Estimación de imágenes NDVI mediante fusión de imágenes satelitales multiespectrales y SAR para la planeación agrícola

En la actualidad, la mala planificación en la agricultura es causante del 80 % de la deforestación mundial, debido al alto impacto que genera ésta actividad sobre el suelo. En el departamento de Nariño, los problemas ambientales vienen acompañados con problemas en la productividad, originada en una...

Full description

Autores:
Bastidas Torres, David Ramiro
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2021
Institución:
Pontificia Universidad Javeriana Cali
Repositorio:
Vitela
Idioma:
spa
OAI Identifier:
oai:vitela.javerianacali.edu.co:11522/1980
Acceso en línea:
https://vitela.javerianacali.edu.co/handle/11522/1980
Palabra clave:
Fusión
índice de vegetación normalizado (NDVI)
Imágenes multiespectrales
Redes neuronales generativas adversarias
Imágenes satelitales SAR
Autoencoders
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:En la actualidad, la mala planificación en la agricultura es causante del 80 % de la deforestación mundial, debido al alto impacto que genera ésta actividad sobre el suelo. En el departamento de Nariño, los problemas ambientales vienen acompañados con problemas en la productividad, originada en una mayoría por la falta de tecnificación. La incorporación de nuevas tecnologías surge como solución para mejorarla planeación de cultivos fundamental en el desarrollo de una agricultura sostenible. Dentro de estas tecnologías las imágenes satelitales multiespectrales (MSI) con el uso del índice de vegetación normalizado (NDVI), han tomado una relevancia significativa debido a que proveen información sobre la vigorosidad de la vegetación, la cual puede ayudar al análisis de diferentes variables en los cultivos. La principal limitación de las imágenes MSI se da en condiciones de alta nubosidad, en donde el satélite es incapaz de captar información por su sensor óptico, esto impide utilizar dicha información de manera continua, clave en la vigilancia de cultivos. En esta investigación se da como solución de este problema utilizar Generative adversarial networks (GANs) mediante su técnica de translación de imagen a imagen. Las arquitecturas Unet, Unet++ y ResNet fueron implementadas como generador de la GAN, con el objetivo de identificar que combinación presenta mejores resultados en las métricas SSIM (Structural Similarity Index), RMSE(rootmeansquare error), PSNR (Peak signaltonoise ratio) y SAM (spectral angle mapper range). Como resultado destacado, las redes Unet++ superan las ResNet y el modelo UNet pues reducen el RMSE de 0.028 a 0.015.