Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria

Las vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud...

Full description

Autores:
Prieto Prieto, Laura Daniela
Vargas Borda , Lina Maria
Jaramillo Hernández, Dumar Alexander
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad de los Llanos
Repositorio:
Repositorio Digital Universidad de los LLanos
Idioma:
spa
OAI Identifier:
oai:repositorio.unillanos.edu.co:001/4367
Acceso en línea:
https://repositorio.unillanos.edu.co/handle/001/4367
https://doi.org/10.22579/22484817.879
Palabra clave:
Internal parasite management
public health
zoonose
Manejo integrado de parásitos internos
salud pública
zoonosis
Manejo integrado de parasitas internos
saúde pública
zoonose
Rights
openAccess
License
Revista Sistemas de Producción Agroecológicos - 2021
id Unillanos2_dfae8e253da3bb96e0fe8179de89dea8
oai_identifier_str oai:repositorio.unillanos.edu.co:001/4367
network_acronym_str Unillanos2
network_name_str Repositorio Digital Universidad de los LLanos
repository_id_str
dc.title.spa.fl_str_mv Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
dc.title.translated.eng.fl_str_mv The generations of the vaccines: Case of gastrointestinal antiparasitic vaccines used in Veterinary Medicine
title Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
spellingShingle Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
Internal parasite management
public health
zoonose
Manejo integrado de parásitos internos
salud pública
zoonosis
Manejo integrado de parasitas internos
saúde pública
zoonose
title_short Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_full Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_fullStr Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_full_unstemmed Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_sort Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
dc.creator.fl_str_mv Prieto Prieto, Laura Daniela
Vargas Borda , Lina Maria
Jaramillo Hernández, Dumar Alexander
dc.contributor.author.spa.fl_str_mv Prieto Prieto, Laura Daniela
Vargas Borda , Lina Maria
dc.contributor.author.none.fl_str_mv Jaramillo Hernández, Dumar Alexander
dc.subject.eng.fl_str_mv Internal parasite management
public health
zoonose
topic Internal parasite management
public health
zoonose
Manejo integrado de parásitos internos
salud pública
zoonosis
Manejo integrado de parasitas internos
saúde pública
zoonose
dc.subject.spa.fl_str_mv Manejo integrado de parásitos internos
salud pública
zoonosis
Manejo integrado de parasitas internos
saúde pública
zoonose
description Las vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud y el bienestar animal con importantes implicaciones económicas, además de su impacto en la salud pública mundial. Su control se ha basado casi exclusivamente en fármacos quimioterápicos, que desde hace varios años han perdido su eficacia y existen claros ejemplos de resistencia parasitaria a ellos. Hay pocos ejemplos comerciales de vacunas de parásitos gastrointestinales disponibles comercialmente para su uso en la práctica de la Medicina Veterinaria. Esta revisión describe algunos ejemplos comerciales de vacunas gastrointestinales antiparasitarias para su formulación en la práctica médica veterinaria, visto desde la perspectiva de “las generaciones de vacunas” y respaldado por estudios clínicos experimentales de antígenos prometedores para el control profiláctico de ciertos agentes parasitarios gastrointestinales de interés en salud pública principalmente. Hasta la fecha, está disponible con ciertas limitaciones comerciales en algunos países europeos y oceánicos Barbervax® y en países sudamericanos Providean® Hidatil EG95 para uso en rumiantes para el control de Haemonchus contortus y Echinococcus granulosus, respectivamente; en algunos países de América y África, Cysvax™ está disponible para el control de Taenia solium en cerdos; y en el mundo con muy pocas limitaciones, una serie de vacunas comerciales para el control de la coccidosis como la Eimeria spp. en la industria avícola: pavos, pollos de engorde y gallinas ponedoras (ej: CocciVac®, Immucox®, Paracox®, entre otros). Existe la necesidad de tener estos tipos de vacunas en todos los países donde estos parásitos gastrointestinales son endémicos y de esta manera brindar opciones para su control, por consiguiente, una serie de inversiones económicas son necesarias para apoyar el desarrollo técnico-científico en torno al desarrollo de nuevos biológicos (nueva generaciones de vacunas) efectivos y seguros para el control de los parásitos internos más relevantes en animales de producción y de compañía.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-15T00:00:00Z
2024-09-23T20:46:38Z
dc.date.available.none.fl_str_mv 2021-12-15T00:00:00Z
2024-09-23T20:46:38Z
dc.date.issued.none.fl_str_mv 2021-12-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unillanos.edu.co/handle/001/4367
dc.identifier.doi.none.fl_str_mv 10.22579/22484817.879
dc.identifier.eissn.none.fl_str_mv 2248-4817
dc.identifier.url.none.fl_str_mv https://doi.org/10.22579/22484817.879
url https://repositorio.unillanos.edu.co/handle/001/4367
https://doi.org/10.22579/22484817.879
identifier_str_mv 10.22579/22484817.879
2248-4817
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Babu S, Nutman T. Immune Responses to Helminth Infection. Clinical Immunology, 2019:437-447.
Bagnoli F, Baudner B, Mishra P, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. Omics: a journal of integrative biology, 2011;15(9):545–566.
Bąska P, Wiśniewski M, Krzyżowska M, Długosz E, Zygner W, Górski P, Wędrychowicz H. Molecular cloning and characterisation of in vitro immune response against astacin-like metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental parasitology, 2013;133(4):472–482.
Bassetto C, Picharillo É, Newlands F, Smith D, Fernandes S, Siqueira R, Amarante F. Attempts to vaccinate ewes and their lambs against natural infection with Haemonchus contortus in a tropical environment. International journal for parasitology, 2014;44(14):1049–1054.
Bethony M, Cole N, Guo X, Kamhawi S, Lightowlers W, Loukas A, Petri W., Reed S, Valenzuela G, Hotez J. Vaccines to combat the neglected tropical diseases. Immunological reviews, 2011;239(1):237–270.
Bomford R. Adjuvants for anti-parasite vaccines. Parasitology today (Personal ed.), 1989;5(2):41–46.
Calamante, G. Desarrollo de vacunas de nueva generación Desarrollo de vacunas de nueva generación, 2018. Disponible en: http://ria.inta.gob.ar/contenido/desarrollo-de-vacunas-de-nueva-generacion-para-uso-veterinario?l=es
Chambers A, Graham P, La Ragione M. Challenges in Veterinary Vaccine Development and Immunization. Methods in molecular biology (Clifton, N.J.), 2016;1404:3–35.
Clem S. Fundamentals of vaccine immunology. Journal of global infectious diseases, 2011;3(1):73–78.
Coban C, Koyama S, Takeshita F, Akira S, Ishii J. Molecular and cellular mechanisms of DNA vaccines. Human vaccines, 2008;4(6):453–456.
Cox C, Coulter R. Adjuvants--a classification and review of their modes of action. Vaccine, 1997;15(3):248–256.
Cruz V, Rosado E, Dumonteil E. Desarrollo de vacunas contra parásitos. Revista Ciencia, 2017;68(1):81-85.
Dalton P, Mulcahy G. Parasite vaccines--a reality?. Veterinary parasitology, 2001;98(1-3):149–167.
Dhama K, Mahendran M, Gupta K, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Veterinary research communications, 2008;32(5),341-356.
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 2015;3(2):320–343.
Dunham P. The application of nucleic acid vaccines in veterinary medicine. Research in veterinary science, 2002;73(1):9–16.
East J, Berrie A, Fitzgerald J. Oesophagostomum radiatum: successful vaccination of calves with an extract of in vitro cultured larvae. International journal for parasitology, 1988,18(1):125–127.
Emery L, McClure J, Wagland M. Production of vaccines against gastrointestinal nematodes of livestock. Immunology and cell biology, 1993;71(5):463–472.
Foster N, Berndt A, Lalmanach C, Methner U, Pasquali P, Rychlik I, Velge, P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option?. Research in veterinary science, 2012;93(1),7–12.
Fujiwara T, Zhan B, Mendez S, Loukas A, Bueno L, Wang Y, Plieskatt J, Oksov Y, Lustigman S, Bottazzi E, Hotez P, Bethony M. Reduction of worm fecundity and canine host blood loss mediates protection against hookworm infection elicited by vaccination with recombinant Ac-16. Clinical and vaccine immunology, 2007;14(3):281–287.
Gauci G, Jayashi M, Gonzalez E, Lackenby J, Lightowlers W. Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine, 2012;30(26):3824–3828.
Goldsby A, Kindt J, Osborne A, Kuby J. vaccines. In: Mc Graw Hill,editors. Kuby Immunology, 6th edition, New york: E.Publishing Inc; 2007:475-490.
Harrison B, Shakes R, Robinson M, Lawrence B, Heath D, Dempster P, Lightowlers W, Rickard D. Duration of immunity, efficacy and safety in sheep of a recombinant Taenia ovis vaccine formulated with saponin or selected adjuvants. Veterinary immunology and immunopathology, 1999;70(3-4):161–172.
Hein R, Harrison B. Vaccines against veterinary helminths. Veterinary parasitology, 2005;132(3-4):217–222.
Hill E, Fetterer H, Romanowski D, Urban Jr. The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Veterinary immunology and immunopathology, 1994;42(2):161–169.
Hotez J, Fenwick A, Savioli L, Molyneux H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet (London, England), 2009;373(9674):1570–1575.
Jaramillo D, Salazar F, Baquero M, Pinheiro S, Alcantara M. Toxocariasis and Toxocara vaccine: a review. Revista Orinoquia, 2020;24:79-95.
Jaramillo A, Salazar F, Pacheco C, Pinheiro S, Alcantara M. Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine, 2022;40(6):912-923.
Jorge S, Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017;1(1),6–13.
Jourdan M, Lamberton L, Fenwick A, Addiss G. Soil-transmitted helminth infections. Lancet. 2018;391(10117):252-265.
Klei R. Equine immunity to parasites. The Veterinary clinics of North America. Equine practice, 2000;16(1):69–vi.
Klei R, French D, Chapman R, McClure R, Dennis A, Taylor W, Hutchinson W. Protection of yearling ponies against Strongylus vulgaris by foalhood vaccination. Equine veterinary journal. Supplement, 1989;(7):2–7.
Knox P, Smith D. Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary parasitology, 2001;100(1-2), 21–32
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020;586(7830):516-527.
Krieg M. CpG motifs in bacterial DNA and their immune effects. Annual review of immunology, 2002;20(1):709-760.
Li J. Zheng J, Gong P, Zhang X. Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge. Parasitology research, 2012;110(3):1139–1145.
Li K, Lan Y, Luo H, Shahzad M, Zhang H, Wang L, Zhang L, Liu D, Liu X, Hao Y, Sizhu S, Li J. Prevalence of three Oesophagostomum spp. from Tibetan Pigs analyzed by Genetic Markers of nad1, cox3 and ITS1. Acta parasitologica, 2017;62(1):90–96.
Loukas A, Good F. Back to the future for antiparasite vaccines?. Expert review of vaccines, 2013;12(1):1-4.
Maizels M, Hewitson P, Smith A. Susceptibility and immunity to helminth parasites. Current opinion in immunology, 2012;24(4):459–466.
Marciani J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017;50(7),393–402.
McVey S, Shi J. Vaccines in veterinary medicine: a brief review of history and technology. The Veterinary clinics of North America. Small animal practice, 2010;40(3),381–392.
Meeusen N, Balic A, Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary immunology and immunopathology, 2005;108(1-2):121–125.
Meeusen N, Walker J, Peters A, Pastoret P, Jungersen G. Current status of veterinary vaccines. Clinical microbiology reviews, 2007;20(3),489–510.
Monahan M, Taylor W, Chapman R, Klei R. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages. The Journal of parasitology, 1994;80(6):911–923.
Morrison I, Tomley F. Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite immunology, 2016;38(12):707–708.
Munn A, Greenwood A, Coadwell J. Vaccination of young lambs by means of a protein fraction extracted from adult Haemonchus contortus. Parasitology, 1987;94(2):385–397.
Murray K. Molecular vaccines against animal parasites. Vaccine, 1989;7(4):291–299.
Newton E, Munn A. The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology today (Personal ed.), 1999;15(3):116–122.
Petavy F, Hormaeche C, Lahmar S, Ouhelli H, Chabalgoity A, Marchal T, Azzouz S, Schreiber F, Alvite G, Sarciron E, Maskell D, Esteves A, Bosquet G. An oral recombinant vaccine in dogs against Echinococcus granulosus, the causative agent of human hydatid disease: a pilot study. PLoS neglected tropical diseases, 2008;2(1):125.
Reinemeyer R, Nielsen K. Parasitism and colic. The Veterinary clinics of North America. Equine practice, 2009;25(2):233–245.
Rodríguez G, Olivares L. Vacunas parasitarias: un recuento bibliográfico. Revista de Salud Animal, 2019;41(3):08.
Salazar F, Santiago F, Santos S, Jaramillo A, da Silva B, Alves V, Silveira F, Barrouin M, Cooper J, Pacheco L, Pinheiro C, Alcantara M. Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine, 2020;38(30):4762–4772.
Seib L, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2012;18(5):109–116.
Siefker C, Rickard G. Vaccination of calves with Haemonchus placei intestinal homogenate. Veterinary parasitology, 2000;88(3-4),249–260.
Song H, Yan R, Xu L, Song X, Shah A, Zhu H, Li X. Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Experimental parasitology, 2010;126(2), 224–231.
Song X, Xu L, Yan R, Huang X, Shah A, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Veterinary parasitology, 2009;159(1):30–36.
Sun C, Beilke N, Lanier L. Adaptive immune features of natural killer cells. Nature, 2009;457(7229):557–561.
Swiderski E, Klei R, Folsom W, Pourciau S, Chapman A, Chapman R, Moore M, McClure R, Taylor W, Horohov W. Vaccination against Strongylus vulgaris in ponies: comparison of the humoral and cytokine responses of vaccinates and nonvaccinates. Advances in veterinary medicine, 1999;41:389–404.
Tyagi R, Joachim A, Ruttkowski B, Rosa A, Martin C, Hallsworth K, Zhang X, Ozersky P, Wilson K, Ranganathan S, Sternberg W, Gasser B, Mitreva M. Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology advances, 2015;33(6Pt1):980–991.
Unnikrishnan M, Rappuoli R, Serruto D. Recombinant bacterial vaccines. Current opinion in immunology, 2012;24(3):337–342.
Vargas M, Prieto D, Baquero M, Corredor W, Alcantara M, Jaramillo D. Vaccines for gastrointestinal parasites, a pillar of preventive medicine in veterinary practice: Systematic review. Revista de Investigación Agraria y Ambiental, 2022;13(1): 221-251.
Versteeg L, Almutairi M, Hotez J, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 2019;7(4),122.
Vetter V, Denizer G, Friedland R, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine, 2018;50(2):110–120.
Vlaminck J, Martinez M, Dewilde S, Moens L, Tilleman K, Deforce D, Urban J, Claerebout E, Vercruysse J, Geldhof P. Immunizing pigs with Ascaris suum haemoglobin increases the inflammatory response in the liver but fails to induce a protective immunity. Parasite immunology,2011;33(4):250–254.
Wallach M, Smith C, Petracca M, Miller M, Eckert J, Braun R. Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine, 1995;13(4):347–354.
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica, 2015;60(2):179-189.
World Health Organization (WHO), Echinococcosis fact sheet, Disponible en: https://www.who.int/news-room/fact-sheets/detail/echinococcosis.2020.
Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. The Korean journal of parasitology, 2013;51(2):147–154.
Zhang W, Zhang Z, Shi B, Li J, You H, Tulson G, Dang X, Song Y, Yimiti T, Wang J, Jones K, McManus P. Vaccination of dogs against Echinococcus granulosus, the cause of cystic hydatid disease in humans. The Journal of infectious diseases, 2006;194(7):966–974.
dc.relation.bitstream.none.fl_str_mv https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/879/945
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2021 : Julio-Diciembre
dc.relation.citationendpage.none.fl_str_mv 96
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 74
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.ispartofjournal.spa.fl_str_mv Revista Sistemas de Producción Agroecológicos
dc.rights.spa.fl_str_mv Revista Sistemas de Producción Agroecológicos - 2021
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista Sistemas de Producción Agroecológicos - 2021
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Llanos
dc.source.spa.fl_str_mv https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/879
institution Universidad de los Llanos
bitstream.url.fl_str_mv https://repositorio.unillanos.edu.co/bitstreams/b7a9467f-98ef-4b52-8998-f76a3e82eb7b/download
bitstream.checksum.fl_str_mv cf3e8bc6ffe9cec6ce19553d45fe04b4
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Los Llanos
repository.mail.fl_str_mv repositorio@unillanos.edu.co
_version_ 1812104597930508288
spelling Prieto Prieto, Laura DanielaVargas Borda , Lina MariaJaramillo Hernández, Dumar Alexandervirtual::145-12021-12-15T00:00:00Z2024-09-23T20:46:38Z2021-12-15T00:00:00Z2024-09-23T20:46:38Z2021-12-15https://repositorio.unillanos.edu.co/handle/001/436710.22579/22484817.8792248-4817https://doi.org/10.22579/22484817.879Las vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud y el bienestar animal con importantes implicaciones económicas, además de su impacto en la salud pública mundial. Su control se ha basado casi exclusivamente en fármacos quimioterápicos, que desde hace varios años han perdido su eficacia y existen claros ejemplos de resistencia parasitaria a ellos. Hay pocos ejemplos comerciales de vacunas de parásitos gastrointestinales disponibles comercialmente para su uso en la práctica de la Medicina Veterinaria. Esta revisión describe algunos ejemplos comerciales de vacunas gastrointestinales antiparasitarias para su formulación en la práctica médica veterinaria, visto desde la perspectiva de “las generaciones de vacunas” y respaldado por estudios clínicos experimentales de antígenos prometedores para el control profiláctico de ciertos agentes parasitarios gastrointestinales de interés en salud pública principalmente. Hasta la fecha, está disponible con ciertas limitaciones comerciales en algunos países europeos y oceánicos Barbervax® y en países sudamericanos Providean® Hidatil EG95 para uso en rumiantes para el control de Haemonchus contortus y Echinococcus granulosus, respectivamente; en algunos países de América y África, Cysvax™ está disponible para el control de Taenia solium en cerdos; y en el mundo con muy pocas limitaciones, una serie de vacunas comerciales para el control de la coccidosis como la Eimeria spp. en la industria avícola: pavos, pollos de engorde y gallinas ponedoras (ej: CocciVac®, Immucox®, Paracox®, entre otros). Existe la necesidad de tener estos tipos de vacunas en todos los países donde estos parásitos gastrointestinales son endémicos y de esta manera brindar opciones para su control, por consiguiente, una serie de inversiones económicas son necesarias para apoyar el desarrollo técnico-científico en torno al desarrollo de nuevos biológicos (nueva generaciones de vacunas) efectivos y seguros para el control de los parásitos internos más relevantes en animales de producción y de compañía.Vaccines are the fundamental pillar of preventive medicine and the basis for possible control and/or eradication of disease plans, especially infectious diseases. Internal parasites in production and companion animals continue to be one of the main threats to animal health and welfare with important economic implications, in addition to its impact on global public health. Its control has been based almost exclusively on chemotherapeutic drugs, which for several years have lost their efficacy and there are clear examples of parasitic resistance to them. Even so, few commercial examples of gastrointestinal parasite vaccines are commercially available for use in the practice of Veterinary Medicine. This review describes some commercial examples of gastrointestinal antiparasitic vaccines for their formulation in veterinary medical practice seen from the perspective of “the generations of vaccines'' and supported by experimental clinical studies of promising antigens for the prophylactic control of certain gastrointestinal parasitic agents of interest in public health mainly. To date, it is available with certain commercial limitations in some European and Australian countries Barbervax® and in South American countries Providean® Hidatil EG95 for use in ruminants for the control of Haemonchus contortus and Echinococcus granulosus, respectively; in some countries in America and Africa, Cysvax™ is available for the control of Taenia solium in pigs and in the world with very few limitations, a series of commercial vaccines for the control of coccidosis (Eimeria spp.) in poultry industry: turkeys, broilers and laying hens (e.g., CocciVac®, Immucox®, Paracox®, among others). There is a need to provide this type of vaccine to all countries where these gastrointestinal parasites are endemic and, in this way, provide options for their control. As well as a series of economic investments is highly necessary to support technical-scientific development around development of new effective and safe biologicals (new generations of vaccines) for the control of the most relevant internal parasites in production and companion animals.application/pdfspaUniversidad de los LlanosRevista Sistemas de Producción Agroecológicos - 2021https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/879Internal parasite managementpublic healthzoonoseManejo integrado de parásitos internossalud públicazoonosisManejo integrado de parasitas internossaúde públicazoonoseLas generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina VeterinariaThe generations of the vaccines: Case of gastrointestinal antiparasitic vaccines used in Veterinary MedicineArtículo de revistainfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Babu S, Nutman T. Immune Responses to Helminth Infection. Clinical Immunology, 2019:437-447.Bagnoli F, Baudner B, Mishra P, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. Omics: a journal of integrative biology, 2011;15(9):545–566.Bąska P, Wiśniewski M, Krzyżowska M, Długosz E, Zygner W, Górski P, Wędrychowicz H. Molecular cloning and characterisation of in vitro immune response against astacin-like metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental parasitology, 2013;133(4):472–482.Bassetto C, Picharillo É, Newlands F, Smith D, Fernandes S, Siqueira R, Amarante F. Attempts to vaccinate ewes and their lambs against natural infection with Haemonchus contortus in a tropical environment. International journal for parasitology, 2014;44(14):1049–1054.Bethony M, Cole N, Guo X, Kamhawi S, Lightowlers W, Loukas A, Petri W., Reed S, Valenzuela G, Hotez J. Vaccines to combat the neglected tropical diseases. Immunological reviews, 2011;239(1):237–270.Bomford R. Adjuvants for anti-parasite vaccines. Parasitology today (Personal ed.), 1989;5(2):41–46.Calamante, G. Desarrollo de vacunas de nueva generación Desarrollo de vacunas de nueva generación, 2018. Disponible en: http://ria.inta.gob.ar/contenido/desarrollo-de-vacunas-de-nueva-generacion-para-uso-veterinario?l=esChambers A, Graham P, La Ragione M. Challenges in Veterinary Vaccine Development and Immunization. Methods in molecular biology (Clifton, N.J.), 2016;1404:3–35.Clem S. Fundamentals of vaccine immunology. Journal of global infectious diseases, 2011;3(1):73–78.Coban C, Koyama S, Takeshita F, Akira S, Ishii J. Molecular and cellular mechanisms of DNA vaccines. Human vaccines, 2008;4(6):453–456.Cox C, Coulter R. Adjuvants--a classification and review of their modes of action. Vaccine, 1997;15(3):248–256.Cruz V, Rosado E, Dumonteil E. Desarrollo de vacunas contra parásitos. Revista Ciencia, 2017;68(1):81-85.Dalton P, Mulcahy G. Parasite vaccines--a reality?. Veterinary parasitology, 2001;98(1-3):149–167.Dhama K, Mahendran M, Gupta K, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Veterinary research communications, 2008;32(5),341-356.Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 2015;3(2):320–343.Dunham P. The application of nucleic acid vaccines in veterinary medicine. Research in veterinary science, 2002;73(1):9–16.East J, Berrie A, Fitzgerald J. Oesophagostomum radiatum: successful vaccination of calves with an extract of in vitro cultured larvae. International journal for parasitology, 1988,18(1):125–127.Emery L, McClure J, Wagland M. Production of vaccines against gastrointestinal nematodes of livestock. Immunology and cell biology, 1993;71(5):463–472.Foster N, Berndt A, Lalmanach C, Methner U, Pasquali P, Rychlik I, Velge, P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option?. Research in veterinary science, 2012;93(1),7–12.Fujiwara T, Zhan B, Mendez S, Loukas A, Bueno L, Wang Y, Plieskatt J, Oksov Y, Lustigman S, Bottazzi E, Hotez P, Bethony M. Reduction of worm fecundity and canine host blood loss mediates protection against hookworm infection elicited by vaccination with recombinant Ac-16. Clinical and vaccine immunology, 2007;14(3):281–287.Gauci G, Jayashi M, Gonzalez E, Lackenby J, Lightowlers W. Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine, 2012;30(26):3824–3828.Goldsby A, Kindt J, Osborne A, Kuby J. vaccines. In: Mc Graw Hill,editors. Kuby Immunology, 6th edition, New york: E.Publishing Inc; 2007:475-490.Harrison B, Shakes R, Robinson M, Lawrence B, Heath D, Dempster P, Lightowlers W, Rickard D. Duration of immunity, efficacy and safety in sheep of a recombinant Taenia ovis vaccine formulated with saponin or selected adjuvants. Veterinary immunology and immunopathology, 1999;70(3-4):161–172.Hein R, Harrison B. Vaccines against veterinary helminths. Veterinary parasitology, 2005;132(3-4):217–222.Hill E, Fetterer H, Romanowski D, Urban Jr. The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Veterinary immunology and immunopathology, 1994;42(2):161–169.Hotez J, Fenwick A, Savioli L, Molyneux H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet (London, England), 2009;373(9674):1570–1575.Jaramillo D, Salazar F, Baquero M, Pinheiro S, Alcantara M. Toxocariasis and Toxocara vaccine: a review. Revista Orinoquia, 2020;24:79-95.Jaramillo A, Salazar F, Pacheco C, Pinheiro S, Alcantara M. Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine, 2022;40(6):912-923.Jorge S, Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017;1(1),6–13.Jourdan M, Lamberton L, Fenwick A, Addiss G. Soil-transmitted helminth infections. Lancet. 2018;391(10117):252-265.Klei R. Equine immunity to parasites. The Veterinary clinics of North America. Equine practice, 2000;16(1):69–vi.Klei R, French D, Chapman R, McClure R, Dennis A, Taylor W, Hutchinson W. Protection of yearling ponies against Strongylus vulgaris by foalhood vaccination. Equine veterinary journal. Supplement, 1989;(7):2–7.Knox P, Smith D. Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary parasitology, 2001;100(1-2), 21–32Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020;586(7830):516-527.Krieg M. CpG motifs in bacterial DNA and their immune effects. Annual review of immunology, 2002;20(1):709-760.Li J. Zheng J, Gong P, Zhang X. Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge. Parasitology research, 2012;110(3):1139–1145.Li K, Lan Y, Luo H, Shahzad M, Zhang H, Wang L, Zhang L, Liu D, Liu X, Hao Y, Sizhu S, Li J. Prevalence of three Oesophagostomum spp. from Tibetan Pigs analyzed by Genetic Markers of nad1, cox3 and ITS1. Acta parasitologica, 2017;62(1):90–96.Loukas A, Good F. Back to the future for antiparasite vaccines?. Expert review of vaccines, 2013;12(1):1-4.Maizels M, Hewitson P, Smith A. Susceptibility and immunity to helminth parasites. Current opinion in immunology, 2012;24(4):459–466.Marciani J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017;50(7),393–402.McVey S, Shi J. Vaccines in veterinary medicine: a brief review of history and technology. The Veterinary clinics of North America. Small animal practice, 2010;40(3),381–392.Meeusen N, Balic A, Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary immunology and immunopathology, 2005;108(1-2):121–125.Meeusen N, Walker J, Peters A, Pastoret P, Jungersen G. Current status of veterinary vaccines. Clinical microbiology reviews, 2007;20(3),489–510.Monahan M, Taylor W, Chapman R, Klei R. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages. The Journal of parasitology, 1994;80(6):911–923.Morrison I, Tomley F. Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite immunology, 2016;38(12):707–708.Munn A, Greenwood A, Coadwell J. Vaccination of young lambs by means of a protein fraction extracted from adult Haemonchus contortus. Parasitology, 1987;94(2):385–397.Murray K. Molecular vaccines against animal parasites. Vaccine, 1989;7(4):291–299.Newton E, Munn A. The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology today (Personal ed.), 1999;15(3):116–122.Petavy F, Hormaeche C, Lahmar S, Ouhelli H, Chabalgoity A, Marchal T, Azzouz S, Schreiber F, Alvite G, Sarciron E, Maskell D, Esteves A, Bosquet G. An oral recombinant vaccine in dogs against Echinococcus granulosus, the causative agent of human hydatid disease: a pilot study. PLoS neglected tropical diseases, 2008;2(1):125.Reinemeyer R, Nielsen K. Parasitism and colic. The Veterinary clinics of North America. Equine practice, 2009;25(2):233–245.Rodríguez G, Olivares L. Vacunas parasitarias: un recuento bibliográfico. Revista de Salud Animal, 2019;41(3):08.Salazar F, Santiago F, Santos S, Jaramillo A, da Silva B, Alves V, Silveira F, Barrouin M, Cooper J, Pacheco L, Pinheiro C, Alcantara M. Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine, 2020;38(30):4762–4772.Seib L, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2012;18(5):109–116.Siefker C, Rickard G. Vaccination of calves with Haemonchus placei intestinal homogenate. Veterinary parasitology, 2000;88(3-4),249–260.Song H, Yan R, Xu L, Song X, Shah A, Zhu H, Li X. Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Experimental parasitology, 2010;126(2), 224–231.Song X, Xu L, Yan R, Huang X, Shah A, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Veterinary parasitology, 2009;159(1):30–36.Sun C, Beilke N, Lanier L. Adaptive immune features of natural killer cells. Nature, 2009;457(7229):557–561.Swiderski E, Klei R, Folsom W, Pourciau S, Chapman A, Chapman R, Moore M, McClure R, Taylor W, Horohov W. Vaccination against Strongylus vulgaris in ponies: comparison of the humoral and cytokine responses of vaccinates and nonvaccinates. Advances in veterinary medicine, 1999;41:389–404.Tyagi R, Joachim A, Ruttkowski B, Rosa A, Martin C, Hallsworth K, Zhang X, Ozersky P, Wilson K, Ranganathan S, Sternberg W, Gasser B, Mitreva M. Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology advances, 2015;33(6Pt1):980–991.Unnikrishnan M, Rappuoli R, Serruto D. Recombinant bacterial vaccines. Current opinion in immunology, 2012;24(3):337–342.Vargas M, Prieto D, Baquero M, Corredor W, Alcantara M, Jaramillo D. Vaccines for gastrointestinal parasites, a pillar of preventive medicine in veterinary practice: Systematic review. Revista de Investigación Agraria y Ambiental, 2022;13(1): 221-251.Versteeg L, Almutairi M, Hotez J, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 2019;7(4),122.Vetter V, Denizer G, Friedland R, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine, 2018;50(2):110–120.Vlaminck J, Martinez M, Dewilde S, Moens L, Tilleman K, Deforce D, Urban J, Claerebout E, Vercruysse J, Geldhof P. Immunizing pigs with Ascaris suum haemoglobin increases the inflammatory response in the liver but fails to induce a protective immunity. Parasite immunology,2011;33(4):250–254.Wallach M, Smith C, Petracca M, Miller M, Eckert J, Braun R. Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine, 1995;13(4):347–354.Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica, 2015;60(2):179-189.World Health Organization (WHO), Echinococcosis fact sheet, Disponible en: https://www.who.int/news-room/fact-sheets/detail/echinococcosis.2020.Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. The Korean journal of parasitology, 2013;51(2):147–154.Zhang W, Zhang Z, Shi B, Li J, You H, Tulson G, Dang X, Song Y, Yimiti T, Wang J, Jones K, McManus P. Vaccination of dogs against Echinococcus granulosus, the cause of cystic hydatid disease in humans. The Journal of infectious diseases, 2006;194(7):966–974.https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/879/945Núm. 2 , Año 2021 : Julio-Diciembre9627412Revista Sistemas de Producción AgroecológicosPublication3e90075e-e6d7-4a60-9623-0d169fda1eaevirtual::145-13e90075e-e6d7-4a60-9623-0d169fda1eaevirtual::145-1https://scholar.google.com/citations?user=ugMx8ecAAAAJ&hl=esvirtual::145-10000-0003-1377-1747virtual::145-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000633925virtual::145-1OREORE.xmltext/xml2768https://repositorio.unillanos.edu.co/bitstreams/b7a9467f-98ef-4b52-8998-f76a3e82eb7b/downloadcf3e8bc6ffe9cec6ce19553d45fe04b4MD51001/4367oai:repositorio.unillanos.edu.co:001/43672024-10-04 16:21:41.438https://creativecommons.org/licenses/by-nc-sa/4.0/Revista Sistemas de Producción Agroecológicos - 2021metadata.onlyhttps://repositorio.unillanos.edu.coRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.co