BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images

Early detection and timely management of crop diseases are essential for reducing yield loss. Traditional manual inspection is often time-consuming, laborious, and biased. Recently, automated imaging techniques have been successfully applied to the detection of crop diseases. Almost this type of res...

Full description

Autores:
Vergara, Javier Alejandro
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Pontificia Universidad Javeriana Cali
Repositorio:
Vitela
Idioma:
eng
OAI Identifier:
oai:vitela.javerianacali.edu.co:11522/2021
Acceso en línea:
https://vitela.javerianacali.edu.co/handle/11522/2021
Palabra clave:
Artificial intelligence
Generative adversarial networks
Deep learning
Disease detection
Data augmentation
Pseudostem
rachis
Synthetic dat
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id Vitela2_365ef1e6b85dfca6baac027a65d4838c
oai_identifier_str oai:vitela.javerianacali.edu.co:11522/2021
network_acronym_str Vitela2
network_name_str Vitela
repository_id_str
dc.title.eng.fl_str_mv BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
title BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
spellingShingle BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
Artificial intelligence
Generative adversarial networks
Deep learning
Disease detection
Data augmentation
Pseudostem
rachis
Synthetic dat
title_short BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
title_full BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
title_fullStr BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
title_full_unstemmed BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
title_sort BananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis images
dc.creator.fl_str_mv Vergara, Javier Alejandro
dc.contributor.advisor.none.fl_str_mv Acharjee, Animesh
Selvaraj,, Michael
dc.contributor.author.none.fl_str_mv Vergara, Javier Alejandro
dc.subject.none.fl_str_mv Artificial intelligence
Generative adversarial networks
Deep learning
Disease detection
Data augmentation
Pseudostem
rachis
Synthetic dat
topic Artificial intelligence
Generative adversarial networks
Deep learning
Disease detection
Data augmentation
Pseudostem
rachis
Synthetic dat
description Early detection and timely management of crop diseases are essential for reducing yield loss. Traditional manual inspection is often time-consuming, laborious, and biased. Recently, automated imaging techniques have been successfully applied to the detection of crop diseases. Almost this type of research requires a huge amount of images with key typical symptoms from rare classes. The rare class images are the key to differentiated closely related diseased symptoms, but it is mostly internal and difficult to get them. Thus we exploited generative adversarial networks for generating rare classes such as banana pseudostem and rachis images creating new datasets with synthetic images and doing domain disease translation, converting an image with a certain disease into another image with another different disease. These synthetic images were tested in pre-trained disease detection models to see if they are good enough to balance the banana disease datasets and improve the object detection models’ overall accuracy and can be applied to other deep learning techniques such as classification and semantic segmentation. mAP score from the trained models with synthetic images was between 64% and 89% accuracy, which conclude that synthetic images are a useful tool as a data augmentation technique.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-06-08T01:22:11Z
dc.date.available.none.fl_str_mv 2024-06-08T01:22:11Z
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.none.fl_str_mv Artículo de investigación
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.uri.none.fl_str_mv https://vitela.javerianacali.edu.co/handle/11522/2021
url https://vitela.javerianacali.edu.co/handle/11522/2021
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 64
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana Cali
publisher.none.fl_str_mv Pontificia Universidad Javeriana Cali
institution Pontificia Universidad Javeriana Cali
bitstream.url.fl_str_mv https://vitela.javerianacali.edu.co/bitstreams/ed6f4b7a-0217-4adb-b363-b3aa801dabca/download
https://vitela.javerianacali.edu.co/bitstreams/572e14f9-2de0-4f82-8613-64792b78d256/download
https://vitela.javerianacali.edu.co/bitstreams/9338a973-ab4a-44e6-9081-094ec278c1f5/download
https://vitela.javerianacali.edu.co/bitstreams/ea44add9-f98e-4b89-b79a-2f9ab206054a/download
https://vitela.javerianacali.edu.co/bitstreams/71148cc9-6159-4788-b824-fe705c40a56c/download
https://vitela.javerianacali.edu.co/bitstreams/05c2f4b2-431e-482e-892b-783e6cb0caa2/download
https://vitela.javerianacali.edu.co/bitstreams/51a6b7d5-bef3-41c8-8d27-a9359aae2cf5/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bcbd1f19755529c2fd866a9df2a23250
2a7122c4ee67898019b9dc3cbbacebfb
970c2be0542d59c61887d100099a47bd
bc83b2cf31d1e93dbcac67150ac0eba6
26a2db09849a957b48700fc6b6081976
9d596700b313bdee31daa99e5f6311a4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Vitela
repository.mail.fl_str_mv vitela.mail@javerianacali.edu.co
_version_ 1812095049642541056
spelling Acharjee, AnimeshSelvaraj,, MichaelVergara, Javier Alejandro2024-06-08T01:22:11Z2024-06-08T01:22:11Z2021https://vitela.javerianacali.edu.co/handle/11522/202164application/pdfengPontificia Universidad Javeriana Calihttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Artificial intelligenceGenerative adversarial networksDeep learningDisease detectionData augmentationPseudostemrachisSynthetic datBananaGAN : Augmenting major banana disease detection using generated diseased pseudostem and rachis imageshttp://purl.org/coar/resource_type/c_2df8fbb1Artículo de investigaciónhttps://purl.org/redcol/resource_type/ARTEarly detection and timely management of crop diseases are essential for reducing yield loss. Traditional manual inspection is often time-consuming, laborious, and biased. Recently, automated imaging techniques have been successfully applied to the detection of crop diseases. Almost this type of research requires a huge amount of images with key typical symptoms from rare classes. The rare class images are the key to differentiated closely related diseased symptoms, but it is mostly internal and difficult to get them. Thus we exploited generative adversarial networks for generating rare classes such as banana pseudostem and rachis images creating new datasets with synthetic images and doing domain disease translation, converting an image with a certain disease into another image with another different disease. These synthetic images were tested in pre-trained disease detection models to see if they are good enough to balance the banana disease datasets and improve the object detection models’ overall accuracy and can be applied to other deep learning techniques such as classification and semantic segmentation. mAP score from the trained models with synthetic images was between 64% and 89% accuracy, which conclude that synthetic images are a useful tool as a data augmentation technique.Facultad de Ingeniería y Ciencias. Maestría en IngenieríaPontificia Universidad Javeriana CaliMaestríaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://vitela.javerianacali.edu.co/bitstreams/ed6f4b7a-0217-4adb-b363-b3aa801dabca/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALtesis_fusionado.pdftesis_fusionado.pdfapplication/pdf26412177https://vitela.javerianacali.edu.co/bitstreams/572e14f9-2de0-4f82-8613-64792b78d256/downloadbcbd1f19755529c2fd866a9df2a23250MD52LICENCIA FINAL.pdfLICENCIA FINAL.pdfapplication/pdf649129https://vitela.javerianacali.edu.co/bitstreams/9338a973-ab4a-44e6-9081-094ec278c1f5/download2a7122c4ee67898019b9dc3cbbacebfbMD53TEXTtesis_fusionado.pdf.txttesis_fusionado.pdf.txtExtracted texttext/plain83882https://vitela.javerianacali.edu.co/bitstreams/ea44add9-f98e-4b89-b79a-2f9ab206054a/download970c2be0542d59c61887d100099a47bdMD512LICENCIA FINAL.pdf.txtLICENCIA FINAL.pdf.txtExtracted texttext/plain4921https://vitela.javerianacali.edu.co/bitstreams/71148cc9-6159-4788-b824-fe705c40a56c/downloadbc83b2cf31d1e93dbcac67150ac0eba6MD514THUMBNAILtesis_fusionado.pdf.jpgtesis_fusionado.pdf.jpgGenerated Thumbnailimage/jpeg3347https://vitela.javerianacali.edu.co/bitstreams/05c2f4b2-431e-482e-892b-783e6cb0caa2/download26a2db09849a957b48700fc6b6081976MD513LICENCIA FINAL.pdf.jpgLICENCIA FINAL.pdf.jpgGenerated Thumbnailimage/jpeg5337https://vitela.javerianacali.edu.co/bitstreams/51a6b7d5-bef3-41c8-8d27-a9359aae2cf5/download9d596700b313bdee31daa99e5f6311a4MD51511522/2021oai:vitela.javerianacali.edu.co:11522/20212024-06-25 05:13:44.36https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://vitela.javerianacali.edu.coRepositorio Vitelavitela.mail@javerianacali.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=