L. R., Munger, J. W., Nobre, C. A., Saleska, S. R., Vieira, S. A., & Wofsy, S. C. (2005). Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32(24), L24712.doi:10.1029/2005GL024981Jacobs, C. (1994). Direct impact of atmospheric CO2 enrichment on regional transpiration (PhD thesis, Wageningen Agricultural University).Kigomo, B. N. (2003). Forests and Woodlands degradation in dryland Africa: a case for urgent global attention. Paper submitted to the XII Forestry Congress, Québec City, Canada.Kishore. (February, 2010). Definition of Stomata. Recovery from http://www.kish.in/stomata/Kleidon, A, & Heimann, M. (2000). Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics, 16(2-3), 183-199.Kleidon, A. (2002). Testing the Effect of Life on Earth’s Functioning: How Gaian Is the Earth System? Climatic Change, 52(4), 383-389. doi: 10.1023/A:1014213811518Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013-1033. doi:10.5194/hess-11-1013-2007Makarieva, A. M., & Gorshkov, V. G. (2009a). Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Physics Letters A, 373(32), 2801-2804. doi:10.1016/j.physleta.2009.05.057Makarieva, A. M., & Gorshkov, V. G. (2009b). Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Physics Letters A, 373(46), 4201-4205. doi: 10.1016/j.physleta.2009.09.023Makarieva, A. M., & Gorshkov, V. G. (2009c). Reply to A. G. C. A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 13(17), 1307–1311. doi: 10.5194/hess-13-1307-2009Makarieva, A. M., & Gorshkov, V. G. (2010). Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales. Biotic Regulation. Recovery fromarXiv:1003.5466v1 .Makarieva, A. M., Gorshkov, V. G., & Li, B. (2006). Conservation of water cycle on land via restoration of closed-canopy forests: implications for regional landscape planning. Ecological Research, 21(6), 897-906. doi:10.1007/s11284-006-0036-6Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2013). Revisiting forest impact on atmospheric water vapor transport and precipitation. Theoretical and Applied Climatology, 111(1-2), 79-96. doi: 10.1007/s00704-012-0643-9Marengo, J. A. (2004). Interdecadal and long term rainfall variability in the Amazon basin. Theoretical and Applied Climatology, 78(1-3), 79-96. doi:10.1007/s00704-004-0045-8Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19.Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19.Marengo, J. A., Nobre, C.A., Tomasella, J., Cardoso, M.F, & Oyama, M.D. (2008). Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of The Royal Society B Biological Sciences, 363(1498), 1773-1778. doi: 10.1098/rstb.2007.0015Maslin, A. M., Ettwein, V. J., Boot, C. S., Bendle, J., & Pancost, R. D. (2012). Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis? Journal of Quaternary Science, 27 (5), 451-460. doi: 10.1002/jqs.1567.Meteorological Office (s.f.). Meteorological data from 1961 to 2011 of Finland.Molion, L. C. (1989). The Amazonian Forests and Climatic Stability Impact of deforestation on Amazonia. The Ecologist, 19(6), 207-210.Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., et al. (2014). Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 506(7487),221-224. doi: 10.1038/nature13006Penman, H. L. (1963). Vegetation and Hydrology. Farnham Royal: Commonwealth Agricultural Bureau .Phillips, O. L., Aragão, L., Lewis, S. L., Fisher, J. B., Lloyd J., LópezGonzález, G., Malhi Y., et al. (2009). Drought Sensitivity of the Amazon Rainforest. Science, 323(5919), 1344-1347. doi: 10.1126/science.1164033Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., et al. (1998). Changes in the carbon balance of tropical forests: Evidence from long term plots. Science, 282(5388), 439-442. doi: 10.1126/science.282.5388.439Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, D. K., et al. (2010). Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329(5998), 1513-1516.doi: 10.1126/science.1191056Poveda, G., & Mesa, J. O. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophyscal Research Letters, 27(11), 1675-1678. doi:10.1029/1999GL006091Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37(8), 2169-2178. doi: 10.1029/2000WR900395Poveda, G., Jaramillo, L., & Vallejo, L.F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. doi: 10.1002/2013WR014087Ramos da Silva, R., & Avissar, R. (2006). The Hydrometeorology of a Deforested Region of the Amazon Basin. Journal of Hydrometeorology, 7(5), 1028-1042. doi: 10.1175/JHM537.1Rind, D. (1984). The influence of vegetation on the hydrologic cycle in a Global Climate Model. In J. E. Hansen, & T. Takahashi (Eds.) Climate Processes and Climate Sensitivity (Vol. 5) (pp. 73-91). Washington: American Geophysical Union.Roy, S., & Avissar, R. (2000). Scales of response of the convective boundary layer to land surface heterogeneity. Geophysical Research Letters, 27(4), 533-536. doi: 10.1029/1999GL010971Roy, S., & Avissar, R. (2002). Impact of land use/land cover change on regional hydrometeorology in Amazonia. Journal of Geophysical Research, 107(D20), LBA 4-1 – LBA 4-12. doi: 10.1029/2000JD000266Salati, E. (1987). The forest and the hydrological cycle. In R. Dickinson (Ed.), The Geophysiology of Amazonia, Vegetation and Climate Interactions, (pp.273-296). New York: Wiley-Insterscience Publication.Salati, E., & Vose, P. B. (1984). Amazon basin: A system in Equilibrium. Science, 225(4658), 129-138. doi: 10.1126/science.225.4658.129Salazar, J. F., & Poveda, G. (2008). Role of a simplified hydrological cycle and clouds in regulating the climate-biota system of Daisyworld. Tellus B,61(2), 483-497. doi: 10.1111/j.1600-0889.2008.00411.xSellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy Reflectance, Photosynthesis, and Transpiration. III. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme. Remote Sensing of Environment, 42(3), 187-216. doi:10.1016/0034-4257(92)90102-PShuttleworth, W. J. (1988). Evaporation from Amazonian Rainforest. Proceedings of The Royal Society B, 233(1272), 321-346. doi: 10.1098/rspb.1988.0024Spracklen, D. V., Arnold, S. R, & Taylor, C. M. (2012). Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282-285. doi: 10.1038/nature11390Tyree, M. T. (1997). The Cohesion-Tension theory of sap ascent: current controversies. Journal of Experimental Botany, 48(315), 1753-176.University of Wyoming. (s.f.). Atmospheric Soundings. Recovery from http:// weather.uwyo.edu/upperair/sounding.htmlVan der Hammen, T., & Absy, M. L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2-4), 247-261.doi: 10.1016/0031-0182(94)90178-3Werth, D., & Avissar, R. (2002). The local and global effects of Amazon deforestation. Journal of Geophysical Research: Atmospheres, 107(D20), LBA55-1 – LBA 55-8. doi: 10.1029/2001JD000717Werth, D., & Avissar, R. (2004). The regional evapotranspiration of the Amazon. Journal of Hydrometeorology, 5(1), 100-109. doi:10.1175/15257541(2004)005<0100:TREOTA>2.0.CO;2Wood, R., Bretherton, C. S., Hartmann, D. L. (2002). Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophysical Research Letters, 29(23), 7-1 – 7-4. doi: 10.1029/2002GL015371Xue, Y., Liou, K., & Kasahara, A. (1990). Investigation ofBiogeophysical Feedback on the African Climate Using a Twodimensional Model. Journal of Climatology, 3(3), 337-352. doi:10.1175/15200442(1990)003<0337:IOBFOT>2.0.CO;23114How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.ClimatologíaCirculación atmosféricaCiclo hidrológicoTeoría de la bomba bióticaClimatologyAtmospheric circulationHydrologic cycleOTHER Biotic pump theoryhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2f33http://purl.org/redcol/resource_type/LIBLibro completoLICENSElicense.txttext/plain1161https://repository.usergioarboleda.edu.co/bitstream/11232/397/1/license.txt97a964ad860602f11de1a47e333f3c18MD51open accessTHUMBNAILHow the biotic pump.pdf.jpgHow the biotic pump.pdf.jpgGenerated Thumbnailimage/jpeg7282https://repository.usergioarboleda.edu.co/bitstream/11232/397/6/How%20the%20biotic%20pump.pdf.jpgeb7f8d9b741e4f438e4d11bd00ca5f53MD56open accessTEXTHow the biotic pump.pdf.txtHow the biotic pump.pdf.txtExtracted texttext/plain193196https://repository.usergioarboleda.edu.co/bitstream/11232/397/4/How%20the%20biotic%20pump.pdf.txtff865702090d338554582be80afea54bMD54open accessORIGINALHow the biotic pump.pdfHow the biotic pump.pdfLibroapplication/pdf5340693https://repository.usergioarboleda.edu.co/bitstream/11232/397/7/How%20the%20biotic%20pump.pdf4aae9d4256d17191be8c36edceeff0a6MD57open access11232/397oai:repository.usergioarboleda.edu.co:11232/3972022-11-22 17:32:49.518open accessRepositorio Institucional Universidad Sergio Arboledadspace-help@myu.eduTElDRU5DSUEKQWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbyB5IGVuIGNhbGlkYWQgZGUgYXV0b3IgKG5vIGNvYXV0b3IpIGRlIGxhIG9icmEgYXF1w60gcHJlc2VudGFkYSwgb3RvcmdvIGxhIGxpY2VuY2lhIGRlIHVzbyBhIGxhIFVuaXZlcnNpZGFkIFNlcmdpbyBBcmJvbGVkYSBzb2JyZSBsYSBtaXNtYSwgcGFyYSBxdWUgZW4gdMOpcm1pbm9zIGRlIGxhIERlY2lzacOzbiBBbmRpbmEgMzUxOyBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGFmaW5lcywgc2UgZGl2dWxndWUsIHJlcHJvZHV6Y2EsIGNvbXVuaXF1ZSBhbCBww7pibGljby4gTGEgcHJlc2VudGUgbGljZW5jaWEgbyBhdXRvcml6YWNpw7NuIHRpZW5lIGNhcsOhY3RlciBpbmRlZmluaWRvIHkgbm8gdGllbmUgbGltaXRhY2lvbmVzIHRlcnJpdG9yaWFsZXMsIHNlIGV4dGllbmRlIGEgbGEgZmlqYWNpw7NuIGVuIG1lZGlvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgw7NwdGljbywgdXNvcyBkZSByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgeSBkZW3DoXMgZm9ybWF0b3MgY29ub2NpZG9zIG8gcG9yIGNvbm9jZXIuIApFbCBhdXRvciBkZSBsYSBvYnJhLCBtYW5pZmllc3RhIGRlIGlndWFsIG1hbmVyYSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGF1dG9yaXphY2nDs24gZXMgY3JlYWNpw7NuIHByb3BpYSB5IG9yaWdpbmFsIHkgcXVlIHNlIHJlYWxpesOzIHNpbiBpbmZyaW5naXIgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBsZSBwdWVkYW4gY29ycmVzcG9uZGVyIGEgdGVyY2Vyb3MuIApQYXLDoWdyYWZvOiBTaSBsbGVnYXJhIGEgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBtZW5jacOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgbGEgcmVzcG9uc2FiaWxpZGFkLCBkZWphbmRvIGluZGVtbmUgYSBsYSBVbml2ZXJzaWRhZCB5IHNhbGllbmRvIGVuIGRlZmVuc2EgcGVyc29uYWwgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLiAK |