Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs

Machine learning has enabled significant advancements in the field of medicine, particularly in predicting the outcome of disease treatment. This case study explores machine learning models and techniques to predict the success or failure of leishmaniasis treatment based on single nucleotide Polymor...

Full description

Autores:
Bertín Sánchez, Alvaro José
Caicedo Rojas, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Pontificia Universidad Javeriana Cali
Repositorio:
Vitela
Idioma:
spa
OAI Identifier:
oai:vitela.javerianacali.edu.co:11522/2549
Acceso en línea:
https://vitela.javerianacali.edu.co/handle/11522/2549
Palabra clave:
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id Vitela2_533350283e1a767319c74b377f88b000
oai_identifier_str oai:vitela.javerianacali.edu.co:11522/2549
network_acronym_str Vitela2
network_name_str Vitela
repository_id_str
dc.title.spa.fl_str_mv Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
title Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
spellingShingle Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
title_short Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
title_full Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
title_fullStr Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
title_full_unstemmed Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
title_sort Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPs
dc.creator.fl_str_mv Bertín Sánchez, Alvaro José
Caicedo Rojas, Santiago
dc.contributor.advisor.none.fl_str_mv Álvarez Vargas, Gloría Inés
Linares Ospina, Diego Luis
dc.contributor.author.none.fl_str_mv Bertín Sánchez, Alvaro José
Caicedo Rojas, Santiago
description Machine learning has enabled significant advancements in the field of medicine, particularly in predicting the outcome of disease treatment. This case study explores machine learning models and techniques to predict the success or failure of leishmaniasis treatment based on single nucleotide Polymorphisms (snps) in dna sequences. This is crucial because leishmaniasis treatment can have adverse effects for the human body, making it essential to predict whether individuals with leishmaniasis should undergo treatment. Unsupervised machine learning techniques were employed for the selection of the most significant snps. Subsequently, supervised learning techniques were utilized for prediction, and the performance of the model was assessed. This comprehensive approach aims to determine the efficacy of leishmaniasis treatment and whether individuals should or should not undergo the prescribed regimen.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-06-14T15:36:39Z
dc.date.available.none.fl_str_mv 2024-06-14T15:36:39Z
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://vitela.javerianacali.edu.co/handle/11522/2549
url https://vitela.javerianacali.edu.co/handle/11522/2549
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana Cali
publisher.none.fl_str_mv Pontificia Universidad Javeriana Cali
institution Pontificia Universidad Javeriana Cali
bitstream.url.fl_str_mv https://vitela.javerianacali.edu.co/bitstreams/59b4c7b9-f3a4-4f97-be18-b52074aa8e85/download
https://vitela.javerianacali.edu.co/bitstreams/da307375-b08f-4e3a-a94d-5e281daeaeed/download
https://vitela.javerianacali.edu.co/bitstreams/28d6dede-e513-406b-b622-a350d543032f/download
https://vitela.javerianacali.edu.co/bitstreams/4e174db0-c08a-4b6f-b14d-42bde4546df4/download
https://vitela.javerianacali.edu.co/bitstreams/df838e94-005f-4eea-b29a-fb203d056167/download
https://vitela.javerianacali.edu.co/bitstreams/59e33369-f142-41f5-81f5-286e35cecd2a/download
https://vitela.javerianacali.edu.co/bitstreams/2da83ecc-12d9-4610-95c5-9eaca55e0deb/download
bitstream.checksum.fl_str_mv c8124e929e7f21dfcba8cbb55eb4c04d
e15da0452e2fecba151550742eb7ce13
bae4baa429dd9e8f2d60e75f6208c342
bd5a6cb9f59f51536a6c3316e45f59da
90b9e23203b2edd8c2752e973ed9d08f
736dcee1c193b4b766ff434a0bb37e40
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Vitela
repository.mail.fl_str_mv vitela.mail@javerianacali.edu.co
_version_ 1812095049714892800
spelling Álvarez Vargas, Gloría InésLinares Ospina, Diego LuisBertín Sánchez, Alvaro JoséCaicedo Rojas, Santiago2024-06-14T15:36:39Z2024-06-14T15:36:39Z2023https://vitela.javerianacali.edu.co/handle/11522/2549application/pdfspaPontificia Universidad Javeriana Calihttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Predicción del desenlace terapéutico de la leishmaniasis utilizando aprendizaje automático sobre SNPshttp://purl.org/coar/resource_type/c_7a1fTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/redcol/resource_type/TPMachine learning has enabled significant advancements in the field of medicine, particularly in predicting the outcome of disease treatment. This case study explores machine learning models and techniques to predict the success or failure of leishmaniasis treatment based on single nucleotide Polymorphisms (snps) in dna sequences. This is crucial because leishmaniasis treatment can have adverse effects for the human body, making it essential to predict whether individuals with leishmaniasis should undergo treatment. Unsupervised machine learning techniques were employed for the selection of the most significant snps. Subsequently, supervised learning techniques were utilized for prediction, and the performance of the model was assessed. This comprehensive approach aims to determine the efficacy of leishmaniasis treatment and whether individuals should or should not undergo the prescribed regimen.Facultad de Ingeniería y Ciencias. Ingeniería de Sistemas y ComputaciónPontificia Universidad Javeriana CaliPregradoIngeniero de Sistemas y ComputaciónTEXTLicencia_autorizacion.pdf.txtLicencia_autorizacion.pdf.txtExtracted texttext/plain4926https://vitela.javerianacali.edu.co/bitstreams/59b4c7b9-f3a4-4f97-be18-b52074aa8e85/downloadc8124e929e7f21dfcba8cbb55eb4c04dMD58Articulo_cientifico.pdf.txtArticulo_cientifico.pdf.txtExtracted texttext/plain80885https://vitela.javerianacali.edu.co/bitstreams/da307375-b08f-4e3a-a94d-5e281daeaeed/downloade15da0452e2fecba151550742eb7ce13MD510THUMBNAILLicencia_autorizacion.pdf.jpgLicencia_autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg5364https://vitela.javerianacali.edu.co/bitstreams/28d6dede-e513-406b-b622-a350d543032f/downloadbae4baa429dd9e8f2d60e75f6208c342MD59Articulo_cientifico.pdf.jpgArticulo_cientifico.pdf.jpgGenerated Thumbnailimage/jpeg2911https://vitela.javerianacali.edu.co/bitstreams/4e174db0-c08a-4b6f-b14d-42bde4546df4/downloadbd5a6cb9f59f51536a6c3316e45f59daMD511ORIGINALLicencia_autorizacion.pdfLicencia_autorizacion.pdfapplication/pdf254641https://vitela.javerianacali.edu.co/bitstreams/df838e94-005f-4eea-b29a-fb203d056167/download90b9e23203b2edd8c2752e973ed9d08fMD52Articulo_cientifico.pdfArticulo_cientifico.pdfapplication/pdf1050656https://vitela.javerianacali.edu.co/bitstreams/59e33369-f142-41f5-81f5-286e35cecd2a/download736dcee1c193b4b766ff434a0bb37e40MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://vitela.javerianacali.edu.co/bitstreams/2da83ecc-12d9-4610-95c5-9eaca55e0deb/download8a4605be74aa9ea9d79846c1fba20a33MD5111522/2549oai:vitela.javerianacali.edu.co:11522/25492024-06-25 05:14:48.643https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://vitela.javerianacali.edu.coRepositorio Vitelavitela.mail@javerianacali.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=