Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
Machine learning has enabled significant advancements in the field of medicine, particularly in predicting the outcome of disease treatment. This case study explores machine learning models and techniques to predict the success or failure of leishmaniasis treatment based on single nucleotide Polymor...
- Autores:
-
Bertín Sánchez, Alvaro José
Caicedo Rojas, Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Pontificia Universidad Javeriana Cali
- Repositorio:
- Vitela
- Idioma:
- spa
- OAI Identifier:
- oai:vitela.javerianacali.edu.co:11522/2549
- Acceso en línea:
- https://vitela.javerianacali.edu.co/handle/11522/2549
- Palabra clave:
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
Vitela2_533350283e1a767319c74b377f88b000 |
---|---|
oai_identifier_str |
oai:vitela.javerianacali.edu.co:11522/2549 |
network_acronym_str |
Vitela2 |
network_name_str |
Vitela |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
title |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
spellingShingle |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
title_short |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
title_full |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
title_fullStr |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
title_full_unstemmed |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
title_sort |
Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs |
dc.creator.fl_str_mv |
Bertín Sánchez, Alvaro José Caicedo Rojas, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Álvarez Vargas, Gloría Inés Linares Ospina, Diego Luis |
dc.contributor.author.none.fl_str_mv |
Bertín Sánchez, Alvaro José Caicedo Rojas, Santiago |
description |
Machine learning has enabled significant advancements in the field of medicine, particularly in predicting the outcome of disease treatment. This case study explores machine learning models and techniques to predict the success or failure of leishmaniasis treatment based on single nucleotide Polymorphisms (snps) in dna sequences. This is crucial because leishmaniasis treatment can have adverse effects for the human body, making it essential to predict whether individuals with leishmaniasis should undergo treatment. Unsupervised machine learning techniques were employed for the selection of the most significant snps. Subsequently, supervised learning techniques were utilized for prediction, and the performance of the model was assessed. This comprehensive approach aims to determine the efficacy of leishmaniasis treatment and whether individuals should or should not undergo the prescribed regimen. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-06-14T15:36:39Z |
dc.date.available.none.fl_str_mv |
2024-06-14T15:36:39Z |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://vitela.javerianacali.edu.co/handle/11522/2549 |
url |
https://vitela.javerianacali.edu.co/handle/11522/2549 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Javeriana Cali |
publisher.none.fl_str_mv |
Pontificia Universidad Javeriana Cali |
institution |
Pontificia Universidad Javeriana Cali |
bitstream.url.fl_str_mv |
https://vitela.javerianacali.edu.co/bitstreams/59b4c7b9-f3a4-4f97-be18-b52074aa8e85/download https://vitela.javerianacali.edu.co/bitstreams/da307375-b08f-4e3a-a94d-5e281daeaeed/download https://vitela.javerianacali.edu.co/bitstreams/28d6dede-e513-406b-b622-a350d543032f/download https://vitela.javerianacali.edu.co/bitstreams/4e174db0-c08a-4b6f-b14d-42bde4546df4/download https://vitela.javerianacali.edu.co/bitstreams/df838e94-005f-4eea-b29a-fb203d056167/download https://vitela.javerianacali.edu.co/bitstreams/59e33369-f142-41f5-81f5-286e35cecd2a/download https://vitela.javerianacali.edu.co/bitstreams/2da83ecc-12d9-4610-95c5-9eaca55e0deb/download |
bitstream.checksum.fl_str_mv |
c8124e929e7f21dfcba8cbb55eb4c04d e15da0452e2fecba151550742eb7ce13 bae4baa429dd9e8f2d60e75f6208c342 bd5a6cb9f59f51536a6c3316e45f59da 90b9e23203b2edd8c2752e973ed9d08f 736dcee1c193b4b766ff434a0bb37e40 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Vitela |
repository.mail.fl_str_mv |
vitela.mail@javerianacali.edu.co |
_version_ |
1812095049714892800 |
spelling |
Álvarez Vargas, Gloría InésLinares Ospina, Diego LuisBertín Sánchez, Alvaro JoséCaicedo Rojas, Santiago2024-06-14T15:36:39Z2024-06-14T15:36:39Z2023https://vitela.javerianacali.edu.co/handle/11522/2549application/pdfspaPontificia Universidad Javeriana Calihttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPshttp://purl.org/coar/resource_type/c_7a1fTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/redcol/resource_type/TPMachine learning has enabled significant advancements in the field of medicine, particularly in predicting the outcome of disease treatment. This case study explores machine learning models and techniques to predict the success or failure of leishmaniasis treatment based on single nucleotide Polymorphisms (snps) in dna sequences. This is crucial because leishmaniasis treatment can have adverse effects for the human body, making it essential to predict whether individuals with leishmaniasis should undergo treatment. Unsupervised machine learning techniques were employed for the selection of the most significant snps. Subsequently, supervised learning techniques were utilized for prediction, and the performance of the model was assessed. This comprehensive approach aims to determine the efficacy of leishmaniasis treatment and whether individuals should or should not undergo the prescribed regimen.Facultad de Ingeniería y Ciencias. Ingeniería de Sistemas y ComputaciónPontificia Universidad Javeriana CaliPregradoIngeniero de Sistemas y ComputaciónTEXTLicencia_autorizacion.pdf.txtLicencia_autorizacion.pdf.txtExtracted texttext/plain4926https://vitela.javerianacali.edu.co/bitstreams/59b4c7b9-f3a4-4f97-be18-b52074aa8e85/downloadc8124e929e7f21dfcba8cbb55eb4c04dMD58Articulo_cientifico.pdf.txtArticulo_cientifico.pdf.txtExtracted texttext/plain80885https://vitela.javerianacali.edu.co/bitstreams/da307375-b08f-4e3a-a94d-5e281daeaeed/downloade15da0452e2fecba151550742eb7ce13MD510THUMBNAILLicencia_autorizacion.pdf.jpgLicencia_autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg5364https://vitela.javerianacali.edu.co/bitstreams/28d6dede-e513-406b-b622-a350d543032f/downloadbae4baa429dd9e8f2d60e75f6208c342MD59Articulo_cientifico.pdf.jpgArticulo_cientifico.pdf.jpgGenerated Thumbnailimage/jpeg2911https://vitela.javerianacali.edu.co/bitstreams/4e174db0-c08a-4b6f-b14d-42bde4546df4/downloadbd5a6cb9f59f51536a6c3316e45f59daMD511ORIGINALLicencia_autorizacion.pdfLicencia_autorizacion.pdfapplication/pdf254641https://vitela.javerianacali.edu.co/bitstreams/df838e94-005f-4eea-b29a-fb203d056167/download90b9e23203b2edd8c2752e973ed9d08fMD52Articulo_cientifico.pdfArticulo_cientifico.pdfapplication/pdf1050656https://vitela.javerianacali.edu.co/bitstreams/59e33369-f142-41f5-81f5-286e35cecd2a/download736dcee1c193b4b766ff434a0bb37e40MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://vitela.javerianacali.edu.co/bitstreams/2da83ecc-12d9-4610-95c5-9eaca55e0deb/download8a4605be74aa9ea9d79846c1fba20a33MD5111522/2549oai:vitela.javerianacali.edu.co:11522/25492024-06-25 05:14:48.643https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://vitela.javerianacali.edu.coRepositorio Vitelavitela.mail@javerianacali.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |