Sistema de clasificación de coberturas en imágenes tomadas por drones usando técnicas de Deep Learning

El mapeo de la cobertura terrestre es un tema de investigación importante en la ciencia del cambio en el uso de la tierra y la planificación del paisaje. Las actividades humanas cambian constantemente los patrones de cobertura de la tierra e influyen en los procesos biofísicos del territorio. Tradic...

Full description

Autores:
Tello Dagua, Jhon Jairo
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2020
Institución:
Pontificia Universidad Javeriana Cali
Repositorio:
Vitela
Idioma:
spa
OAI Identifier:
oai:vitela.javerianacali.edu.co:11522/2140
Acceso en línea:
https://vitela.javerianacali.edu.co/handle/11522/2140
Palabra clave:
Deep learning
Redes neuronales
Convolucionales
Reconocimiento de imágenes
Ingeniería de software
Clasificación de coberturas
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:El mapeo de la cobertura terrestre es un tema de investigación importante en la ciencia del cambio en el uso de la tierra y la planificación del paisaje. Las actividades humanas cambian constantemente los patrones de cobertura de la tierra e influyen en los procesos biofísicos del territorio. Tradicionalmente la detección, clasificación y el monitoreo de coberturas de la tierra se ha llevado a cabo a través de la teledetección satelital. La capacidad para detectar, clasificar y cuantificar depende en gran parte de la capacidad del sensor y técnicas de clasificación entre las que se destacan la supervisada y no supervisada. Estas técnicas dependen de la calidad del algoritmo utilizado para discriminar las categorías. Con el uso de los drones es posible en la actualidad contar con grandes conjuntos de imágenes de alta resolución que contienen una gran cantidad de información que se puede explorar. Estas imágenes tienen el potencial de contener varios tipos de características como: bosques, casas, edificios, cultivos, carreteras, entre muchos otros. Esta investigación se enfocará en explorar el uso de técnicas de Deep Learning y redes neuronales convolucionales para la clasificación automatizada de coberturas de la tierra usando imágenes de alta resolución tomadas por drones. Se usará la librería de Deep Learning, Deeplearning4j para implementar un prototipo para la clasificación de coberturas. Como este tipo de modelos requiere que el conjunto de datos de entrenamiento sea bastante grande para un rendimiento más óptimo también dentro de la investigación se creará una plataforma para el etiquetado de imágenes por parte de expertos y una base de datos que estará en continuo crecimiento a medida que se etiqueten nuevas imágenes.