Develop of prototype system for people recognition based on ear biometrics
In this work, a prototype of an ear biometric system based on Convolutional Neural Networks is designed and evaluated, thinking about the problems faced by people who cannot use the conventional fingerprint biometric system in Colombia. First, with the OpenCV Haar Cascade tool, the user's ear i...
- Autores:
-
Córdoba Bravo, Juan Camilo
Torres Ordoñez, José Iván
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Pontificia Universidad Javeriana Cali
- Repositorio:
- Vitela
- Idioma:
- eng
- OAI Identifier:
- oai:vitela.javerianacali.edu.co:11522/2711
- Acceso en línea:
- https://vitela.javerianacali.edu.co/handle/11522/2711
- Palabra clave:
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
Vitela2_03ae70bc9c88f54930f2f9ece29d0ada |
---|---|
oai_identifier_str |
oai:vitela.javerianacali.edu.co:11522/2711 |
network_acronym_str |
Vitela2 |
network_name_str |
Vitela |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Develop of prototype system for people recognition based on ear biometrics |
title |
Develop of prototype system for people recognition based on ear biometrics |
spellingShingle |
Develop of prototype system for people recognition based on ear biometrics |
title_short |
Develop of prototype system for people recognition based on ear biometrics |
title_full |
Develop of prototype system for people recognition based on ear biometrics |
title_fullStr |
Develop of prototype system for people recognition based on ear biometrics |
title_full_unstemmed |
Develop of prototype system for people recognition based on ear biometrics |
title_sort |
Develop of prototype system for people recognition based on ear biometrics |
dc.creator.fl_str_mv |
Córdoba Bravo, Juan Camilo Torres Ordoñez, José Iván |
dc.contributor.advisor.none.fl_str_mv |
Linares Ospina, Diego Luis |
dc.contributor.author.none.fl_str_mv |
Córdoba Bravo, Juan Camilo Torres Ordoñez, José Iván |
description |
In this work, a prototype of an ear biometric system based on Convolutional Neural Networks is designed and evaluated, thinking about the problems faced by people who cannot use the conventional fingerprint biometric system in Colombia. First, with the OpenCV Haar Cascade tool, the user's ear is extracted and a database of ninety-two users is generated, using data augmentation for later training. The characteristic of CNNs to extract features in their convolutional layers are used and transfer learning is performed with a Support Vector Machine as classifier that has the extracted CNN features as input. The CNN models used were VGG16 and FaceNet. A retraining of the VGG16 model available in Keras library was made, this model was retrained with images of ears so that it learns to extract its features. The FaceNet model developed by Google is used on its base form to get the features. These features are input to a C-SVM classifier, the SVM hyperparameters are adjusted with Sklearn Grid-Search technique, the CNN models use different SVM hyperparameters. Python scripts are developed to implement the proposed models, such as user enrollment, classifier training and the use of the proposed system. After having the algorithms ready, tests were made to evaluate their performance with different techniques such as Sklearn cross-validation to figure out the accuracy of the models, the False accept rate and False reject rate metrics, and finally the ROC curve for biometric systems to get the performance of this prototype system. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-06-17T13:35:15Z |
dc.date.available.none.fl_str_mv |
2024-06-17T13:35:15Z |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://vitela.javerianacali.edu.co/handle/11522/2711 |
url |
https://vitela.javerianacali.edu.co/handle/11522/2711 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
39 p. |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Univerisdad Javeriana Cali |
publisher.none.fl_str_mv |
Pontificia Univerisdad Javeriana Cali |
institution |
Pontificia Universidad Javeriana Cali |
bitstream.url.fl_str_mv |
https://vitela.javerianacali.edu.co/bitstreams/a1255309-cdf8-4015-adf4-c41669bd3538/download https://vitela.javerianacali.edu.co/bitstreams/ecc06331-d7df-44b7-8642-3724a9654e8d/download https://vitela.javerianacali.edu.co/bitstreams/4f240110-937f-4dde-8243-9fc2fc91887c/download https://vitela.javerianacali.edu.co/bitstreams/eb49395a-7eb0-48a7-baaf-74f910b956a0/download https://vitela.javerianacali.edu.co/bitstreams/37bbecfd-e9db-428c-90cc-9c798441051d/download https://vitela.javerianacali.edu.co/bitstreams/158f80f4-05e5-45ba-a523-d0e15c009863/download https://vitela.javerianacali.edu.co/bitstreams/7bf8eb0b-951a-4d7b-a374-05f0d0494fd2/download https://vitela.javerianacali.edu.co/bitstreams/0e66e3dd-cb6c-4e47-af43-6bf452785213/download https://vitela.javerianacali.edu.co/bitstreams/2f9d505a-db7d-4947-ad76-33708e467b43/download https://vitela.javerianacali.edu.co/bitstreams/0cb4ef17-b8ca-4068-9a13-fb1cc6a96404/download |
bitstream.checksum.fl_str_mv |
585d77336377f1ab82b8bdcce1b6558e cf567c884ae54037f28287a2d0651bfb 37c9bdcd708570f0daf9f4462c6a5892 2ecc016afeb71914ef577ee868c7f0bd cbe879042176e072c8b3fd9855a3ea64 3f4802ef844fcfa0cf5659127e5f5f2e 33ce91f9272d7a54f1ef38906e0cc945 bde006136bb3159964fe5eb280ed99d0 048428b51888e9153b8e5d16ac356a9e 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Vitela |
repository.mail.fl_str_mv |
vitela.mail@javerianacali.edu.co |
_version_ |
1812095061576384512 |
spelling |
Linares Ospina, Diego LuisCórdoba Bravo, Juan CamiloTorres Ordoñez, José Iván2024-06-17T13:35:15Z2024-06-17T13:35:15Z2023https://vitela.javerianacali.edu.co/handle/11522/271139 p.application/pdfengPontificia Univerisdad Javeriana Calihttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Develop of prototype system for people recognition based on ear biometricshttp://purl.org/coar/resource_type/c_7a1fTesis/Trabajo de grado - Monografía - Especializaciónhttps://purl.org/redcol/resource_type/TPIn this work, a prototype of an ear biometric system based on Convolutional Neural Networks is designed and evaluated, thinking about the problems faced by people who cannot use the conventional fingerprint biometric system in Colombia. First, with the OpenCV Haar Cascade tool, the user's ear is extracted and a database of ninety-two users is generated, using data augmentation for later training. The characteristic of CNNs to extract features in their convolutional layers are used and transfer learning is performed with a Support Vector Machine as classifier that has the extracted CNN features as input. The CNN models used were VGG16 and FaceNet. A retraining of the VGG16 model available in Keras library was made, this model was retrained with images of ears so that it learns to extract its features. The FaceNet model developed by Google is used on its base form to get the features. These features are input to a C-SVM classifier, the SVM hyperparameters are adjusted with Sklearn Grid-Search technique, the CNN models use different SVM hyperparameters. Python scripts are developed to implement the proposed models, such as user enrollment, classifier training and the use of the proposed system. After having the algorithms ready, tests were made to evaluate their performance with different techniques such as Sklearn cross-validation to figure out the accuracy of the models, the False accept rate and False reject rate metrics, and finally the ROC curve for biometric systems to get the performance of this prototype system.Facultad de Ingeniería y Ciencias. Ingeniería ElectrónicaPontificia Universidad Javeriana CaliPregradoIngeniero(a)Electrónico(a)TEXTEar_Bimoetric_Prototype_withCNN.pdf.pdf.txtEar_Bimoetric_Prototype_withCNN.pdf.pdf.txtExtracted texttext/plain78584https://vitela.javerianacali.edu.co/bitstreams/a1255309-cdf8-4015-adf4-c41669bd3538/download585d77336377f1ab82b8bdcce1b6558eMD54Articulo_cientifico.pdf.txtArticulo_cientifico.pdf.txtExtracted texttext/plain16824https://vitela.javerianacali.edu.co/bitstreams/ecc06331-d7df-44b7-8642-3724a9654e8d/downloadcf567c884ae54037f28287a2d0651bfbMD56Licencia_autorizacion.pdf.txtLicencia_autorizacion.pdf.txtExtracted texttext/plain4834https://vitela.javerianacali.edu.co/bitstreams/4f240110-937f-4dde-8243-9fc2fc91887c/download37c9bdcd708570f0daf9f4462c6a5892MD58THUMBNAILEar_Bimoetric_Prototype_withCNN.pdf.pdf.jpgEar_Bimoetric_Prototype_withCNN.pdf.pdf.jpgGenerated Thumbnailimage/jpeg3806https://vitela.javerianacali.edu.co/bitstreams/eb49395a-7eb0-48a7-baaf-74f910b956a0/download2ecc016afeb71914ef577ee868c7f0bdMD55Articulo_cientifico.pdf.jpgArticulo_cientifico.pdf.jpgGenerated Thumbnailimage/jpeg5692https://vitela.javerianacali.edu.co/bitstreams/37bbecfd-e9db-428c-90cc-9c798441051d/downloadcbe879042176e072c8b3fd9855a3ea64MD57Licencia_autorizacion.pdf.jpgLicencia_autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg5333https://vitela.javerianacali.edu.co/bitstreams/158f80f4-05e5-45ba-a523-d0e15c009863/download3f4802ef844fcfa0cf5659127e5f5f2eMD59ORIGINALEar_Bimoetric_Prototype_withCNN.pdf.pdfEar_Bimoetric_Prototype_withCNN.pdf.pdfapplication/pdf1820572https://vitela.javerianacali.edu.co/bitstreams/7bf8eb0b-951a-4d7b-a374-05f0d0494fd2/download33ce91f9272d7a54f1ef38906e0cc945MD52Articulo_cientifico.pdfArticulo_cientifico.pdfapplication/pdf423589https://vitela.javerianacali.edu.co/bitstreams/0e66e3dd-cb6c-4e47-af43-6bf452785213/downloadbde006136bb3159964fe5eb280ed99d0MD53Licencia_autorizacion.pdfLicencia_autorizacion.pdfapplication/pdf1332771https://vitela.javerianacali.edu.co/bitstreams/2f9d505a-db7d-4947-ad76-33708e467b43/download048428b51888e9153b8e5d16ac356a9eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://vitela.javerianacali.edu.co/bitstreams/0cb4ef17-b8ca-4068-9a13-fb1cc6a96404/download8a4605be74aa9ea9d79846c1fba20a33MD5111522/2711oai:vitela.javerianacali.edu.co:11522/27112024-06-25 05:15:10.925https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://vitela.javerianacali.edu.coRepositorio Vitelavitela.mail@javerianacali.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |