BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
Early detection and timely management of crop diseases are essential for reducing yield loss. Traditional manual inspection is often time-consuming, laborious, and biased. Recently, automated imaging techniques have been successfully applied to the detection of crop diseases. Almost this type of res...
- Autores:
-
Vergara, Javier Alejandro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Pontificia Universidad Javeriana Cali
- Repositorio:
- Vitela
- Idioma:
- eng
- OAI Identifier:
- oai:vitela.javerianacali.edu.co:11522/2021
- Acceso en línea:
- https://vitela.javerianacali.edu.co/handle/11522/2021
- Palabra clave:
- Artificial intelligence
Generative adversarial networks
Deep learning
Disease detection
Data augmentation
Pseudostem
rachis
Synthetic dat
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
Vitela2_365ef1e6b85dfca6baac027a65d4838c |
---|---|
oai_identifier_str |
oai:vitela.javerianacali.edu.co:11522/2021 |
network_acronym_str |
Vitela2 |
network_name_str |
Vitela |
repository_id_str |
|
dc.title.eng.fl_str_mv |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
title |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
spellingShingle |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images Artificial intelligence Generative adversarial networks Deep learning Disease detection Data augmentation Pseudostem rachis Synthetic dat |
title_short |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
title_full |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
title_fullStr |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
title_full_unstemmed |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
title_sort |
BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images |
dc.creator.fl_str_mv |
Vergara, Javier Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Acharjee, Animesh Selvaraj,, Michael |
dc.contributor.author.none.fl_str_mv |
Vergara, Javier Alejandro |
dc.subject.none.fl_str_mv |
Artificial intelligence Generative adversarial networks Deep learning Disease detection Data augmentation Pseudostem rachis Synthetic dat |
topic |
Artificial intelligence Generative adversarial networks Deep learning Disease detection Data augmentation Pseudostem rachis Synthetic dat |
description |
Early detection and timely management of crop diseases are essential for reducing yield loss. Traditional manual inspection is often time-consuming, laborious, and biased. Recently, automated imaging techniques have been successfully applied to the detection of crop diseases. Almost this type of research requires a huge amount of images with key typical symptoms from rare classes. The rare class images are the key to differentiated closely related diseased symptoms, but it is mostly internal and difficult to get them. Thus we exploited generative adversarial networks for generating rare classes such as banana pseudostem and rachis images creating new datasets with synthetic images and doing domain disease translation, converting an image with a certain disease into another image with another different disease. These synthetic images were tested in pre-trained disease detection models to see if they are good enough to balance the banana disease datasets and improve the object detection models’ overall accuracy and can be applied to other deep learning techniques such as classification and semantic segmentation. mAP score from the trained models with synthetic images was between 64% and 89% accuracy, which conclude that synthetic images are a useful tool as a data augmentation technique. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-06-08T01:22:11Z |
dc.date.available.none.fl_str_mv |
2024-06-08T01:22:11Z |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.none.fl_str_mv |
Artículo de investigación |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.uri.none.fl_str_mv |
https://vitela.javerianacali.edu.co/handle/11522/2021 |
url |
https://vitela.javerianacali.edu.co/handle/11522/2021 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
64 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Javeriana Cali |
publisher.none.fl_str_mv |
Pontificia Universidad Javeriana Cali |
institution |
Pontificia Universidad Javeriana Cali |
bitstream.url.fl_str_mv |
https://vitela.javerianacali.edu.co/bitstreams/ed6f4b7a-0217-4adb-b363-b3aa801dabca/download https://vitela.javerianacali.edu.co/bitstreams/572e14f9-2de0-4f82-8613-64792b78d256/download https://vitela.javerianacali.edu.co/bitstreams/9338a973-ab4a-44e6-9081-094ec278c1f5/download https://vitela.javerianacali.edu.co/bitstreams/ea44add9-f98e-4b89-b79a-2f9ab206054a/download https://vitela.javerianacali.edu.co/bitstreams/71148cc9-6159-4788-b824-fe705c40a56c/download https://vitela.javerianacali.edu.co/bitstreams/05c2f4b2-431e-482e-892b-783e6cb0caa2/download https://vitela.javerianacali.edu.co/bitstreams/51a6b7d5-bef3-41c8-8d27-a9359aae2cf5/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 bcbd1f19755529c2fd866a9df2a23250 2a7122c4ee67898019b9dc3cbbacebfb 970c2be0542d59c61887d100099a47bd bc83b2cf31d1e93dbcac67150ac0eba6 26a2db09849a957b48700fc6b6081976 9d596700b313bdee31daa99e5f6311a4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Vitela |
repository.mail.fl_str_mv |
vitela.mail@javerianacali.edu.co |
_version_ |
1812095049642541056 |
spelling |
Acharjee, AnimeshSelvaraj,, MichaelVergara, Javier Alejandro2024-06-08T01:22:11Z2024-06-08T01:22:11Z2021https://vitela.javerianacali.edu.co/handle/11522/202164application/pdfengPontificia Universidad Javeriana Calihttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Artificial intelligenceGenerative adversarial networksDeep learningDisease detectionData augmentationPseudostemrachisSynthetic datBananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis imageshttp://purl.org/coar/resource_type/c_2df8fbb1Artículo de investigaciónhttps://purl.org/redcol/resource_type/ARTEarly detection and timely management of crop diseases are essential for reducing yield loss. Traditional manual inspection is often time-consuming, laborious, and biased. Recently, automated imaging techniques have been successfully applied to the detection of crop diseases. Almost this type of research requires a huge amount of images with key typical symptoms from rare classes. The rare class images are the key to differentiated closely related diseased symptoms, but it is mostly internal and difficult to get them. Thus we exploited generative adversarial networks for generating rare classes such as banana pseudostem and rachis images creating new datasets with synthetic images and doing domain disease translation, converting an image with a certain disease into another image with another different disease. These synthetic images were tested in pre-trained disease detection models to see if they are good enough to balance the banana disease datasets and improve the object detection models’ overall accuracy and can be applied to other deep learning techniques such as classification and semantic segmentation. mAP score from the trained models with synthetic images was between 64% and 89% accuracy, which conclude that synthetic images are a useful tool as a data augmentation technique.Facultad de Ingeniería y Ciencias. Maestría en IngenieríaPontificia Universidad Javeriana CaliMaestríaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://vitela.javerianacali.edu.co/bitstreams/ed6f4b7a-0217-4adb-b363-b3aa801dabca/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALtesis_fusionado.pdftesis_fusionado.pdfapplication/pdf26412177https://vitela.javerianacali.edu.co/bitstreams/572e14f9-2de0-4f82-8613-64792b78d256/downloadbcbd1f19755529c2fd866a9df2a23250MD52LICENCIA FINAL.pdfLICENCIA FINAL.pdfapplication/pdf649129https://vitela.javerianacali.edu.co/bitstreams/9338a973-ab4a-44e6-9081-094ec278c1f5/download2a7122c4ee67898019b9dc3cbbacebfbMD53TEXTtesis_fusionado.pdf.txttesis_fusionado.pdf.txtExtracted texttext/plain83882https://vitela.javerianacali.edu.co/bitstreams/ea44add9-f98e-4b89-b79a-2f9ab206054a/download970c2be0542d59c61887d100099a47bdMD512LICENCIA FINAL.pdf.txtLICENCIA FINAL.pdf.txtExtracted texttext/plain4921https://vitela.javerianacali.edu.co/bitstreams/71148cc9-6159-4788-b824-fe705c40a56c/downloadbc83b2cf31d1e93dbcac67150ac0eba6MD514THUMBNAILtesis_fusionado.pdf.jpgtesis_fusionado.pdf.jpgGenerated Thumbnailimage/jpeg3347https://vitela.javerianacali.edu.co/bitstreams/05c2f4b2-431e-482e-892b-783e6cb0caa2/download26a2db09849a957b48700fc6b6081976MD513LICENCIA FINAL.pdf.jpgLICENCIA FINAL.pdf.jpgGenerated Thumbnailimage/jpeg5337https://vitela.javerianacali.edu.co/bitstreams/51a6b7d5-bef3-41c8-8d27-a9359aae2cf5/download9d596700b313bdee31daa99e5f6311a4MD51511522/2021oai:vitela.javerianacali.edu.co:11522/20212024-06-25 05:13:44.36https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://vitela.javerianacali.edu.coRepositorio Vitelavitela.mail@javerianacali.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |