How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.

the Biotic Pump Theory, as set forward by Drs. Makarieva and Gorshkov, states that the primary force driving surface winds, certainly in the tropics, is induced by the negative changes in atmospheric pressure caused by condensation of water vapour when clouds form. A high rate of condensation is nec...

Full description

Autores:
Bunyard, Peter
Tipo de recurso:
Book
Fecha de publicación:
2014
Institución:
Universidad Sergio Arboleda
Repositorio:
Repositorio U. Sergio Arboleda
Idioma:
eng
OAI Identifier:
oai:repository.usergioarboleda.edu.co:11232/397
Acceso en línea:
http://hdl.handle.net/11232/397
https://doi.org/10.22518/9789588745886
Palabra clave:
Climatología
Circulación atmosférica
Ciclo hidrológico
Teoría de la bomba biótica
Climatology
Atmospheric circulation
Hydrologic cycle
OTHER Biotic pump theory
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id sergioarb2_da1a827041a54e2544839994b1b09bb5
oai_identifier_str oai:repository.usergioarboleda.edu.co:11232/397
network_acronym_str sergioarb2
network_name_str Repositorio U. Sergio Arboleda
repository_id_str
dc.title.eng.fl_str_mv How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
title How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
spellingShingle How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
Climatología
Circulación atmosférica
Ciclo hidrológico
Teoría de la bomba biótica
Climatology
Atmospheric circulation
Hydrologic cycle
OTHER Biotic pump theory
title_short How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
title_full How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
title_fullStr How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
title_full_unstemmed How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
title_sort How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.
dc.creator.fl_str_mv Bunyard, Peter
dc.contributor.author.spa.fl_str_mv Bunyard, Peter
dc.subject.lemb.spa.fl_str_mv Climatología
Circulación atmosférica
Ciclo hidrológico
Teoría de la bomba biótica
topic Climatología
Circulación atmosférica
Ciclo hidrológico
Teoría de la bomba biótica
Climatology
Atmospheric circulation
Hydrologic cycle
OTHER Biotic pump theory
dc.subject.lemb.eng.fl_str_mv Climatology
Atmospheric circulation
Hydrologic cycle
OTHER Biotic pump theory
description the Biotic Pump Theory, as set forward by Drs. Makarieva and Gorshkov, states that the primary force driving surface winds, certainly in the tropics, is induced by the negative changes in atmospheric pressure caused by condensation of water vapour when clouds form. A high rate of condensation is necessary and therefore the theory requires that a suffciently high rate of evapotranspiration from large areas of forest provides the "fuel" for the process. The theory therefore runs contrary to the traditional view, as introduced in climate models, that surface winds are the sole products of differences in surface heating as well as of latent heat release during the process of condensation. Indeed, Makarieva and her colleagues claim that transitions in the phases of water play a far more important role in driving atmospheric dynamics than is currently recognised
publishDate 2014
dc.date.created.spa.fl_str_mv 2014
dc.date.issued.spa.fl_str_mv 2014-02
dc.date.accessioned.spa.fl_str_mv 2015-08-21T18:53:51Z
2016-05-11T14:38:11Z
2017-05-16T19:01:51Z
dc.date.available.spa.fl_str_mv 2015-08-21T18:53:51Z
2016-05-11T14:38:11Z
2017-05-16T19:01:51Z
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.*.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.redcol.*.fl_str_mv http://purl.org/redcol/resource_type/LIB
dc.type.local.spa.fl_str_mv Libro completo
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.spa.fl_str_mv 978-958-8745-89-3
dc.identifier.uri.eng.fl_str_mv http://hdl.handle.net/11232/397
dc.identifier.doi.eng.fl_str_mv https://doi.org/10.22518/9789588745886
dc.identifier.instname.spa.fl_str_mv instname:Universidad Sergio Arboleda
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Sergio Arboleda
dc.identifier.repourl.*.fl_str_mv repourl:https://repository.usergioarboleda.edu.co/
identifier_str_mv 978-958-8745-89-3
instname:Universidad Sergio Arboleda
reponame:Repositorio Institucional Universidad Sergio Arboleda
repourl:https://repository.usergioarboleda.edu.co/
url http://hdl.handle.net/11232/397
https://doi.org/10.22518/9789588745886
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Investigación
dc.relation.references.spa.fl_str_mv Avissar, R., & Werth, D. (2005). Global Hydroclimatological Teleconnections Resulting from Tropical Deforestation. Journal of Hydrometeorology, 6(2), 134-145. doi: 10.1175/JHM406.1
Bunyard, P. (2014). How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. Bogotá : Universidad Sergio Arboleda
Betts, R. A., Sanderson, M., & Woodward, S. (2008). Effects of large-scale Amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transactions of the Royal Society B, 363(1498), 1873-1880. doi: 10.1098/rstb.2007.0027
Betts, R. A., Cox, P.M., Collins, M., Gash, J.H., Harris, P.P., Huntingford, C., Jones, C.D., et al. (2002). Amazonian forest die-backin the Hadley Centre coupled climate-vegetation model. Exeter, UK: UK Met Office, Hadley Centre.
Blyth, E., Gash, J., Lloyd, A., Pryor M., Weedon, G. P., & Shuttleworth, J. (2010). Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data. Journal of Hydrometeorology, 11, 509-519. doi:10.1175/2009JHM1183.1
Boyce, C. K., Brodribb, T. J., Feild, T. S., & Zwieniecki, M. A. (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of The Royal Society B, 276(1663), 1771-1776. doi: 10.1098/rspb.2008.1919
Boyce, C. K., & Lee, J. E. (2010). An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of Royal Society B, 277, 3437-3443. doi: 10.1098/rspb.2010.0485
Boyce, C. K., Lee, J. E., Feild, T. S., Brodribb, T. J., & Zwieniecki, M. A. (2010). Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Annals of the Missouri Botanical Garden, 97(4), 527-540. doi: 10.3417/2009143
Brubaker, K. L, Dara E., & Eagleston, P. S. (1993). Estimation of Continental Precipitation Recycling. Journal of Climate, 6(6), 1077-1089. doi: 10.1175/15200442(1993)006<1077:EOCPR>2.0.CO;2
Bunyard, P. (2011). ¿Es aleatorio que la tierra ha retenido su agua?. Recovery from http:// www.almamater.edu.co / sitio / Archivos / Documentos /Documentos/00000534.pdf
Bunyard, P. (2012). Biotic Pump, Fiction or Reality?. Awaiting publication.
Bunyard, P., Netchev, P., Peña, C., & Redondo, J. (2012). The Barometric tidal wave, what is it?. Work presented at Tunis.
Butler, R. (2010). The Amazongate fiasco. Recovery from http://news.mongabay.com/2010/0204-amazongate.html
Charney, J., Quirk, W., Chow, S., & Kornfield, J. (1977). A comparative study of the effects of albedo change on drought in semiarid regions. Journal of Atmospheric Sciences, 34, 1366-1385. doi:10.1175/15200469(1977)034<1366:ACSOTE>2.0.CO;2
Collatz, G. J., Ribas-Carbfdbo, M. & Berry, J. A. (1992). Coupled Photosynthesis- Stomatal conductance model for Australian Journal of Plant Physiology, 19(5), 519-538.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global-warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. doi: 10.1038/35041539
Cox, P. M., Huntingford, C., & Harding, R. J., (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212- 213, 79-94. doi: 10.1016/S0022-1694(98)00203-0
Cowling, S. A., Maslin, M. A., & Sykes, M. T. (2001). Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation. Quaternary Research, 55(2), 140-149. doi: 10.1006/qres.2000.2197
Cowling, S. A., Shin, Y., Pinto, E., & Jones C. D. (2008). Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation–climate interactions. Philosophical Transactions of The Royal Society B, 363(1498), 1865-1871.
Cruiziat, P. (2006). The Cohesion–Tension Theory at Work. In L. Taiz & E. Zeiger (Eds.) Plant Physiology (5ft Edition). Sunderland, USA: Sinauer Associates.
Fearnside, P. M. (2000). Global warming and tropical landuse change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46(1-2), 115-158.
Feller, U. (2006). Stomatal Opening at Elevated underestimated regulatory mechanism? General and Applied Plant Physiology, 1-2, 19-31.
Feller, U., Anders, I., & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59(7), 1615-1624. doi: 10.1093/jxb/erm242
Fletcher, A. (2012). Operation OASIS = Overseas Arid Soil Irrigation Solution. Recovery from http://andrewkfletchers.blogspot.co.uk/ 2012/03/operation-oasis-andrew-k-fletcher.html
Garcia-Carreras, L., & Parker, J. D. (2011). How does local tropical deforestation affect rainfall? Geophysical Research Letters, 38(19). doi:10.1029/2011GL049099
Gat, J. R., & Matsui, E. (1991). Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. Journal of Geophysical Research, 96(D7), 13179-13188. doi:10.1029/91JD00054
Hutyra, L. R., Munger, J. W., Nobre, C. A., Saleska, S. R., Vieira, S. A., & Wofsy, S. C. (2005). Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32(24), L24712.doi:10.1029/2005GL024981
Jacobs, C. (1994). Direct impact of atmospheric CO2 enrichment on regional transpiration (PhD thesis, Wageningen Agricultural University).
Kigomo, B. N. (2003). Forests and Woodlands degradation in dryland Africa: a case for urgent global attention. Paper submitted to the XII Forestry Congress, Québec City, Canada.
Kishore. (February, 2010). Definition of Stomata. Recovery from http://www.kish.in/stomata/
Kleidon, A, & Heimann, M. (2000). Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics, 16(2-3), 183-199.
Kleidon, A. (2002). Testing the Effect of Life on Earth’s Functioning: How Gaian Is the Earth System? Climatic Change, 52(4), 383-389. doi: 10.1023/A:1014213811518
Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027
Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027
Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013-1033. doi:10.5194/hess-11-1013-2007
Makarieva, A. M., & Gorshkov, V. G. (2009a). Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Physics Letters A, 373(32), 2801-2804. doi:10.1016/j.physleta.2009.05.057
Makarieva, A. M., & Gorshkov, V. G. (2009b). Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Physics Letters A, 373(46), 4201-4205. doi: 10.1016/j.physleta.2009.09.023
Makarieva, A. M., & Gorshkov, V. G. (2009c). Reply to A. G. C. A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 13(17), 1307–1311. doi: 10.5194/hess-13-1307-2009
Makarieva, A. M., & Gorshkov, V. G. (2010). Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales. Biotic Regulation. Recovery fromarXiv:1003.5466v1 .
Makarieva, A. M., Gorshkov, V. G., & Li, B. (2006). Conservation of water cycle on land via restoration of closed-canopy forests: implications for regional landscape planning. Ecological Research, 21(6), 897-906. doi:10.1007/s11284-006-0036-6
Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2013). Revisiting forest impact on atmospheric water vapor transport and precipitation. Theoretical and Applied Climatology, 111(1-2), 79-96. doi: 10.1007/s00704-012-0643-9
Marengo, J. A. (2004). Interdecadal and long term rainfall variability in the Amazon basin. Theoretical and Applied Climatology, 78(1-3), 79-96. doi:10.1007/s00704-004-0045-8
Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19.
Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19.
Marengo, J. A., Nobre, C.A., Tomasella, J., Cardoso, M.F, & Oyama, M.D. (2008). Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of The Royal Society B Biological Sciences, 363(1498), 1773-1778. doi: 10.1098/rstb.2007.0015
Maslin, A. M., Ettwein, V. J., Boot, C. S., Bendle, J., & Pancost, R. D. (2012). Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis? Journal of Quaternary Science, 27 (5), 451-460. doi: 10.1002/jqs.1567.
Meteorological Office (s.f.). Meteorological data from 1961 to 2011 of Finland.
Molion, L. C. (1989). The Amazonian Forests and Climatic Stability Impact of deforestation on Amazonia. The Ecologist, 19(6), 207-210.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., et al. (2014). Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 506(7487),221-224. doi: 10.1038/nature13006
Penman, H. L. (1963). Vegetation and Hydrology. Farnham Royal: Commonwealth Agricultural Bureau .
Phillips, O. L., Aragão, L., Lewis, S. L., Fisher, J. B., Lloyd J., LópezGonzález, G., Malhi Y., et al. (2009). Drought Sensitivity of the Amazon Rainforest. Science, 323(5919), 1344-1347. doi: 10.1126/science.1164033
Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., et al. (1998). Changes in the carbon balance of tropical forests: Evidence from long term plots. Science, 282(5388), 439-442. doi: 10.1126/science.282.5388.439
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, D. K., et al. (2010). Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329(5998), 1513-1516.doi: 10.1126/science.1191056
Poveda, G., & Mesa, J. O. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophyscal Research Letters, 27(11), 1675-1678. doi:10.1029/1999GL006091
Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37(8), 2169-2178. doi: 10.1029/2000WR900395
Poveda, G., Jaramillo, L., & Vallejo, L.F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. doi: 10.1002/2013WR014087
Ramos da Silva, R., & Avissar, R. (2006). The Hydrometeorology of a Deforested Region of the Amazon Basin. Journal of Hydrometeorology, 7(5), 1028-1042. doi: 10.1175/JHM537.1
Rind, D. (1984). The influence of vegetation on the hydrologic cycle in a Global Climate Model. In J. E. Hansen, & T. Takahashi (Eds.) Climate Processes and Climate Sensitivity (Vol. 5) (pp. 73-91). Washington: American Geophysical Union.
Roy, S., & Avissar, R. (2000). Scales of response of the convective boundary layer to land surface heterogeneity. Geophysical Research Letters, 27(4), 533-536. doi: 10.1029/1999GL010971
Roy, S., & Avissar, R. (2002). Impact of land use/land cover change on regional hydrometeorology in Amazonia. Journal of Geophysical Research, 107(D20), LBA 4-1 – LBA 4-12. doi: 10.1029/2000JD000266
Salati, E. (1987). The forest and the hydrological cycle. In R. Dickinson (Ed.), The Geophysiology of Amazonia, Vegetation and Climate Interactions, (pp.273-296). New York: Wiley-Insterscience Publication.
Salati, E., & Vose, P. B. (1984). Amazon basin: A system in Equilibrium. Science, 225(4658), 129-138. doi: 10.1126/science.225.4658.129
Salazar, J. F., & Poveda, G. (2008). Role of a simplified hydrological cycle and clouds in regulating the climate-biota system of Daisyworld. Tellus B,61(2), 483-497. doi: 10.1111/j.1600-0889.2008.00411.x
Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy Reflectance, Photosynthesis, and Transpiration. III. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme. Remote Sensing of Environment, 42(3), 187-216. doi:10.1016/0034-4257(92)90102-P
Shuttleworth, W. J. (1988). Evaporation from Amazonian Rainforest. Proceedings of The Royal Society B, 233(1272), 321-346. doi: 10.1098/rspb.1988.0024
Spracklen, D. V., Arnold, S. R, & Taylor, C. M. (2012). Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282-285. doi: 10.1038/nature11390
Tyree, M. T. (1997). The Cohesion-Tension theory of sap ascent: current controversies. Journal of Experimental Botany, 48(315), 1753-176.
University of Wyoming. (s.f.). Atmospheric Soundings. Recovery from http:// weather.uwyo.edu/upperair/sounding.html
Van der Hammen, T., & Absy, M. L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2-4), 247-261.doi: 10.1016/0031-0182(94)90178-3
Werth, D., & Avissar, R. (2002). The local and global effects of Amazon deforestation. Journal of Geophysical Research: Atmospheres, 107(D20), LBA55-1 – LBA 55-8. doi: 10.1029/2001JD000717
Werth, D., & Avissar, R. (2004). The regional evapotranspiration of the Amazon. Journal of Hydrometeorology, 5(1), 100-109. doi:10.1175/15257541(2004)005<0100:TREOTA>2.0.CO;2
Wood, R., Bretherton, C. S., Hartmann, D. L. (2002). Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophysical Research Letters, 29(23), 7-1 – 7-4. doi: 10.1029/2002GL015371
Xue, Y., Liou, K., & Kasahara, A. (1990). Investigation ofBiogeophysical Feedback on the African Climate Using a Twodimensional Model. Journal of Climatology, 3(3), 337-352. doi:10.1175/15200442(1990)003<0337:IOBFOT>2.0.CO;2
dc.relation.citationstartpage.spa.fl_str_mv 3
dc.relation.citationendpage.spa.fl_str_mv 114
dc.rights.license.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.coar.*.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 114
dc.format.medium.spa.fl_str_mv Digital
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Sergio Arboleda
dc.publisher.program.spa.fl_str_mv Instituto de Estudios y Servicios Ambientales - IDEASA
institution Universidad Sergio Arboleda
bitstream.url.fl_str_mv https://repository.usergioarboleda.edu.co/bitstream/11232/397/1/license.txt
https://repository.usergioarboleda.edu.co/bitstream/11232/397/6/How%20the%20biotic%20pump.pdf.jpg
https://repository.usergioarboleda.edu.co/bitstream/11232/397/4/How%20the%20biotic%20pump.pdf.txt
https://repository.usergioarboleda.edu.co/bitstream/11232/397/7/How%20the%20biotic%20pump.pdf
bitstream.checksum.fl_str_mv 97a964ad860602f11de1a47e333f3c18
eb7f8d9b741e4f438e4d11bd00ca5f53
ff865702090d338554582be80afea54b
4aae9d4256d17191be8c36edceeff0a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Sergio Arboleda
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1814076314609516544
spelling Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)http://repository.usergioarboleda.edu.co/bitstream/id/5bccc72d-7e6d-4f64-ab18-bad93c49a567/license.txthttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Bunyard, Peter2015-08-21T18:53:51Z2016-05-11T14:38:11Z2017-05-16T19:01:51Z2015-08-21T18:53:51Z2016-05-11T14:38:11Z2017-05-16T19:01:51Z20142014-02978-958-8745-89-3http://hdl.handle.net/11232/397https://doi.org/10.22518/9789588745886instname:Universidad Sergio Arboledareponame:Repositorio Institucional Universidad Sergio Arboledarepourl:https://repository.usergioarboleda.edu.co/the Biotic Pump Theory, as set forward by Drs. Makarieva and Gorshkov, states that the primary force driving surface winds, certainly in the tropics, is induced by the negative changes in atmospheric pressure caused by condensation of water vapour when clouds form. A high rate of condensation is necessary and therefore the theory requires that a suffciently high rate of evapotranspiration from large areas of forest provides the "fuel" for the process. The theory therefore runs contrary to the traditional view, as introduced in climate models, that surface winds are the sole products of differences in surface heating as well as of latent heat release during the process of condensation. Indeed, Makarieva and her colleagues claim that transitions in the phases of water play a far more important role in driving atmospheric dynamics than is currently recognisedLa teoría de la bomba biótica , establece que la primera fuerza motriz de los vientos de superficie, sobre todo en los trópicos , es inducida por los cambios negativos en la presión atmosférica causada por la condensación de vapor de agua cuando las nubes se forman. Una alta velocidad de condensación es necesaria y por lo tanto, la teoría requiere que una alta evapotranspiración de grandes áreas de bosques que proporcionan el "combustible" para el proceso. Por consiguiente, la teoría va en contra de la visión tradicional , como se presentó en los modelos climáticos , que los vientos de superficie son los únicos productos de diferencias de calentamiento de la superficie, así como de la liberación del calor latente durante el proceso de condensación. De hecho , Makarieva y sus colegas afirman que las transiciones en las fases de agua juegan un papel más importante en el impulso de la dinámica atmosférica de lo que se reconoce actualmente.114Digitalapplication/pdfengUniversidad Sergio ArboledaInstituto de Estudios y Servicios Ambientales - IDEASAInvestigaciónAvissar, R., & Werth, D. (2005). Global Hydroclimatological Teleconnections Resulting from Tropical Deforestation. Journal of Hydrometeorology, 6(2), 134-145. doi: 10.1175/JHM406.1Bunyard, P. (2014). How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?. Bogotá : Universidad Sergio ArboledaBetts, R. A., Sanderson, M., & Woodward, S. (2008). Effects of large-scale Amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transactions of the Royal Society B, 363(1498), 1873-1880. doi: 10.1098/rstb.2007.0027Betts, R. A., Cox, P.M., Collins, M., Gash, J.H., Harris, P.P., Huntingford, C., Jones, C.D., et al. (2002). Amazonian forest die-backin the Hadley Centre coupled climate-vegetation model. Exeter, UK: UK Met Office, Hadley Centre.Blyth, E., Gash, J., Lloyd, A., Pryor M., Weedon, G. P., & Shuttleworth, J. (2010). Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data. Journal of Hydrometeorology, 11, 509-519. doi:10.1175/2009JHM1183.1Boyce, C. K., Brodribb, T. J., Feild, T. S., & Zwieniecki, M. A. (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of The Royal Society B, 276(1663), 1771-1776. doi: 10.1098/rspb.2008.1919Boyce, C. K., & Lee, J. E. (2010). An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of Royal Society B, 277, 3437-3443. doi: 10.1098/rspb.2010.0485Boyce, C. K., Lee, J. E., Feild, T. S., Brodribb, T. J., & Zwieniecki, M. A. (2010). Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Annals of the Missouri Botanical Garden, 97(4), 527-540. doi: 10.3417/2009143Brubaker, K. L, Dara E., & Eagleston, P. S. (1993). Estimation of Continental Precipitation Recycling. Journal of Climate, 6(6), 1077-1089. doi: 10.1175/15200442(1993)006<1077:EOCPR>2.0.CO;2Bunyard, P. (2011). ¿Es aleatorio que la tierra ha retenido su agua?. Recovery from http:// www.almamater.edu.co / sitio / Archivos / Documentos /Documentos/00000534.pdfBunyard, P. (2012). Biotic Pump, Fiction or Reality?. Awaiting publication.Bunyard, P., Netchev, P., Peña, C., & Redondo, J. (2012). The Barometric tidal wave, what is it?. Work presented at Tunis.Butler, R. (2010). The Amazongate fiasco. Recovery from http://news.mongabay.com/2010/0204-amazongate.htmlCharney, J., Quirk, W., Chow, S., & Kornfield, J. (1977). A comparative study of the effects of albedo change on drought in semiarid regions. Journal of Atmospheric Sciences, 34, 1366-1385. doi:10.1175/15200469(1977)034<1366:ACSOTE>2.0.CO;2Collatz, G. J., Ribas-Carbfdbo, M. & Berry, J. A. (1992). Coupled Photosynthesis- Stomatal conductance model for Australian Journal of Plant Physiology, 19(5), 519-538.Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global-warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. doi: 10.1038/35041539Cox, P. M., Huntingford, C., & Harding, R. J., (1998). A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 212- 213, 79-94. doi: 10.1016/S0022-1694(98)00203-0Cowling, S. A., Maslin, M. A., & Sykes, M. T. (2001). Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation. Quaternary Research, 55(2), 140-149. doi: 10.1006/qres.2000.2197Cowling, S. A., Shin, Y., Pinto, E., & Jones C. D. (2008). Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation–climate interactions. Philosophical Transactions of The Royal Society B, 363(1498), 1865-1871.Cruiziat, P. (2006). The Cohesion–Tension Theory at Work. In L. Taiz & E. Zeiger (Eds.) Plant Physiology (5ft Edition). Sunderland, USA: Sinauer Associates.Fearnside, P. M. (2000). Global warming and tropical landuse change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46(1-2), 115-158.Feller, U. (2006). Stomatal Opening at Elevated underestimated regulatory mechanism? General and Applied Plant Physiology, 1-2, 19-31.Feller, U., Anders, I., & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59(7), 1615-1624. doi: 10.1093/jxb/erm242Fletcher, A. (2012). Operation OASIS = Overseas Arid Soil Irrigation Solution. Recovery from http://andrewkfletchers.blogspot.co.uk/ 2012/03/operation-oasis-andrew-k-fletcher.htmlGarcia-Carreras, L., & Parker, J. D. (2011). How does local tropical deforestation affect rainfall? Geophysical Research Letters, 38(19). doi:10.1029/2011GL049099Gat, J. R., & Matsui, E. (1991). Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. Journal of Geophysical Research, 96(D7), 13179-13188. doi:10.1029/91JD00054Hutyra, L. R., Munger, J. W., Nobre, C. A., Saleska, S. R., Vieira, S. A., & Wofsy, S. C. (2005). Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32(24), L24712.doi:10.1029/2005GL024981Jacobs, C. (1994). Direct impact of atmospheric CO2 enrichment on regional transpiration (PhD thesis, Wageningen Agricultural University).Kigomo, B. N. (2003). Forests and Woodlands degradation in dryland Africa: a case for urgent global attention. Paper submitted to the XII Forestry Congress, Québec City, Canada.Kishore. (February, 2010). Definition of Stomata. Recovery from http://www.kish.in/stomata/Kleidon, A, & Heimann, M. (2000). Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics, 16(2-3), 183-199.Kleidon, A. (2002). Testing the Effect of Life on Earth’s Functioning: How Gaian Is the Earth System? Climatic Change, 52(4), 383-389. doi: 10.1023/A:1014213811518Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027Kleidon, A. (2004). Amazonian Biogeography as a Test for Gaia. In S. Schneider, J. Miller, E. Crist, & P. Boston (Eds.), Scientists Debate Gaia: The Next Century (pp. 289-291). Oxford: MIT Press Scholarship Online. doi:10.7551/mitpress/9780262194983.003.0027Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013-1033. doi:10.5194/hess-11-1013-2007Makarieva, A. M., & Gorshkov, V. G. (2009a). Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Physics Letters A, 373(32), 2801-2804. doi:10.1016/j.physleta.2009.05.057Makarieva, A. M., & Gorshkov, V. G. (2009b). Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Physics Letters A, 373(46), 4201-4205. doi: 10.1016/j.physleta.2009.09.023Makarieva, A. M., & Gorshkov, V. G. (2009c). Reply to A. G. C. A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 13(17), 1307–1311. doi: 10.5194/hess-13-1307-2009Makarieva, A. M., & Gorshkov, V. G. (2010). Potential energy of atmospheric water vapor and the air motions induced by water vapor condensation on different spatial scales. Biotic Regulation. Recovery fromarXiv:1003.5466v1 .Makarieva, A. M., Gorshkov, V. G., & Li, B. (2006). Conservation of water cycle on land via restoration of closed-canopy forests: implications for regional landscape planning. Ecological Research, 21(6), 897-906. doi:10.1007/s11284-006-0036-6Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2013). Revisiting forest impact on atmospheric water vapor transport and precipitation. Theoretical and Applied Climatology, 111(1-2), 79-96. doi: 10.1007/s00704-012-0643-9Marengo, J. A. (2004). Interdecadal and long term rainfall variability in the Amazon basin. Theoretical and Applied Climatology, 78(1-3), 79-96. doi:10.1007/s00704-004-0045-8Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19.Marengo, J. A. (2006). On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, 21(3), 1-19.Marengo, J. A., Nobre, C.A., Tomasella, J., Cardoso, M.F, & Oyama, M.D. (2008). Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of The Royal Society B Biological Sciences, 363(1498), 1773-1778. doi: 10.1098/rstb.2007.0015Maslin, A. M., Ettwein, V. J., Boot, C. S., Bendle, J., & Pancost, R. D. (2012). Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis? Journal of Quaternary Science, 27 (5), 451-460. doi: 10.1002/jqs.1567.Meteorological Office (s.f.). Meteorological data from 1961 to 2011 of Finland.Molion, L. C. (1989). The Amazonian Forests and Climatic Stability Impact of deforestation on Amazonia. The Ecologist, 19(6), 207-210.Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., et al. (2014). Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 506(7487),221-224. doi: 10.1038/nature13006Penman, H. L. (1963). Vegetation and Hydrology. Farnham Royal: Commonwealth Agricultural Bureau .Phillips, O. L., Aragão, L., Lewis, S. L., Fisher, J. B., Lloyd J., LópezGonzález, G., Malhi Y., et al. (2009). Drought Sensitivity of the Amazon Rainforest. Science, 323(5919), 1344-1347. doi: 10.1126/science.1164033Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., et al. (1998). Changes in the carbon balance of tropical forests: Evidence from long term plots. Science, 282(5388), 439-442. doi: 10.1126/science.282.5388.439Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, D. K., et al. (2010). Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329(5998), 1513-1516.doi: 10.1126/science.1191056Poveda, G., & Mesa, J. O. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophyscal Research Letters, 27(11), 1675-1678. doi:10.1029/1999GL006091Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37(8), 2169-2178. doi: 10.1029/2000WR900395Poveda, G., Jaramillo, L., & Vallejo, L.F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. doi: 10.1002/2013WR014087Ramos da Silva, R., & Avissar, R. (2006). The Hydrometeorology of a Deforested Region of the Amazon Basin. Journal of Hydrometeorology, 7(5), 1028-1042. doi: 10.1175/JHM537.1Rind, D. (1984). The influence of vegetation on the hydrologic cycle in a Global Climate Model. In J. E. Hansen, & T. Takahashi (Eds.) Climate Processes and Climate Sensitivity (Vol. 5) (pp. 73-91). Washington: American Geophysical Union.Roy, S., & Avissar, R. (2000). Scales of response of the convective boundary layer to land surface heterogeneity. Geophysical Research Letters, 27(4), 533-536. doi: 10.1029/1999GL010971Roy, S., & Avissar, R. (2002). Impact of land use/land cover change on regional hydrometeorology in Amazonia. Journal of Geophysical Research, 107(D20), LBA 4-1 – LBA 4-12. doi: 10.1029/2000JD000266Salati, E. (1987). The forest and the hydrological cycle. In R. Dickinson (Ed.), The Geophysiology of Amazonia, Vegetation and Climate Interactions, (pp.273-296). New York: Wiley-Insterscience Publication.Salati, E., & Vose, P. B. (1984). Amazon basin: A system in Equilibrium. Science, 225(4658), 129-138. doi: 10.1126/science.225.4658.129Salazar, J. F., & Poveda, G. (2008). Role of a simplified hydrological cycle and clouds in regulating the climate-biota system of Daisyworld. Tellus B,61(2), 483-497. doi: 10.1111/j.1600-0889.2008.00411.xSellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy Reflectance, Photosynthesis, and Transpiration. III. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme. Remote Sensing of Environment, 42(3), 187-216. doi:10.1016/0034-4257(92)90102-PShuttleworth, W. J. (1988). Evaporation from Amazonian Rainforest. Proceedings of The Royal Society B, 233(1272), 321-346. doi: 10.1098/rspb.1988.0024Spracklen, D. V., Arnold, S. R, & Taylor, C. M. (2012). Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282-285. doi: 10.1038/nature11390Tyree, M. T. (1997). The Cohesion-Tension theory of sap ascent: current controversies. Journal of Experimental Botany, 48(315), 1753-176.University of Wyoming. (s.f.). Atmospheric Soundings. Recovery from http:// weather.uwyo.edu/upperair/sounding.htmlVan der Hammen, T., & Absy, M. L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2-4), 247-261.doi: 10.1016/0031-0182(94)90178-3Werth, D., & Avissar, R. (2002). The local and global effects of Amazon deforestation. Journal of Geophysical Research: Atmospheres, 107(D20), LBA55-1 – LBA 55-8. doi: 10.1029/2001JD000717Werth, D., & Avissar, R. (2004). The regional evapotranspiration of the Amazon. Journal of Hydrometeorology, 5(1), 100-109. doi:10.1175/15257541(2004)005<0100:TREOTA>2.0.CO;2Wood, R., Bretherton, C. S., Hartmann, D. L. (2002). Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophysical Research Letters, 29(23), 7-1 – 7-4. doi: 10.1029/2002GL015371Xue, Y., Liou, K., & Kasahara, A. (1990). Investigation ofBiogeophysical Feedback on the African Climate Using a Twodimensional Model. Journal of Climatology, 3(3), 337-352. doi:10.1175/15200442(1990)003<0337:IOBFOT>2.0.CO;23114How the Biotic Pump links the hydrological and the rainforest to climate : ¿Is it for real? ¿How can we prove it?.ClimatologíaCirculación atmosféricaCiclo hidrológicoTeoría de la bomba bióticaClimatologyAtmospheric circulationHydrologic cycleOTHER Biotic pump theoryhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2f33http://purl.org/redcol/resource_type/LIBLibro completoLICENSElicense.txttext/plain1161https://repository.usergioarboleda.edu.co/bitstream/11232/397/1/license.txt97a964ad860602f11de1a47e333f3c18MD51open accessTHUMBNAILHow the biotic pump.pdf.jpgHow the biotic pump.pdf.jpgGenerated Thumbnailimage/jpeg7282https://repository.usergioarboleda.edu.co/bitstream/11232/397/6/How%20the%20biotic%20pump.pdf.jpgeb7f8d9b741e4f438e4d11bd00ca5f53MD56open accessTEXTHow the biotic pump.pdf.txtHow the biotic pump.pdf.txtExtracted texttext/plain193196https://repository.usergioarboleda.edu.co/bitstream/11232/397/4/How%20the%20biotic%20pump.pdf.txtff865702090d338554582be80afea54bMD54open accessORIGINALHow the biotic pump.pdfHow the biotic pump.pdfLibroapplication/pdf5340693https://repository.usergioarboleda.edu.co/bitstream/11232/397/7/How%20the%20biotic%20pump.pdf4aae9d4256d17191be8c36edceeff0a6MD57open access11232/397oai:repository.usergioarboleda.edu.co:11232/3972022-11-22 17:32:49.518open accessRepositorio Institucional Universidad Sergio Arboledadspace-help@myu.eduTElDRU5DSUEKQWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbyB5IGVuIGNhbGlkYWQgZGUgYXV0b3IgKG5vIGNvYXV0b3IpIGRlIGxhIG9icmEgYXF1w60gcHJlc2VudGFkYSwgb3RvcmdvIGxhIGxpY2VuY2lhIGRlIHVzbyBhIGxhIFVuaXZlcnNpZGFkIFNlcmdpbyBBcmJvbGVkYSBzb2JyZSBsYSBtaXNtYSwgcGFyYSBxdWUgZW4gdMOpcm1pbm9zIGRlIGxhIERlY2lzacOzbiBBbmRpbmEgMzUxOyBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGFmaW5lcywgc2UgZGl2dWxndWUsIHJlcHJvZHV6Y2EsIGNvbXVuaXF1ZSBhbCBww7pibGljby4gTGEgcHJlc2VudGUgbGljZW5jaWEgbyBhdXRvcml6YWNpw7NuIHRpZW5lIGNhcsOhY3RlciBpbmRlZmluaWRvIHkgbm8gdGllbmUgbGltaXRhY2lvbmVzIHRlcnJpdG9yaWFsZXMsIHNlIGV4dGllbmRlIGEgbGEgZmlqYWNpw7NuIGVuIG1lZGlvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgw7NwdGljbywgdXNvcyBkZSByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgeSBkZW3DoXMgZm9ybWF0b3MgY29ub2NpZG9zIG8gcG9yIGNvbm9jZXIuIApFbCBhdXRvciBkZSBsYSBvYnJhLCBtYW5pZmllc3RhIGRlIGlndWFsIG1hbmVyYSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGF1dG9yaXphY2nDs24gZXMgY3JlYWNpw7NuIHByb3BpYSB5IG9yaWdpbmFsIHkgcXVlIHNlIHJlYWxpesOzIHNpbiBpbmZyaW5naXIgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBsZSBwdWVkYW4gY29ycmVzcG9uZGVyIGEgdGVyY2Vyb3MuIApQYXLDoWdyYWZvOiBTaSBsbGVnYXJhIGEgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBtZW5jacOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgbGEgcmVzcG9uc2FiaWxpZGFkLCBkZWphbmRvIGluZGVtbmUgYSBsYSBVbml2ZXJzaWRhZCB5IHNhbGllbmRvIGVuIGRlZmVuc2EgcGVyc29uYWwgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLiAK