Monetización de datos en el sector asegurador
El presente trabajo de investigación consiste en la descripción y análisis de las condiciones actuales que tiene el sector asegurador colombiano en cuanto a los datos almacenados y los beneficios que obtienen o pueden obtener a través de estos. La principal problemática de investigación se basa en e...
- Autores:
-
Grajales Vélez, Dianey Nanyiber
Salazar Acevedo, Mabel Catalina
Zapata Ochoa, Santiago
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universitaria Minuto De Dios - Uniminuto
- Repositorio:
- Repositorio institucional UNIMINUTO
- Idioma:
- spa
- OAI Identifier:
- oai:repository.uniminuto.edu:10656/15699
- Acceso en línea:
- https://repository.uniminuto.edu/handle/10656/15699
https:// repository.uniminuto.edu
- Palabra clave:
- Analítica Avanzada
Big Data
Inteligencia Artificial
Monetización de Datos
Sector Asegurador
Advanced Analytics
Big Data
Artificial Intelligence
Data Monetization
Insurance Sector
INTELIGENCIA ARTIFICIAL
ALMACENAMIENTO DE INFORMACIÓN
ANALISIS DE INFORMACIÓN
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
Uniminuto2_0f0f51b7b474695f6a381d3d33c6a416 |
---|---|
oai_identifier_str |
oai:repository.uniminuto.edu:10656/15699 |
network_acronym_str |
Uniminuto2 |
network_name_str |
Repositorio institucional UNIMINUTO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Monetización de datos en el sector asegurador |
title |
Monetización de datos en el sector asegurador |
spellingShingle |
Monetización de datos en el sector asegurador Analítica Avanzada Big Data Inteligencia Artificial Monetización de Datos Sector Asegurador Advanced Analytics Big Data Artificial Intelligence Data Monetization Insurance Sector INTELIGENCIA ARTIFICIAL ALMACENAMIENTO DE INFORMACIÓN ANALISIS DE INFORMACIÓN |
title_short |
Monetización de datos en el sector asegurador |
title_full |
Monetización de datos en el sector asegurador |
title_fullStr |
Monetización de datos en el sector asegurador |
title_full_unstemmed |
Monetización de datos en el sector asegurador |
title_sort |
Monetización de datos en el sector asegurador |
dc.creator.fl_str_mv |
Grajales Vélez, Dianey Nanyiber Salazar Acevedo, Mabel Catalina Zapata Ochoa, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Sierra Cadavid, Milton Esteban |
dc.contributor.author.none.fl_str_mv |
Grajales Vélez, Dianey Nanyiber Salazar Acevedo, Mabel Catalina Zapata Ochoa, Santiago |
dc.subject.spa.fl_str_mv |
Analítica Avanzada Big Data Inteligencia Artificial Monetización de Datos Sector Asegurador |
topic |
Analítica Avanzada Big Data Inteligencia Artificial Monetización de Datos Sector Asegurador Advanced Analytics Big Data Artificial Intelligence Data Monetization Insurance Sector INTELIGENCIA ARTIFICIAL ALMACENAMIENTO DE INFORMACIÓN ANALISIS DE INFORMACIÓN |
dc.subject.keywords.eng.fl_str_mv |
Advanced Analytics |
dc.subject.lemb.eng.fl_str_mv |
Big Data Artificial Intelligence Data Monetization Insurance Sector |
dc.subject.lemb.spa.fl_str_mv |
INTELIGENCIA ARTIFICIAL ALMACENAMIENTO DE INFORMACIÓN ANALISIS DE INFORMACIÓN |
description |
El presente trabajo de investigación consiste en la descripción y análisis de las condiciones actuales que tiene el sector asegurador colombiano en cuanto a los datos almacenados y los beneficios que obtienen o pueden obtener a través de estos. La principal problemática de investigación se basa en encontrar un ingreso financiero partiendo de los datos almacenados que surgen de la operación del negocio, datos que en el mundo actual se van incrementando exponencialmente y que las empresas aseguradoras deben estar a la vanguardia con relación a su entorno ya un ambiente más competitivo; teniendo en cuenta todo esto, se buscan los mecanismos más innovadores y que incluyan nuevas tecnologías que revolucionan el mundo actual y generan un mayor valor a las empresas. Para el desarrollo de la investigación se tomó como referentes entrevistas a tres grandes aseguradoras Colombianas, cómo también fuentes primarias como bases de datos académicas, revistas de tecnología, artículos e investigaciones de tendencias en el sector asegurador, con el fin de obtener información más detallada que se acerque a la situación real del sector tomando como base los diferentes casos aplicados en el mundo sobre la monetización de los datos en el sector asegurador, teniendo esto en cuenta se realizó una caracterización de las principales estrategias más exitosas que basados en un cuadro de priorización se tomaron los aspectos más importantes que deben tener las aseguradoras en el manejo de sus datos, en el análisis y aplicación de los mismos, realizándose una propuesta basada en el análisis e integración de la información de los clientes con una vista 360 y una aplicación de la inteligencia artificial para la disminución de gastos, pérdidas, primas y monitoreo de datos. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11 |
dc.date.accessioned.none.fl_str_mv |
2023-01-26T20:44:11Z |
dc.date.available.none.fl_str_mv |
2023-01-26T20:44:11Z |
dc.type.none.fl_str_mv |
Thesis |
dc.type.spa.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
format |
http://purl.org/coar/resource_type/c_46ec |
dc.identifier.citation.spa.fl_str_mv |
Grajales Vélez, D.N., Salazar Acevedo, M.C. y Zapata Ochoa, S. (2020).Monetización de datos en el sector asegurador . [Trabajo de grado, Corporación Universitaria Minuto de Dios]. |
dc.identifier.uri.none.fl_str_mv |
https://repository.uniminuto.edu/handle/10656/15699 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universitaria Minuto de Dios |
dc.identifier.reponame.spa.fl_str_mv |
Colecciones Digitales Uniminuto |
dc.identifier.repourl.none.fl_str_mv |
https:// repository.uniminuto.edu |
identifier_str_mv |
Grajales Vélez, D.N., Salazar Acevedo, M.C. y Zapata Ochoa, S. (2020).Monetización de datos en el sector asegurador . [Trabajo de grado, Corporación Universitaria Minuto de Dios]. Corporación Universitaria Minuto de Dios Colecciones Digitales Uniminuto |
url |
https://repository.uniminuto.edu/handle/10656/15699 https:// repository.uniminuto.edu |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAcces |
dc.rights.local.eng.fl_str_mv |
Open Access |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAcces Open Access |
dc.format.extent.none.fl_str_mv |
69 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Itagui |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Minuto de Dios |
dc.publisher.department.spa.fl_str_mv |
Posgrado |
dc.publisher.program.spa.fl_str_mv |
Especialización en Gerencia de Proyectos |
institution |
Corporación Universitaria Minuto De Dios - Uniminuto |
bitstream.url.fl_str_mv |
https://repository.uniminuto.edu/bitstreams/b1f18534-c65b-41df-9675-458dffd5d1f0/download https://repository.uniminuto.edu/bitstreams/40b5a952-bacf-4d19-87a4-437c18a64379/download https://repository.uniminuto.edu/bitstreams/aa24036e-d6a0-4753-b0af-4e77805f3f1f/download |
bitstream.checksum.fl_str_mv |
34a888044a1b5637eb8407ee81aa7f7a 48dadbd1d027711f5d202715b3e43ef0 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repository - Uniminuto |
repository.mail.fl_str_mv |
repositorio@uniminuto.edu |
_version_ |
1812494507940249600 |
spelling |
Sierra Cadavid, Milton Estebanb8842f1e-aca3-41c8-a9c8-5c459f7a9bf4Grajales Vélez, Dianey Nanyiber4c5ec5f1-49d2-4bd6-bafa-f8737ba5188aSalazar Acevedo, Mabel Catalina87d9db6d-8028-4ea8-a8e0-f819bc3a7105Zapata Ochoa, Santiago40706b71-be80-492e-b65a-70427220cde7Itagui2023-01-26T20:44:11Z2023-01-26T20:44:11Z2020-11Grajales Vélez, D.N., Salazar Acevedo, M.C. y Zapata Ochoa, S. (2020).Monetización de datos en el sector asegurador . [Trabajo de grado, Corporación Universitaria Minuto de Dios].https://repository.uniminuto.edu/handle/10656/15699Corporación Universitaria Minuto de DiosColecciones Digitales Uniminutohttps:// repository.uniminuto.eduEl presente trabajo de investigación consiste en la descripción y análisis de las condiciones actuales que tiene el sector asegurador colombiano en cuanto a los datos almacenados y los beneficios que obtienen o pueden obtener a través de estos. La principal problemática de investigación se basa en encontrar un ingreso financiero partiendo de los datos almacenados que surgen de la operación del negocio, datos que en el mundo actual se van incrementando exponencialmente y que las empresas aseguradoras deben estar a la vanguardia con relación a su entorno ya un ambiente más competitivo; teniendo en cuenta todo esto, se buscan los mecanismos más innovadores y que incluyan nuevas tecnologías que revolucionan el mundo actual y generan un mayor valor a las empresas. Para el desarrollo de la investigación se tomó como referentes entrevistas a tres grandes aseguradoras Colombianas, cómo también fuentes primarias como bases de datos académicas, revistas de tecnología, artículos e investigaciones de tendencias en el sector asegurador, con el fin de obtener información más detallada que se acerque a la situación real del sector tomando como base los diferentes casos aplicados en el mundo sobre la monetización de los datos en el sector asegurador, teniendo esto en cuenta se realizó una caracterización de las principales estrategias más exitosas que basados en un cuadro de priorización se tomaron los aspectos más importantes que deben tener las aseguradoras en el manejo de sus datos, en el análisis y aplicación de los mismos, realizándose una propuesta basada en el análisis e integración de la información de los clientes con una vista 360 y una aplicación de la inteligencia artificial para la disminución de gastos, pérdidas, primas y monitoreo de datos.This research consists of the description and analysis of the current conditions that the Colombian insurance sector has in terms of the stored data and the benefits that they obtain or can obtain through them.The main research problem is based on finding a financial income based on the stored data that arises from the operation of the business, data that in today's world are increasing exponentially and that insurance companies must be at the forefront in relation to their environment and to a more competitive environment; Taking all this inaccount, the most innovative mechanisms are sought, including new technologies that revolutionize today's world and generate greater value for companies. For the development of the research, interviews with three large Colombian insurance companies were taken as references, as well as primary sources such as academic databases, technology magazines, articles and research on trends in the insurance sector, in order to obtain more detailed information that approaches the real situation of the sector based on the different cases applied in the world on the monetization of data in the insurance sector, taking this into account a characterization of the main most successful strategies was carried out based on a prioritization table.The most important aspects that insurers must have in the management of their data, in the analysis and application of the same, were taken, making a proposal based on the analysisand integration of customer information with a 360 view and an application of artificial intelligence to reduce expenses, losses, premiums and data monitoring.69 páginasapplication/pdfCorporación Universitaria Minuto de DiosPosgradoEspecialización en Gerencia de ProyectosAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccesEL AUTOR, manifiesta que la obra objeto de la presenta autorización es original y la realizo sin violar o usurpar derechos de autor de terceros, por lo tanto, la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARAGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS, para que los términos establecidos en la Ley 1581 de 2012 en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993 y toda normal sobre la materia, utilice y use la obra objeto de la presente autorización. TRATAMIENTO DE DATOS PERSONALES, EL AUTOR declara y autoriza lo dispuesto en el Articulo 10 del Decreto 1377 de 2013 a proceder con el tratamiento de los datos personales para fines académicos, históricos, estadísticos y administrativos de la Institución. De conformidad con lo establecido, aclaramos que “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.Open AccessAnalítica AvanzadaBig DataInteligencia ArtificialMonetización de DatosSector AseguradorAdvanced AnalyticsBig DataArtificial IntelligenceData MonetizationInsurance SectorINTELIGENCIA ARTIFICIALALMACENAMIENTO DE INFORMACIÓNANALISIS DE INFORMACIÓNMonetización de datos en el sector aseguradorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_46ecspaAlfonseca, M.(2016). Inteligencia artificial. Recuperado dehttp://dia.austral.edu.ar/Inteligenc ia_artific ia l# :~:text=Definic i%C3%B3n%201%3A%20Llamamos%20inteligenc ia%20artific ia l,utilizando%20para%20ello%20m%C3%A9todos%20heur%C3%ADsticos.Almajano, C.(2018). El dato el activo más estratégico de las organizaciones.Recuperado de https://www.computerworld.es/negoc io/el-dato-el-activo-mas-estrategico-de-las-organizaciones.Big Data, International Campus (2020). Data Mining vs BigData. Recuperado de https://www.campusbigdata.com/big-data-blog/item/82-data-mining-vs-big-data.Calvo, D.(2017).Big data, Inteligencia de negocio. Recuperado de http://dia.austral.edu.ar/Inteligenc ia_artific ia l# :~:text=Definic i%C3%B3n%201%3A%20Llamamos%20inteligenc ia%20artific ia l,utilizando%20para%20ello%20m%C3%A9todos%20heur%C3%ADsticos.Camargo, J., Camargo, J., Joyanes, L.(2014). Conociendo Big Data. Recuperado dehttps://www.redalyc.org/articulo.oa? id=413940775006.Canal mediado, Multiasistencia, Salud(2018).Recuperado dehttp://ilp.mit.edu/media/news_artic les/smr/2017/58310.pdf.Canales Sectoriales, Interempresas (2018). El crecimiento diario de información requiere tecnologías que aseguren la calidad del dato. Recuperado de https://www.interempresas.net/TIC/Articulos/228236-El-crecimiento-diario-de-informacion-requiere-tecnologias-que-aseguren-la-calidad-del-dato.html.Caro Márquez, E.(2017). La Cuarta Revolución Industrial. Recuperado de https://idus.us.es/bitstream/handle/11441/66285/La_cuarta_revoluc ion_ industrial. pdf?sequence=1&isAllowed=y.Cendrero, J. (16,04,2015). La oportunidad de monetizarlos datos en el sector seguros. Recuperado dehttps://future.inese.es/la-oportunidad-de-monetizar-los-datos-en-el-sector-seguros.Chuc Durán, D. (2019). Introducción a los Datawarehouses. Recuperado de http://revistas.ujat.mx/index. php/jobs/artic le/view/926.Cleverdata, (2019). Analítica avanzada en el sector asegurador, Machine Learning. Recuperado de https://cleverdata.io/sector-asegurador-machine-learning.Conde, A.(2020).Tendencias Big Data y analítica 2020. Recuperado de https://www.iebschool.com/blog/tendencias-big-data.Date, C. J. (2001). Introducción a los sistemas de bases de datos. Pearson Educación. Recuperado de https://unefazulias istemas.files.wordpress.com/2011/04/introducion-a-los-s iste mas-de-bases-de-datos-cj-date.pdf.Dun & Bradstreet. (04,06,2019). Lo que las empresas deberían saber sobre el Big Data. Recuperado dehttps://www.empresaactual.com/lo-que-las-empresas-deberian-saber-sobre-el-big-data.García, J., Mólina, J. M., Berlanga, A., Miguel, P. Á., Bustamante, Á. L., & Washington, P. R. (2018). Ciencia de datos Técnicas Analíticas y Aprendizaje Estadístico. Recuperado de Ciencia de datos técnicas analíticas y aprendizaje estadístico en un enfoque práctico.It Trends, Inteligencia Artificial(2020). Inteligencia artificial la siguiente gran revolución. Recuperado de https://www.ittrends.es/inteligencia-artificial/2020/03/inteligencia-artificial-la-siguiente-gran-revolucion.Kerlinger, (1979).Metodología dela investigación. Recuperado de https://www.uv.mx/persona l/cbustamante/files/2011/06/Metodologia-de-la-Investigaci%C3%83%C2%B3n_Sampieri. pdf.Lascurain, P.(01,03,1996). Definición de estructura funcional para la administración de los medios de almacenamiento de información. Recuperado de https://repositorio.tec.mx/handle/11285/569746.Mejía, T.Entrevista de Investigación: Tipos y Características. Recuperado de https://www.lifeder.com/entrevista-de-investigacion.Ministerio de comercio, industria y comercio(27,06,2013). Decreto número 1377 de 2013.Recuperado dehttps://www.mintic.gov.co/porta l/604/articles-4274_doc umento.pdf.Montiel,C. Universidad Valle del Grijalva (2013). Alcances de investigación. Recuperado de https://es.slideshare.net/cenzontle/4-a lcances-de-investigacion.Montse, Mateos. (2018). Cómo aprovechar el 'big data' para ser más productivo. Recuperado de https://www.expansion.com/expansion-empleo/desarrollo-de-carrera/2018/12/03/5c05670ae2704e01978b4581.html.Ortega, Fernando. (2017). La gestión moderna de la innovación de las empresas. Recuperado de http://journals.continenta l.edu.pe/index. php/ParaEmprender/article/view/448Pablos, E., González, M., Robredo, M., Rubio, J., Hortal, A., Paván, H. (2017). Tendencias del sector asegurador, Minsait Recuperado dehttps://www.minsait.com/s ites/default/files/newsroom_documents/informetendenciasseguros17.pdf.Puyol, Javier. (2014). Una aproximación a Big Data. Recuperado dehttp://e-spacio.uned.es/fez/view/bibliuned:RDUNED-2014-14-7150Real Academia Española. (2018). Definición Dato. Recuperado de https://dle.rae.es/dato.Real Academia Española. (2018). Definición Digitalizar. Recuperado de https://dle.rae.es/digitalizar.Rivas, E.(08,01,2018). ¿Qué es el Data mining o minería de datos?Recuperado de https://www.iebschool.com/blog/data-mining-mineria-datos-big-data.Schmarzo, Bill. (2014). Big Data: El poder de los datos. Recuperado dehttps://core.ac.uk/downloa d/pdf/84820952.pdf.Seagate. (14,07,2017). El volumen de datos total a nivel mundial aumentará en 10 veces para 2025. Recuperado dehttps://diarioti.com/el-volumen-de-datos-tota l-a-nivel-mundial-aumentara-en-10-veces-para-2025/104972.Sierra Cadavid, M.E., Álzate Ortiz, F.A. & Rivera Franco J.E.(2019). Gerencia y aprendizaje organizacional en el contexto de la educación. Revista Paradígma,264-278.Stair, R., & Reynolds, G. (2000). Principios de sistemas de información un enfoque administrativo. Recuperado de http://docshare04.docshare.tips/files/24101/241015829. pdfTashakkori y Teddlie. (2003).Métodos mixtos en la investigación de las ciencias de la actividad física y el deporte. Recuperado dehttps://www.raco.cat/index.php/ApuntsEFD/artic le/download/268185/355763.Tendencias del sector asegurador, (19,03,2017).El sector del seguro, la transformación hacia el risk management integral y personalizado. Recuperado dehttps://www.minsait.com/s ites/default/files/newsroom_doc uments/informetendenciasseguros17.pdfUniversidad de Alcalá, (2020).¿Sabes lo que es Data Mining? Recuperado de https://www.master-data-scientist.com/que-es-data-mining.Valencia Plaza, (19,03,2018).Indra prevé una revolución en el sector asegurador con el Big Data, IoT y 'machine learning'. Recuperado dehttps://valencia plaza.com/indra-preve-una-revolucion-en-el-sector-asegurador-con-el-big-data-iot-y-machine-learning.Valerio, G. (2002). Herramientas tecnológicas para administración del conocimiento. Recuperado dehttps://pdfs.semanticscholar.org/b60e/ec0fe597e8fdc056f0526bbba daeafdb8fb3.pdfVetrò et al,(2016).Open data y big data: herramientas de software para ciudades inteligentes (caso de estudio). Recuperado de https://search-proquest.com.ezproxy.uniminuto.edu/abicomplete/docview/1671170585/36749A 8F45D841C8PQ/4?accountid=48797.Woerner, S.Wixom, B. (2015). Big data: extending the business strategy toolbox. Revista de Tecnología de la Información. Recuperado dehttps://search-proquest.com.ezproxy.uniminuto.edu/abicomplete/docview/1671170585/36749A 8F45D841C8PQ/4?accountid=48797.ORIGINALDianeyGrajales-MabelSalazar-SantiagoZapata_2020.pdfDianeyGrajales-MabelSalazar-SantiagoZapata_2020.pdfapplication/pdf992250https://repository.uniminuto.edu/bitstreams/b1f18534-c65b-41df-9675-458dffd5d1f0/download34a888044a1b5637eb8407ee81aa7f7aMD51Autorizacion_DianeyGrajales-MabelSalazar-SantiagoZapata_2020.pdfAutorizacion_DianeyGrajales-MabelSalazar-SantiagoZapata_2020.pdfapplication/pdf253946https://repository.uniminuto.edu/bitstreams/40b5a952-bacf-4d19-87a4-437c18a64379/download48dadbd1d027711f5d202715b3e43ef0MD52LICENSElicense.txtlicense.txttext/plain1748https://repository.uniminuto.edu/bitstreams/aa24036e-d6a0-4753-b0af-4e77805f3f1f/download8a4605be74aa9ea9d79846c1fba20a33MD5310656/15699oai:repository.uniminuto.edu:10656/156992023-01-27 16:34:04.075http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiaopen.accesshttps://repository.uniminuto.eduRepository - Uniminutorepositorio@uniminuto.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |