De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII.
This article analyzes the epistemological legitimation of mathematics in natural philosophy in the seventeenth century. In the Renaissance it was claimed that mathematics does not meet the Aristotelian criteria of scientificity; and that it did not explain the efficient and final causes. So; its cri...
- Autores:
-
Ochoa, Felipe
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2013
- Institución:
- Universidad Sergio Arboleda
- Repositorio:
- Repositorio U. Sergio Arboleda
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usergioarboleda.edu.co:11232/296
- Acceso en línea:
- https://doi.org/10.22518/16578953.135
http://hdl.handle.net/11232/296
- Palabra clave:
- Filosofía de las matemáticas
Filosofía natural Siglo XVII
matemáticas
ciencia moderna
Barozzi
Pereira
Piccolomini
Clavius
mathematics
philosophy of mathematics
modern science
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id |
sergioarb2_cbf5ffc6a43db3ca5421721a42aa7e4c |
---|---|
oai_identifier_str |
oai:repository.usergioarboleda.edu.co:11232/296 |
network_acronym_str |
sergioarb2 |
network_name_str |
Repositorio U. Sergio Arboleda |
repository_id_str |
|
dc.title.spa.fl_str_mv |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
dc.title.translated.eng.fl_str_mv |
From Subordination to Hegemony On the Epistemological Legitimation of Mathematics in Natural Philosophy of XVII Century. |
title |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
spellingShingle |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. Filosofía de las matemáticas Filosofía natural Siglo XVII matemáticas ciencia moderna Barozzi Pereira Piccolomini Clavius mathematics philosophy of mathematics modern science |
title_short |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
title_full |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
title_fullStr |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
title_full_unstemmed |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
title_sort |
De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. |
dc.creator.fl_str_mv |
Ochoa, Felipe |
dc.contributor.author.spa.fl_str_mv |
Ochoa, Felipe |
dc.subject.lemb.spa.fl_str_mv |
Filosofía de las matemáticas Filosofía natural Siglo XVII |
topic |
Filosofía de las matemáticas Filosofía natural Siglo XVII matemáticas ciencia moderna Barozzi Pereira Piccolomini Clavius mathematics philosophy of mathematics modern science |
dc.subject.proposal.spa.fl_str_mv |
matemáticas ciencia moderna Barozzi Pereira |
dc.subject.proposal.eng.fl_str_mv |
Piccolomini Clavius mathematics philosophy of mathematics modern science |
description |
This article analyzes the epistemological legitimation of mathematics in natural philosophy in the seventeenth century. In the Renaissance it was claimed that mathematics does not meet the Aristotelian criteria of scientificity; and that it did not explain the efficient and final causes. So; its critics; inspired by the Aristotelian tradition; rejected the first attempts to mathematize natural philosophy. The epistemological conditions involved in the debate are examined on the scientific nature of mathematics and its relevance to natural philosophy. A historiographical tour of the mathematization of nature is made to provide new weighing elements with respect to a historically and philosophically more conceptual characterization of the emergence of modern science |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2015-07-22T21:13:55Z 2016-05-11T14:36:23Z 2017-05-16T17:09:03Z |
dc.date.available.spa.fl_str_mv |
2015-07-22T21:13:55Z 2016-05-11T14:36:23Z 2017-05-16T17:09:03Z |
dc.date.spa.fl_str_mv |
2013 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de revista |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Ochoa, F. (2013). De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. Revista Civilizar Ciencias Sociales y Humanas. 13(25), 157-176. |
dc.identifier.issn.spa.fl_str_mv |
1657-8953 |
dc.identifier.doi.eng.fl_str_mv |
https://doi.org/10.22518/16578953.135 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Sergio Arboleda |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Sergio Arboleda |
dc.identifier.repourl.*.fl_str_mv |
repourl:https://repository.usergioarboleda.edu.co/ |
dc.identifier.url.eng.fl_str_mv |
http://hdl.handle.net/11232/296 |
identifier_str_mv |
Ochoa, F. (2013). De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. Revista Civilizar Ciencias Sociales y Humanas. 13(25), 157-176. 1657-8953 instname:Universidad Sergio Arboleda reponame:Repositorio Institucional Universidad Sergio Arboleda repourl:https://repository.usergioarboleda.edu.co/ |
url |
https://doi.org/10.22518/16578953.135 http://hdl.handle.net/11232/296 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Revista Civilizar Ciencias Sociales y Humanas; vol. 13, núm. 25 (2013) |
dc.relation.references.spa.fl_str_mv |
Aristóteles. (1988). Tratados de Lógica: (Órganon) II: sobre la interpretación. Analíticos primeros. Analíticos segundos. Madrid: Gredos. Aristóteles. (1995). Física (Trad. G. De Echandía). Madrid: Gredos. Koyré, A. (1997). La aportación científica del Renacimiento. En Estudios de historia del pensamiento científico (pp. 41-50). México: Siglo XXI Editores. Ochoa, F. (2001). Newton heteróclito: Problemas y límites del historiar a Sir Isaac Newton. Estudios de Filosofía, 24, 63-78. Orozco, S. (2007). Modelos interpretativos del corpus newtoniano: Tradiciones historiográficas del siglo XX. Estudios de Filosofía, 35, 227-256. Orozco, S. (2009). Isaac Newton y la reconstitución del palimpsesto divino. Medellín: Editorial Universidad de Antioquia. |
dc.relation.references.eng.fl_str_mv |
Barrow, I. (1734). The Usefulness of Mathematical Learning Explained and Demonstrated: Being Mathematical Lectures Read in the Public Schools of Cambridge. Londres: S. Austen. Biagioli, M. (1989). The social status of Italian mathematicians, 1450-1600. History of Science, 27, 41-95. Blay, M. (1998).Reasoning with the Infinite: From the Closed World to the Mathematical Universe. Chicago: University Press. Clark, S. (1997). Thinking with Demons: The idea of witchcraft in early modern Europe. Oxford: Clarendon Press. Clavius, C. (1612). Opera mathematica (Vols.1-5). Mainz: Reinhard Eltz. Crombie, A. C. (1952). Augustine to Galileo: The History of Science, A.D. 400-1650. London: Falcon. Dear, P. (1987). Jesuit mathematical science and the reconstitution of experience in the early seventeenth century. Studies in History and Philosophy of Science, 18(2), 133-175. Dear, P. (1995). Discipline and Experience. The Mathematical Way in the Scientific Revolution. Chicago: University Press. Dear, P. (1998). The Mathematical Principles of Natural Philosophy: Toward a Heuristic Narrative for the Scientific Revolution. Configurations, 6(2), 173-193. Dobbs, B. J. (2000). Newton as Final cause and First Mover. En M. Osler (Ed.), Rethinking the scientific revolution (pp. 25-39). New York, NY: Cambridge University Press. Feldhay, R. (1998). The use and abuse of mathematical entities: Galileo and the Jesuits revisited. En P. K. Machamer (Ed.), The Cambridge companion to Galileo (pp. 80-145). Cambridge: Cambridge University Press. Funkenstein, A. (1986). Theology and the scientific imagination from the Middle Ages to the seventeenth century. Princeton: Princeton University Press. Gingras, Y. (2001). What did Mathematics do to Physics? History of Science, 39, 383-416. Guicciardini, N. (1989). The development of Newtonian calculus in Britain, 1700-1800. New York: Cambridge University Press. Hall, A. R. (1981). From Galileo to Newton. New York: Dover. Hall, M. B. (1952). The Establishment of the Mechanical Philosophy. Bruges: St. Catherine Press. Heath, T. L. (1956). The Thirteen Books of Euclid’s Elements. New York: Dover Publications. Jardine, N. (1986). Epistemology of the sciences. En C. B. Schmitt, Q. Skinner & E. Kessler (Eds.), The Cambridge history of Renaissance philosophy (pp. 685-711). Cambridge: Cambridge University Press. Koyré, A. (1965). The significance of the Newtonian synthesis. En Newtonian studies (pp. 3-24). Cambridge: Cambridge University Press. Koyré, A. (1994). From the Closed World to the Infinite Universe. Baltimore: Johns Hopkins University Press. Mancosu, P. (1992). Aristotelian Logic and Eu-clidean Mathematics: Seventeenth Century Developments of the Quæstio de Certitudine Mathematicarum. Studies in History and Philosophy of Science, 23(2), 241-265. Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York: Oxford University Press. Moran, B. T. (2005). Distilling Knowledge: Alchemy, Chemistry, and the Scientific Revolution. Cambridge: Harvard University Press. Newman, W. R. (2006). Atoms and Alchemy: Chymistry and the experimental origins of the scientific revolution. Chicago: University of Chicago Press. Newman, W. R., & Grafton, A. (2001). Secrets of Nature: Astrology and Alchemy in Early Modern Europe. Cambridge: MIT Press. Ochoa, F. (2012). Mathematics, Natural Philosophy, and Providential Theology: An inquiry into the ontological problem of the causation of gravity force in Newton’s physics. (Tesis Doctoral, Instituto de Filosofía, Universidad de Antioquia). Osler, M. J. (2000). Rethinking the Scientific Revolution. Cambridge: Cambridge University Press. Pycior, H. (1997). Symbols, Impossible Numbers, and Geometric Entanglements: British Algebra Through the Commentaries on Newton’s Universal Arithmetick. New York: Cambridge University Press. Roux, S. (2010). Forms of Mathematization (14th-17th Centuries). Early Science and Medicine, 15(4-5), 319-337. doi: 10.1163/157338210X516242 Smolarski, D. C. (2002a). Historical Documents, Part II.Two Documents on Mathematics. Science in Context, 15(3), 465-470. doi: 10.1017/S0269889702000583 Smolarski, D. C. (2002b). Historical Documents, Part I. Sections on mathematics from the various editions of the Ratio Studiorum. Science in context, 15(3), 459-464.doi: 10.1017/S0269889702000571 Sorell, T. (1993). The Rise of Modern Philosophy: The Tension between the new and traditional philosophies from Machiavelli to Leibniz. Oxford: Clarendon Press. Vickers, B. (1984). Occult and Scientific Mentalities in the Renaissance. Cambridge: Cambridge University Press. Wallis, J. (1693-1699). Johannis Wallis Oxoniensi Opera mathematica: tribus volumini buscontenta. Oxford: Theatro Sheldoniano. Yolder, J. G. (1988). Unrolling time: Christiaan Huygens and the Mathematization of Nature. Cambridge: Cambridge University Press. |
dc.relation.references.lat.fl_str_mv |
Biancani, G. (1615). De mathematicarum natura dissertatio. Bolonia: B. Cocchi. Pereira, B. (1591). De communibus omnium rerum naturalium principiis et affectionibus, libriquindecim. Venetiis: Andream Muschium. Scheiner, C. (1614). Disquisitiones mathematicae de controuersii set nouitatibus astronomicis. Ingolstadii: Elisabetham Angermariam. Smiglecki, M. (1618). Logica Martini Smiglecii: Selectis disputationi bus et quaestioni bus illustrata. Ingolstadii: Eder. |
dc.relation.references.ita.fl_str_mv |
Piccolomini, A. (1576). La prima parte della filosofía naturale. Roma: Daniel Zaneti, & Compagni. |
dc.relation.ispartofjournal.spa.fl_str_mv |
Civilizar Ciencias Sociales y Humanidades |
dc.relation.citationvolumen.spa.fl_str_mv |
13 |
dc.relation.citationissue.spa.fl_str_mv |
25 |
dc.relation.citationstartpage.spa.fl_str_mv |
157 |
dc.relation.citationendpage.spa.fl_str_mv |
176 |
dc.rights.license.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accesRights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.*.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
20 |
dc.format.medium.spa.fl_str_mv |
Digital |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.format.tipo.spa.fl_str_mv |
documentos |
dc.publisher.spa.fl_str_mv |
Universidad Sergio Arboleda |
institution |
Universidad Sergio Arboleda |
bitstream.url.fl_str_mv |
https://repository.usergioarboleda.edu.co/bitstream/11232/296/1/De%20la%20subordinacion%20a%20la%20hegemonia.html |
bitstream.checksum.fl_str_mv |
59d30ef7919b293b37e132fc8ab6db8f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Sergio Arboleda |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1814076294959202304 |
spelling |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)http://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ochoa, Felipe20132015-07-22T21:13:55Z2016-05-11T14:36:23Z2017-05-16T17:09:03Z2015-07-22T21:13:55Z2016-05-11T14:36:23Z2017-05-16T17:09:03Z2013-07-01Ochoa, F. (2013). De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. Revista Civilizar Ciencias Sociales y Humanas. 13(25), 157-176.1657-8953https://doi.org/10.22518/16578953.135instname:Universidad Sergio Arboledareponame:Repositorio Institucional Universidad Sergio Arboledarepourl:https://repository.usergioarboleda.edu.co/http://hdl.handle.net/11232/296This article analyzes the epistemological legitimation of mathematics in natural philosophy in the seventeenth century. In the Renaissance it was claimed that mathematics does not meet the Aristotelian criteria of scientificity; and that it did not explain the efficient and final causes. So; its critics; inspired by the Aristotelian tradition; rejected the first attempts to mathematize natural philosophy. The epistemological conditions involved in the debate are examined on the scientific nature of mathematics and its relevance to natural philosophy. A historiographical tour of the mathematization of nature is made to provide new weighing elements with respect to a historically and philosophically more conceptual characterization of the emergence of modern scienceEste artículo analiza la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII. En el Renacimiento se alegó que las matemáticas no cumplían con los criterios aristotélicos de cientificidad; ya que no explicaban las causas eficientes y finales. Así; sus críticos inspirados en la tradición aristotélica rechazaron los primeros intentos de matematizar la filosofía natural. Se examinan las condiciones epistemológicas implicadas en el debate sobre la cientificidad de las matemáticas y su pertinencia para la filosofía natural. Se hace un recorrido historiográfico de la matematización de la naturaleza para ofrecer nuevos elementos de ponderación respecto a una caracterización históricamente más contextual y filosóficamente más conceptual del surgimiento de la ciencia moderna20Digitalapplication/pdfdocumentosspaUniversidad Sergio ArboledaRevista Civilizar Ciencias Sociales y Humanas; vol. 13, núm. 25 (2013)Aristóteles. (1988). Tratados de Lógica: (Órganon) II: sobre la interpretación. Analíticos primeros. Analíticos segundos. Madrid: Gredos.Aristóteles. (1995). Física (Trad. G. De Echandía). Madrid: Gredos.Koyré, A. (1997). La aportación científica del Renacimiento. En Estudios de historia del pensamiento científico (pp. 41-50). México: Siglo XXI Editores.Ochoa, F. (2001). Newton heteróclito: Problemas y límites del historiar a Sir Isaac Newton. Estudios de Filosofía, 24, 63-78.Orozco, S. (2007). Modelos interpretativos del corpus newtoniano: Tradiciones historiográficas del siglo XX. Estudios de Filosofía, 35, 227-256.Orozco, S. (2009). Isaac Newton y la reconstitución del palimpsesto divino. Medellín: Editorial Universidad de Antioquia.Barrow, I. (1734). The Usefulness of Mathematical Learning Explained and Demonstrated: Being Mathematical Lectures Read in the Public Schools of Cambridge. Londres: S. Austen.Biagioli, M. (1989). The social status of Italian mathematicians, 1450-1600. History of Science, 27, 41-95.Blay, M. (1998).Reasoning with the Infinite: From the Closed World to the Mathematical Universe. Chicago: University Press.Clark, S. (1997). Thinking with Demons: The idea of witchcraft in early modern Europe. Oxford: Clarendon Press.Clavius, C. (1612). Opera mathematica (Vols.1-5). Mainz: Reinhard Eltz.Crombie, A. C. (1952). Augustine to Galileo: The History of Science, A.D. 400-1650. London: Falcon.Dear, P. (1987). Jesuit mathematical science and the reconstitution of experience in the early seventeenth century. Studies in History and Philosophy of Science, 18(2), 133-175.Dear, P. (1995). Discipline and Experience. The Mathematical Way in the Scientific Revolution. Chicago: University Press.Dear, P. (1998). The Mathematical Principles of Natural Philosophy: Toward a Heuristic Narrative for the Scientific Revolution. Configurations, 6(2), 173-193.Dobbs, B. J. (2000). Newton as Final cause and First Mover. En M. Osler (Ed.), Rethinking the scientific revolution (pp. 25-39). New York, NY: Cambridge University Press.Feldhay, R. (1998). The use and abuse of mathematical entities: Galileo and the Jesuits revisited. En P. K. Machamer (Ed.), The Cambridge companion to Galileo (pp. 80-145). Cambridge: Cambridge University Press.Funkenstein, A. (1986). Theology and the scientific imagination from the Middle Ages to the seventeenth century. Princeton: Princeton University Press.Gingras, Y. (2001). What did Mathematics do to Physics? History of Science, 39, 383-416.Guicciardini, N. (1989). The development of Newtonian calculus in Britain, 1700-1800. New York: Cambridge University Press.Hall, A. R. (1981). From Galileo to Newton. New York: Dover.Hall, M. B. (1952). The Establishment of the Mechanical Philosophy. Bruges: St. Catherine Press.Heath, T. L. (1956). The Thirteen Books of Euclid’s Elements. New York: Dover Publications.Jardine, N. (1986). Epistemology of the sciences. En C. B. Schmitt, Q. Skinner & E. Kessler (Eds.), The Cambridge history of Renaissance philosophy (pp. 685-711). Cambridge: Cambridge University Press.Koyré, A. (1965). The significance of the Newtonian synthesis. En Newtonian studies (pp. 3-24). Cambridge: Cambridge University Press.Koyré, A. (1994). From the Closed World to the Infinite Universe. Baltimore: Johns Hopkins University Press.Mancosu, P. (1992). Aristotelian Logic and Eu-clidean Mathematics: Seventeenth Century Developments of the Quæstio de Certitudine Mathematicarum. Studies in History and Philosophy of Science, 23(2), 241-265.Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York: Oxford University Press.Moran, B. T. (2005). Distilling Knowledge: Alchemy, Chemistry, and the Scientific Revolution. Cambridge: Harvard University Press.Newman, W. R. (2006). Atoms and Alchemy: Chymistry and the experimental origins of the scientific revolution. Chicago: University of Chicago Press.Newman, W. R., & Grafton, A. (2001). Secrets of Nature: Astrology and Alchemy in Early Modern Europe. Cambridge: MIT Press.Ochoa, F. (2012). Mathematics, Natural Philosophy, and Providential Theology: An inquiry into the ontological problem of the causation of gravity force in Newton’s physics. (Tesis Doctoral, Instituto de Filosofía, Universidad de Antioquia).Osler, M. J. (2000). Rethinking the Scientific Revolution. Cambridge: Cambridge University Press.Pycior, H. (1997). Symbols, Impossible Numbers, and Geometric Entanglements: British Algebra Through the Commentaries on Newton’s Universal Arithmetick. New York: Cambridge University Press.Roux, S. (2010). Forms of Mathematization (14th-17th Centuries). Early Science and Medicine, 15(4-5), 319-337. doi: 10.1163/157338210X516242Smolarski, D. C. (2002a). Historical Documents, Part II.Two Documents on Mathematics. Science in Context, 15(3), 465-470. doi: 10.1017/S0269889702000583Smolarski, D. C. (2002b). Historical Documents, Part I. Sections on mathematics from the various editions of the Ratio Studiorum. Science in context, 15(3), 459-464.doi: 10.1017/S0269889702000571Sorell, T. (1993). The Rise of Modern Philosophy: The Tension between the new and traditional philosophies from Machiavelli to Leibniz. Oxford: Clarendon Press.Vickers, B. (1984). Occult and Scientific Mentalities in the Renaissance. Cambridge: Cambridge University Press.Wallis, J. (1693-1699). Johannis Wallis Oxoniensi Opera mathematica: tribus volumini buscontenta. Oxford: Theatro Sheldoniano.Yolder, J. G. (1988). Unrolling time: Christiaan Huygens and the Mathematization of Nature. Cambridge: Cambridge University Press.Biancani, G. (1615). De mathematicarum natura dissertatio. Bolonia: B. Cocchi.Pereira, B. (1591). De communibus omnium rerum naturalium principiis et affectionibus, libriquindecim. Venetiis: Andream Muschium.Scheiner, C. (1614). Disquisitiones mathematicae de controuersii set nouitatibus astronomicis. Ingolstadii: Elisabetham Angermariam.Smiglecki, M. (1618). Logica Martini Smiglecii: Selectis disputationi bus et quaestioni bus illustrata. Ingolstadii: Eder.Piccolomini, A. (1576). La prima parte della filosofía naturale. Roma: Daniel Zaneti, & Compagni.Civilizar Ciencias Sociales y Humanidades1325157176De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII.From Subordination to Hegemony On the Epistemological Legitimation of Mathematics in Natural Philosophy of XVII Century.Filosofía de las matemáticasFilosofía natural Siglo XVIImatemáticasciencia modernaBarozziPereiraPiccolominiClaviusmathematicsphilosophy of mathematicsmodern sciencehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARTArtículo de revistaORIGINALDe la subordinacion a la hegemonia.htmlDe la subordinacion a la hegemonia.htmlartículotext/html238https://repository.usergioarboleda.edu.co/bitstream/11232/296/1/De%20la%20subordinacion%20a%20la%20hegemonia.html59d30ef7919b293b37e132fc8ab6db8fMD51open access11232/296oai:repository.usergioarboleda.edu.co:11232/2962021-11-04 11:45:12.764open accessRepositorio Institucional Universidad Sergio Arboledadspace-help@myu.edu |