Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis
Enfrentar problemas de análisis de datos en pequeños conjuntos de datos es un problema común en la investigación médica; asimismo, es un problema que dificulta mucho la aplicación y el éxito de los algoritmos clásicos de aprendizaje automático. Muchas técnicas han abordado el problema de un pequeño...
- Autores:
-
Hoyos Urcué, Juan José
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Pontificia Universidad Javeriana Cali
- Repositorio:
- Vitela
- Idioma:
- eng
- OAI Identifier:
- oai:vitela.javerianacali.edu.co:11522/2841
- Acceso en línea:
- https://vitela.javerianacali.edu.co/handle/11522/2841
- Palabra clave:
- Machine Learning
Tabular data augmentation
Cutaneous leishmaniasis
Infectious disease
Synthetic data
Small dataset
K-Nearest neighbors
Logistic regression
Support vector machines
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
Vitela2_972c54a664865caa24999e48f60aba09 |
---|---|
oai_identifier_str |
oai:vitela.javerianacali.edu.co:11522/2841 |
network_acronym_str |
Vitela2 |
network_name_str |
Vitela |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
title |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
spellingShingle |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis Machine Learning Tabular data augmentation Cutaneous leishmaniasis Infectious disease Synthetic data Small dataset K-Nearest neighbors Logistic regression Support vector machines |
title_short |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
title_full |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
title_fullStr |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
title_full_unstemmed |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
title_sort |
Machine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasis |
dc.creator.fl_str_mv |
Hoyos Urcué, Juan José |
dc.contributor.advisor.none.fl_str_mv |
Álvarez, Gloria Inés Linares Ospina, Diego Luis |
dc.contributor.author.none.fl_str_mv |
Hoyos Urcué, Juan José |
dc.subject.none.fl_str_mv |
Machine Learning Tabular data augmentation Cutaneous leishmaniasis Infectious disease Synthetic data Small dataset K-Nearest neighbors Logistic regression Support vector machines |
topic |
Machine Learning Tabular data augmentation Cutaneous leishmaniasis Infectious disease Synthetic data Small dataset K-Nearest neighbors Logistic regression Support vector machines |
description |
Enfrentar problemas de análisis de datos en pequeños conjuntos de datos es un problema común en la investigación médica; asimismo, es un problema que dificulta mucho la aplicación y el éxito de los algoritmos clásicos de aprendizaje automático. Muchas técnicas han abordado el problema de un pequeño conjunto de datos, principalmente para los campos de visión artificial y procesamiento de imágenes. Sin embargo, para los datos tabulares, se ha difundido muy poco. En este trabajo de grado se propone el uso de técnicas de aumento de datos tabulares para introducir instancias sintéticas bastante similares a las reales, particularmente en el contexto de un problema médico/social de predecir la efectividad de Glucantime como tratamiento contra la Leishmaniasis cutánea. Los experimentos muestran que el uso de estos algoritmos de aumento de datos mejora las características del conjunto de datos inicial y el rendimiento de los modelos de aprendizaje automático. El conjunto de datos utilizado en esta investigación tiene diez atributos y 18 registros. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-06-17T21:24:15Z |
dc.date.available.none.fl_str_mv |
2024-06-17T21:24:15Z |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://vitela.javerianacali.edu.co/handle/11522/2841 |
url |
https://vitela.javerianacali.edu.co/handle/11522/2841 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
70 p. |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Univerisdad Javeriana Cali |
publisher.none.fl_str_mv |
Pontificia Univerisdad Javeriana Cali |
institution |
Pontificia Universidad Javeriana Cali |
bitstream.url.fl_str_mv |
https://vitela.javerianacali.edu.co/bitstreams/8a28f9ed-4d4b-493c-beb5-dd5c0551e22b/download https://vitela.javerianacali.edu.co/bitstreams/9907d8d5-10db-4166-8a64-c4622a0ffaf4/download https://vitela.javerianacali.edu.co/bitstreams/9802bcc7-278c-4109-8ec0-845eb7724b93/download https://vitela.javerianacali.edu.co/bitstreams/9e04d419-1713-4a93-afe5-c44244f32302/download https://vitela.javerianacali.edu.co/bitstreams/b4cf8ef7-6032-4964-b93a-b94053b6642c/download https://vitela.javerianacali.edu.co/bitstreams/c3c9139f-feff-42b5-a043-1b49958ce616/download https://vitela.javerianacali.edu.co/bitstreams/b83c64b2-dfa1-42eb-814a-fbc38553ca0d/download https://vitela.javerianacali.edu.co/bitstreams/7be446fa-8f31-4e05-9cd8-dda13fadb2f4/download https://vitela.javerianacali.edu.co/bitstreams/186bc529-12a4-4bc2-b3e1-ddee9cb434ba/download https://vitela.javerianacali.edu.co/bitstreams/8cf4eafd-7c7c-468b-8f95-b65947411c56/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 98cbf8e866d3ee5283f779ef20a0567a 42c96b239c6741d84722e6cdfb7aea68 f4c0188d8aae3ad1ef253ba08713dd0c 49b47a3474f02dac0c9bfc1333eb5a39 f6889a37cbe43dbb43083b7bed348b35 d52c692adc9d3af36f7ac3300a31c46f 875994ae9ee809bd3549ffe7f166c114 45b802cf4869fac817ee062844923ae0 916805819bc808f22f6ee5480a5ce37a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Vitela |
repository.mail.fl_str_mv |
vitela.mail@javerianacali.edu.co |
_version_ |
1812095050481401856 |
spelling |
Álvarez, Gloria InésLinares Ospina, Diego LuisHoyos Urcué, Juan José2024-06-17T21:24:15Z2024-06-17T21:24:15Z2021https://vitela.javerianacali.edu.co/handle/11522/2841Enfrentar problemas de análisis de datos en pequeños conjuntos de datos es un problema común en la investigación médica; asimismo, es un problema que dificulta mucho la aplicación y el éxito de los algoritmos clásicos de aprendizaje automático. Muchas técnicas han abordado el problema de un pequeño conjunto de datos, principalmente para los campos de visión artificial y procesamiento de imágenes. Sin embargo, para los datos tabulares, se ha difundido muy poco. En este trabajo de grado se propone el uso de técnicas de aumento de datos tabulares para introducir instancias sintéticas bastante similares a las reales, particularmente en el contexto de un problema médico/social de predecir la efectividad de Glucantime como tratamiento contra la Leishmaniasis cutánea. Los experimentos muestran que el uso de estos algoritmos de aumento de datos mejora las características del conjunto de datos inicial y el rendimiento de los modelos de aprendizaje automático. El conjunto de datos utilizado en esta investigación tiene diez atributos y 18 registros.Facing data analysis problems on small data sets is a common problem in medical research; likewise, it is a problem that makes the application and success of classic machine learning algorithms very difficult. Many techniques have tackled the problem of a small data set, mainly for computer vision and image processing fields. However, for tabular data, short has been disseminated. In this degree project, the use of tabular data augmentation techniques is proposed to introduce synthetic instances quite similar to real instances, particularly in the context of a medical/social problem of predicting the effectiveness of Glucantime as a treatment against cutaneous Leishmaniasis. Experiments show that using these data augmentation algorithms enhances the characteristics of the initial data set and dramatically improves the performance of machine learning models.70 p.application/pdfengPontificia Univerisdad Javeriana Calihttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Machine LearningTabular data augmentationCutaneous leishmaniasisInfectious diseaseSynthetic dataSmall datasetK-Nearest neighborsLogistic regressionSupport vector machinesMachine learning with data augmentation to predict glucantime effectiveness against cutaneous leishmaniasishttp://purl.org/coar/resource_type/c_7a1fTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/redcol/resource_type/TPFacultad de Ingeniería y Ciencias. Ingeniería de Sistemas y ComputaciónPontificia Universidad Javeriana CaliPregradoIngeniero(a)de Sistemas y ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://vitela.javerianacali.edu.co/bitstreams/8a28f9ed-4d4b-493c-beb5-dd5c0551e22b/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTesis_Juan_Jose_Hoyos_Urcue.pdfTesis_Juan_Jose_Hoyos_Urcue.pdfapplication/pdf3186969https://vitela.javerianacali.edu.co/bitstreams/9907d8d5-10db-4166-8a64-c4622a0ffaf4/download98cbf8e866d3ee5283f779ef20a0567aMD52articulo-tesis.pdfarticulo-tesis.pdfapplication/pdf547705https://vitela.javerianacali.edu.co/bitstreams/9802bcc7-278c-4109-8ec0-845eb7724b93/download42c96b239c6741d84722e6cdfb7aea68MD53e mail Licencia CD Autorización.pdfe mail Licencia CD Autorización.pdfapplication/pdf221037https://vitela.javerianacali.edu.co/bitstreams/9e04d419-1713-4a93-afe5-c44244f32302/downloadf4c0188d8aae3ad1ef253ba08713dd0cMD54TEXTTesis_Juan_Jose_Hoyos_Urcue.pdf.txtTesis_Juan_Jose_Hoyos_Urcue.pdf.txtExtracted texttext/plain74233https://vitela.javerianacali.edu.co/bitstreams/b4cf8ef7-6032-4964-b93a-b94053b6642c/download49b47a3474f02dac0c9bfc1333eb5a39MD55articulo-tesis.pdf.txtarticulo-tesis.pdf.txtExtracted texttext/plain13951https://vitela.javerianacali.edu.co/bitstreams/c3c9139f-feff-42b5-a043-1b49958ce616/downloadf6889a37cbe43dbb43083b7bed348b35MD56e mail Licencia CD Autorización.pdf.txte mail Licencia CD Autorización.pdf.txtExtracted texttext/plain4804https://vitela.javerianacali.edu.co/bitstreams/b83c64b2-dfa1-42eb-814a-fbc38553ca0d/downloadd52c692adc9d3af36f7ac3300a31c46fMD510THUMBNAILarticulo-tesis.pdf.jpgarticulo-tesis.pdf.jpgGenerated Thumbnailimage/jpeg5629https://vitela.javerianacali.edu.co/bitstreams/7be446fa-8f31-4e05-9cd8-dda13fadb2f4/download875994ae9ee809bd3549ffe7f166c114MD57e mail Licencia CD Autorización.pdf.jpge mail Licencia CD Autorización.pdf.jpgGenerated Thumbnailimage/jpeg5290https://vitela.javerianacali.edu.co/bitstreams/186bc529-12a4-4bc2-b3e1-ddee9cb434ba/download45b802cf4869fac817ee062844923ae0MD58Tesis_Juan_Jose_Hoyos_Urcue.pdf.jpgTesis_Juan_Jose_Hoyos_Urcue.pdf.jpgGenerated Thumbnailimage/jpeg2807https://vitela.javerianacali.edu.co/bitstreams/8cf4eafd-7c7c-468b-8f95-b65947411c56/download916805819bc808f22f6ee5480a5ce37aMD5911522/2841oai:vitela.javerianacali.edu.co:11522/28412024-06-25 05:15:36.941https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://vitela.javerianacali.edu.coRepositorio Vitelavitela.mail@javerianacali.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |