¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?

Esta revisión provee un resumen general de las investigaciones realizadas en los últimos 10 años acerca de los esteroides sexuales (17β-Estradiol, Testosterona, 11 Ketotestosterona y 17α, 20β-DHP), las gonadotropinas (Fsh y Lh) y sus principales reguladores (GnRH1-3 y GnIH1-3); y su respectiva funci...

Full description

Autores:
Nieto-Vera, Mónica T.
Rodríguez-Pulido, José A.
Góngora-Orjuela, Agustín
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de los Llanos
Repositorio:
Repositorio Digital Universidad de los LLanos
Idioma:
spa
OAI Identifier:
oai:repositorio.unillanos.edu.co:001/2751
Acceso en línea:
https://repositorio.unillanos.edu.co/handle/001/2751
https://doi.org/10.22579/20112629.601
Palabra clave:
Rights
openAccess
License
Orinoquia - 2020
id Unillanos2_9a1bc49ce5735ef0e896d9361339c9b5
oai_identifier_str oai:repositorio.unillanos.edu.co:001/2751
network_acronym_str Unillanos2
network_name_str Repositorio Digital Universidad de los LLanos
repository_id_str
dc.title.spa.fl_str_mv ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
dc.title.translated.eng.fl_str_mv What do we know about sex steroids and gonadotropins regarding Neotropical teleost reproduction?
title ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
spellingShingle ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
title_short ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
title_full ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
title_fullStr ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
title_full_unstemmed ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
title_sort ¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?
dc.creator.fl_str_mv Nieto-Vera, Mónica T.
Rodríguez-Pulido, José A.
Góngora-Orjuela, Agustín
dc.contributor.author.spa.fl_str_mv Nieto-Vera, Mónica T.
Rodríguez-Pulido, José A.
Góngora-Orjuela, Agustín
description Esta revisión provee un resumen general de las investigaciones realizadas en los últimos 10 años acerca de los esteroides sexuales (17β-Estradiol, Testosterona, 11 Ketotestosterona y 17α, 20β-DHP), las gonadotropinas (Fsh y Lh) y sus principales reguladores (GnRH1-3 y GnIH1-3); y su respectiva función en la modulación de la reproducción. Específicamente sobre el eje Hipotálamo – Pituitaria – Gónada (HPG), en teleósteos modelo y neotropicales (Astyanax altiparanae, Steindachneridion parahybae, Salminus hillarii, Centropomus undecimalis). Mostramos que el papel regulador de éstos continúa siendo tema de discusión, pues varía en función de múltiples características, entre ellas, las estrategiareproductivas de la especie en cuestión y/o las condiciones en las que éstas son mantenidas durante el estudio. Históricamente, se ha descrito que la Fsh actúa en las fases tempranas de la reproducción, estimulando la biosíntesis de estradiol y testosterona necesarios para la gametogénesis; mientras la Lh está implicada en las fases finales del ciclo reproductivo (maduración final de los gametos y desove). Sin embargo, en especies con desarrollo asincrónico y desove múltiple, la Lh se produce durante todo el ciclo en paralelo con la Fsh, sugiriendo la necesidad de ambas hormonas en la gametogénesis y maduración final. Adicionalmente, investigaciones recientes en especies con comportamiento migratorio reproductivo, han evidenciado una disminución significativa en la expresión del ARNm de la subunidad β de Lh (lhb) cuando los individuos son mantenidos en cautiverio, lo que podría ocasionar alguna disfunción reproductiva bajo los actuales sistemas de cultivo, considerado hoy el gran problema de la acuicultura contemporánea. Desafortunadamente, los estudios de estos tópicos en especies suramericanas son aún incipientes, por lo que se hace necesario centrar las investigaciones hacia el esclarecimiento del control neuroendocrino de la reproducción en especies nativas, más aún cuando estas especies son mantenidas en cautiverio.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-11 00:00:00
2022-06-13T17:42:40Z
dc.date.available.none.fl_str_mv 2020-05-11 00:00:00
2022-06-13T17:42:40Z
dc.date.issued.none.fl_str_mv 2020-05-11
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Sección Ciencias agrarias
dc.type.local.eng.fl_str_mv Sección Agricultural sciences
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0121-3709
dc.identifier.uri.none.fl_str_mv https://repositorio.unillanos.edu.co/handle/001/2751
dc.identifier.doi.none.fl_str_mv 10.22579/20112629.601
dc.identifier.eissn.none.fl_str_mv 2011-2629
dc.identifier.url.none.fl_str_mv https://doi.org/10.22579/20112629.601
identifier_str_mv 0121-3709
10.22579/20112629.601
2011-2629
url https://repositorio.unillanos.edu.co/handle/001/2751
https://doi.org/10.22579/20112629.601
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Masafumi A, Shunsuke M, Masayuki L, Shoji K, Noriko A, Kunio Y, Kazuyoshi U, Kazuyoshi T. Novel fish hypothalamic neuropeptides stimulate the release of gonadotrophins and growth hormone from the pituitary of sockeye salmon. J Endocrinol, 2006;188(3):417-423. doi: 10.1677/joe.1.06494.
Mohamed AA, Takeshi M, Chiemi M, Kohei Y. Involvement of Sex Steroid Hormones in the Early Stages of Spermatogenesis in Japanese Huchen (Hucho perryi )1. Biol Reprod, 2001; 65(4):1057-1066. doi: 10.1095/biolreprod65.4.1057.
Ando H, Shahjahan M, Kitahashi T. Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction. Gen Comp Endocrinol, 2018;265:149-153. doi: 10.1016/j.ygcen.2018.04.006.
Andreu-Vieyra CV, Buret AG, Habibi HR. Gronadotropin-releasing hormone induction of apoptosis in the testes of goldfish (Caraasius auratus). Endocrinology, 2005;146(3):1588-1596. doi: 10.1210/en.2004-0818.
Barrero M, Small BC, D’Abramo LR, Hanson LA, Kelly AM. Comparison of estradiol, testosterone, vitellogenin and cathepsin profiles among young adult channel catfish (Ictalurus punctatus) females from four selectively bred strains. Aquaculture, 2007:264(1-4):390–397. doi: 10.1016/j.aquaculture.2006.12.003.
Biran J, Golan M, Mizrahi N, Ogawa S, Parhar IS, Levavi-Sivan B. LPXRFa, the Piscine Ortholog of GnIH, and LPXRF Receptor Positively Regulate Gonadotropin Secretion in Tilapia (Oreochromis niloticus). Endocrinology, 2014;155(11):4391-4401. doi: 10.1210/en.2013-2047.
Borg B. Androgens in teleost fishes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994;109(3):219-245. doi: 10.1016/0742-8413(94)00063-G.
Breton B, Govoroun M, Mikolajczyk T. GTH I and GTH II Secretion Profiles during the Reproductive Cycle in Female Rainbow Trout : Relationship with Pituitary Responsiveness to GnRH-A Stimulation. Gen Comp Endocrinol, 1998;111(1):38-50. doi.org/10.1006/gcen.1998.7088
Burow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, et al. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol, 2018;272:93-108. doi: 10.1016/j.ygcen.2018.12.006.
Cavaco JE, Bogerd J, Goos H, Schulz RW. Testosterone Inhibits 11-Ketotestosterone-Induced Spermatogenesis in African Catfish (Clarias gariepinus)1. Biol Reprod, 2001;65(6):1807-1812. doi: 10.1095/biolreprod65.6.1807.
Chaube R, Mishra S, Singh RK. A comparison of steroid profiles in the testis and seminal vesicle of the catfish (Heteropneustes fossilis). Theriogenology, 2018; 105:90-96. doi: 10.1016/j.theriogenology.2017.09.010.
Chowdhury VS, Ubuka T, Osugi T, Shimura T, Tsutsui K. Identification, localization and expression of LPXRFamide peptides, and melatonin-dependent induction of their precursor mRNA in the newt brain. J Endocrinol, 2011;209(2):211-220. doi: 10.1530/JOE-10-0494.
Ciccone NA, Dunn IC, Boswell T, Tsutsui K, Ubuka T, Ukena K, Sharp PJ. Gonadotrophin Inhibitory Hormone Depresses Gonadotrophin alpha and Follicle-Stimulating Hormone beta Subunit Expression in the Pituitary of the Domestic Chicken”, J Neuroendocrinol, 2004;16(12):999-1006. doi: 10.1111/j.1365-2826.2005.01260.x.
Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002;208(3-4):191-364. doi: 10.1016/S0044-8486(02)00057-1.
Felip A, Zanuy S, Pineda R, Pinilla L, Carrillo M, Tena-Sempere M, Gómez A. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Mol Cell Endocrinol, 2009;312(1-2):61-71. doi: 10.1016/j.mce.2008.11.017.
Hollander-Cohen, L. et al. Characterization of carp gonadotropins: Structure, annual profile, and carp and zebrafish pituitary topographic organization. Gen Comp Endocrinol. 2018;264:28-38. doi: 10.1016/j.ygcen.2017.11.022.
Honji RM, Caneppele D, Pandolfi M, Lo Nostro FL, Guimarães-Moreiraa R. Characterization of the gonadotropin-releasing hormone system in the Neotropical teleost, Steindachneridion parahybae during the annual reproductive cycle in captivity. Gen Comp Endocrinol, 2019;273:73-85.doi: 10.1016/j.ygcen.2018.05.007.
Hoskins LJ, Xu M, Volkoff H. Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus). Horm Behav, 2008;54(3):379-385. doi: 10.1016/j.yhbeh.2008.04.011.
Hou ZS, Wen HS, Li JF, He F, Li Y, Tao YX. Hypothalamus-pituitary-gonad axis of rainbow trout (Oncorhynchus mykiss) during early ovarian development and under dense rearing condition. Gen Comp Endocrinol, 2016;236:131-138. doi: 10.1016/j.ygcen.2016.07.011.
de Jesus LWO, Bogerd J, Vieceli FM, Branco GS, Camargo MP, Cassel M, Moreira RG, et al. Gonadotropin subunits of the characiform Astyanax altiparanae: Molecular characterization, spatiotemporal expression and their possible role on female reproductive dysfunction in captivity. Gen Comp Endocrinol, 2017;246:150-163. doi: 10.1016/j.ygcen.2016.12.004.
Kajimura S. et al. cDNA Cloning of Two Gonadotropin β Subunits (GTH-Iβ and -IIβ) and Their Expression Profiles during Gametogenesis in the Japanese Flounder (Paralichthys olivaceus). Gen Comp Endocrinol, 2001;122(2):117-129. doi: 10.1006/GCEN.2000.7610.
Karigo T, Oka Y. Neurobiological Study of Fish Brains Gives Insights into the Nature of Gonadotropin-Releasing Hormone 1–3 Neurons. Front Endocrinol, 2013;4:177. doi: 10.3389/fendo.2013.00177.
Landines MA, Prieto CA, Rodriguez L, Rosado R. Perfil de esteroides sexuales del capitán de la sabana (Eremophilus mutisii) durante un ciclo hidrológico completo. Rev udca Actual Divulg Cient, 2017;20(1):43-50.doi: <http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000100006&lng=en&nrm=iso>.
Levavi-Sivan B, Bogerd J, Mananos EL, Gomez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol, 2010;165(3):412-437. doi: 10.1016/J.YGCEN.2009.07.019.
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: How fish eggs are formed. Gen Comp Endocrinol, 2010;165(3):367-389. doi: 10.1016/J.YGCEN.2009.05.022.
Maitra SK, Hattoraj A, Mukherjee S, Moniruzzaman M. Melatonin: A potent candidate in the regulation of fish oocyte growth and maturation. Gen Comp Endocrinol, 2013;181(1):215-222. doi: 10.1016/j.ygcen.2012.09.015.
Mateos J, Mañanósa E, Martínez-Rodríguez G, Carrillo M, Querat B, Zanuy S. Molecular characterization of sea bass gonadotropin subunits (α, FSHβ, and LHβ) and their expression during the reproductive cycle. Gen Comp Endocrinol, 2003;133(2):216-232. doi: 10.1016/S0016-6480(03)00164-3.
Matsuda K, Nakamura K, Shimakura SI, Miura T, Kageyama H, Uchiyama M, Shioda S, Ando H. Inhibitory effect of chicken gonadotropin-releasing hormone II on food intake in the goldfish, Carassius auratus. Horm Behav, 2008;54(1):83-89. doi: 10.1016/j.yhbeh.2008.01.011.
Melamed P, Sherwood N. (2005) Hormones and Their Receptors in Fish Reproduction. WORLD SCIENTIFIC (Molecular Aspects of Fish & Marine Biology). doi: 10.1142/5533.
Melo MC, Dijk P, Andersson E, Nilsen T, Fjelldal P, Male R, et al. Androgens directly stimulate spermatogonial differentiation in juvenile Atlantic salmon (Salmo salar). Gen Comp Endocrinol, 2015;211:52-61. doi: 10.1016/j.ygcen.2014.11.015.
Miranda LA, Chalde T, Elisio M, Strüssmann CA. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. Gen Comp Endocrinol, 2013;192:45-54. doi: 10.1016/j.ygcen.2013.02.034.
Miura T, Miura C, Ohta T, Nader MR, Todo T, Yamauchi K. Estradiol-17β Stimulates the Renewal of Spermatogonial Stem Cells in Males. Biochem Biophys Res Commun, 1999;264(1):230-234. doi: 10.1006/BBRC.1999.1494.
Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisher, 1999;9(3):211–268. doi: 10.1023/A:1008924418720.
Moreira RG, Honji RM, Melo RG, Narcizo AM, Amaral JS, Araújo RC, Hilsdorf AW. The involvement of gonadotropins and gonadal steroids in the ovulatory dysfunction of the potamodromous Salminus hilarii (Teleostei: Characidae) in captivity. Fish Physiol Biochem, 2015;41(6):1435-1447. doi: 10.1007/s10695-015-0097-y.
Nagahama Y. 7 alpha, 20 beta-Dihydroxy-4-pregnen-3-one: A Teleost Maturation-Inducing Hormone. Dev Growth Differ. 1987;29:1–12.
Nagahama Y. Endocrine regulation of gametogenesis in fish. Int J Dev BioI, 1994;38(2):217-229. doi: doi=7981031.
Nagahama Y. 17α,20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: Mechanisms of synthesis and action. Steroids. Elsevier, 1997;62(1):190-196. doi: 10.1016/S0039-128X(96)00180-8.
Nagahama Y, Yamashita M. Regulation of oocyte maturation in fish. Dev Growth Differ, 2008;50(suppl1):S195-219. doi: 10.1111/j.1440-169X.2008.01019.x.
Nyuji M, Hamada K, Kazeto Y, Mekuchi M, Gen K, Soyano K, Okuzawa K. Photoperiodic regulation of plasma gonadotropin levels in previtellogenic greater amberjack (Seriola dumerili). Gen Comp Endocrinol, 2018;269:149-155. doi: 10.1016/j.ygcen.2018.09.007.
Okubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiologica, 2008;193(1):3-15. doi: 10.1111/j.1748-1716.2008.01832.x.
Park JW, Jin YH, Oh SY, Kwon JY. Kisspeptin2 stimulates the HPG axis in immature Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol Part B: Biochem Mol Biol, Biochemistry and Molecular Biology, 2016;202:31-38. doi: 10.1016/j.cbpb.2016.07.009.
Passini G, Carvalho CVA, Carneiro-Sterzelecki F, Francisco-Baloia M, Ronzani-Cerqueira V. Spermatogenesis and steroid hormone profile in puberty of laboratory-reared common snook (Centropomus undecimalis). Aquaculture, 2019;500:622-630. doi: 10.1016/j.aquaculture.2018.10.031.
Peng C, Chang JP, Yu KL, Wong AO, Van-Goor F, Peter RE, Rivier JE. Neuropeptide-Y stimulates growth hormone and gonadotropin-II secretion in the goldfish pituitary: involvement of both presynaptic and pituitary cell actions. Endocrinology, 1993;132(4):1820-1829. doi: 10.1210/endo.132.4.8462479.
Peng W, Cao M, Chen J, Li Y, Wang Y, Zhu Z, Hu W. GnIH plays a negative role in regulating GtH expression in the common carp, Cyprinus carpio L. Gen Comp Endocrinol, 2016;235:18-28. doi: 10.1016/j.ygcen.2016.06.001.
Planas JV, Swanson P. Maturation-Associated Changes in the Response of the Salmon Testis to the Steroidogenic Actions of Gonadotropins (GTH I and GTH II ) In Vitro. Biol Reprod, 1995;52(3):697-704. doi:10.1095/biolreprod52.3.697
Qi X, Zhou W, Li S, Lu D, Yi S, Xie R, Liu X, Zhang Y, Lin H. “Evidences for the regulation of GnRH and GTH expression by GnIH in the goldfish, Carassius auratus”, Mol Cell Endocrinol, 2013;366(1):9-20. doi: 10.1016/j.mce.2012.11.001.
Rather MA, Bhat IA, Gireesh-Babu P, Chaudhari A, Sundaray JK, Sharma R. Molecular characterization of kisspeptin gene and effect of nano-encapsulted kisspeptin-10 on reproductive maturation in Catla catla. Domest Anim Endocrinol, 2016;56:36-47. doi: 10.1016/j.domaniend.2016.01.005.
Rocha MJ, Arukwe A, Kapoor BG. (2008) Fish reproduction. 1st ed. Science Publishers. Pp.632.
Saborido-Rey F. (2008) Ecología de la reproducción y potencial reproductivo en las poblaciones de peces marinos. Instituto de Investigaciones Marinas (CSIC) Universidad de Vigo. Pp.71.
Sawada K, Ukena A, Satake H, Iwakoshi E, Minakata H, Tsutsui K. “Novel fish hypothalamic neuropeptide”. Eur J Biochem, 2002;269(24):6000-6008. doi: 10.1046/j.1432-1033.2002.03351.x.
Schulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. Spermatogenesis in fish. Gen Comp Endocrinol, 2010;165(3):390-411. doi: 10.1016/j.ygcen.2009.02.013.
Swanson P, Dickey JT, Campbell B. Biochemistry and physiology of fish gonadotropins. Fish Physiol Biochem, 2003;28:53-59.
Tena-Sempere M, Felip A, Gómez A, Zanuy S, Carrillo M. Comparative insights of the kisspeptin/kisspeptin receptor system: Lessons from non-mammalian vertebrates”. Gen Comp Endocrinol, 2012;175(2):234-243. doi: 10.1016/j.ygcen.2011.11.015.
Thorson JF, Prezotto LD, Cardoso RC, Sharpton SM, Edwards JF, et al. (2014) “Hypothalamic Distribution, Adenohypophyseal Receptor Expression, and Ligand Functionality of RFamide-Related Peptide 3 in the Mare During the Breeding and Nonbreeding Seasons1”. Biology of Reproduction, 2014;90(2):1-9. doi: 10.1095/biolreprod.113.112185.
Tokarz J, Möller G, de Angelis MH, Adamski J. “Zebrafish and steroids: What do we know and what do we need to know?”. J Steroid Biochem Mol Biol, 2013;137:165-173. doi: 10.1016/j.jsbmb.2013.01.003.
Tokarz J, Möller G1, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids, 2015;103:123-144. doi: 10.1016/j.steroids.2015.06.011.
Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, et al. A Novel Avian Hypothalamic Peptide Inhibiting Gonadotropin Release. Biochem Biophys Res Commun, 2000;275(2):661-667. doi: 10.1006/BBRC.2000.3350.
Tsutsui K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Progress in Neurobiology, 2009;88(1):76-88. doi: 10.1016/j.pneurobio.2009.02.003.
Tsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol, 2018;264:48-57. doi: 10.1016/j.ygcen.2017.07.024.
Ubuka T, Bentley GE, Ukena K, Wingfield JC, Tsutsui K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc Natl Acad Sci USA, 2005;102(8):3052-3057. doi: 10.1073/PNAS.0403840102.
Ubuka T, Morgan K, Pawson AJ, Osugi T, Chowdhury VS, Minakata H, et al. Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis. PLoS One, 2009;4(12):e8400. doi: 10.1371/journal.pone.0008400.
Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol, 2016;227:27-50. doi: 10.1016/j.ygcen.2015.09.009.
Ukena K, Iwakoshi-Ukena E, Osugi T, Tsutsui K. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans. Gen Comp Endocrinol, 2016;227:69-76. doi: 10.1016/j.ygcen.2015.06.009.
Valdebenito I, Paiva L, Berland M. Atresia folicular en peces teleósteos : una revisión. Arch Med Vet, 2011;43(1):11-25. doi.org/10.4067/S0301-732X2011000100003
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci, 2016;10:540. doi: 10.3389/fnins.2016.00540.
Wu C, Patiño R, Davis KB, Chang X. Localization of estrogen receptor α and β RNA in germinal and nongerminal epithelia of the channel catfish testis. Gen Comp Endocrinol, 2001;124(1):12-20. doi: 10.1006/gcen.2001.7668.
Wylie MJ, Setiawan AN, Irvine GW, Symonds JE, Elizur A, Lokman PM. Effects of neuropeptides and sex steroids on the pituitary-gonadal axis of pre-pubertal F1 wreckfish (hāpuku) Polyprion oxygeneios in vivo: Evidence of inhibitory effects of androgens. Gen Comp Endocrinol, 2018;257:113-121. doi: 10.1016/j.ygcen.2017.08.018.
Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. Int Rev Cytol, 2003;225:131-185. doi.org/10.1016/S0074-7696(05)25004-0
Yu KL, Peter RE. Alterations in gonadotropin-releasing hormone immunoactivities in discrete brain areas of male goldfish during spawning behavior. Brain Research, 1990;512(1):89-94. doi: 10.1016/0006-8993(90)91174-F.
Yu KL, Rosenblum PM, Peter RE. In vitro release of gonadotropin-releasing hormone from the brain preoptic-anterior hypothalamic region and pituitary of female goldfish. Gen Comp Endocrinol, 1991;81(2):256-267. doi: 10.1016/0016-6480(91)90010-4.
Zhang Y, Li S, Liu Y, Lu D, Chen H, Huang X, et al. Structural diversity of the gnih/gnih receptor system in teleost: Its involvement in early development and the negative control of LH release. Peptides, 2010;31(6):1034-1043. doi: 10.1016/j.peptides.2010.03.003.
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol, 2010;165(3):438-455. doi: 10.1016/j.ygcen.2009.04.017.
dc.relation.bitstream.none.fl_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/601/pdf
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 63
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 52
dc.relation.citationvolume.spa.fl_str_mv 24
dc.relation.ispartofjournal.spa.fl_str_mv Orinoquia
dc.rights.spa.fl_str_mv Orinoquia - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Orinoquia - 2020
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Llanos
dc.source.spa.fl_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/601
institution Universidad de los Llanos
bitstream.url.fl_str_mv https://dspace7-unillanos.metacatalogo.org/bitstreams/6460ec87-02db-425b-bc81-a4c00123d629/download
bitstream.checksum.fl_str_mv 1dec109201d717c19e1929153bfc3baa
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Los Llanos
repository.mail.fl_str_mv repositorio@unillanos.edu.co
_version_ 1808491013858131968
spelling Nieto-Vera, Mónica T.44530d8741efa62e8a09a3a724b7e70f300Rodríguez-Pulido, José A.4d367495f2196b74f3dff272e304dfaf500Góngora-Orjuela, Agustín19950225dead911a31cee2c4909e496f5002020-05-11 00:00:002022-06-13T17:42:40Z2020-05-11 00:00:002022-06-13T17:42:40Z2020-05-110121-3709https://repositorio.unillanos.edu.co/handle/001/275110.22579/20112629.6012011-2629https://doi.org/10.22579/20112629.601Esta revisión provee un resumen general de las investigaciones realizadas en los últimos 10 años acerca de los esteroides sexuales (17β-Estradiol, Testosterona, 11 Ketotestosterona y 17α, 20β-DHP), las gonadotropinas (Fsh y Lh) y sus principales reguladores (GnRH1-3 y GnIH1-3); y su respectiva función en la modulación de la reproducción. Específicamente sobre el eje Hipotálamo – Pituitaria – Gónada (HPG), en teleósteos modelo y neotropicales (Astyanax altiparanae, Steindachneridion parahybae, Salminus hillarii, Centropomus undecimalis). Mostramos que el papel regulador de éstos continúa siendo tema de discusión, pues varía en función de múltiples características, entre ellas, las estrategiareproductivas de la especie en cuestión y/o las condiciones en las que éstas son mantenidas durante el estudio. Históricamente, se ha descrito que la Fsh actúa en las fases tempranas de la reproducción, estimulando la biosíntesis de estradiol y testosterona necesarios para la gametogénesis; mientras la Lh está implicada en las fases finales del ciclo reproductivo (maduración final de los gametos y desove). Sin embargo, en especies con desarrollo asincrónico y desove múltiple, la Lh se produce durante todo el ciclo en paralelo con la Fsh, sugiriendo la necesidad de ambas hormonas en la gametogénesis y maduración final. Adicionalmente, investigaciones recientes en especies con comportamiento migratorio reproductivo, han evidenciado una disminución significativa en la expresión del ARNm de la subunidad β de Lh (lhb) cuando los individuos son mantenidos en cautiverio, lo que podría ocasionar alguna disfunción reproductiva bajo los actuales sistemas de cultivo, considerado hoy el gran problema de la acuicultura contemporánea. Desafortunadamente, los estudios de estos tópicos en especies suramericanas son aún incipientes, por lo que se hace necesario centrar las investigaciones hacia el esclarecimiento del control neuroendocrino de la reproducción en especies nativas, más aún cuando estas especies son mantenidas en cautiverio.This review summarises research over the last 10 years regarding sex steroids (17β-estradiol, testosterone, 11 ketotestosterone and 17α, 20β-DHP), gonadotropins (Fsh and Lh), their main regulators (GnRH1-3 and GnIH1-3) and their functions in modulating reproduction. It focuses specifically on the hypothalamic–pituitary–gonadal (HPG) axis in model and Neotropical teleosts (Astyanax altiparanae, Steindachneridion parahybae, Salminus hillarii and Centropomus undecimalis). Their regulatory role continues to be a subject of discussion since it varies, depending on multiple characteristics such as the reproductive strategies of the species in question and/or the conditions in which these were maintained during the study period. It has been described that Fsh acts during the early stages of reproduction by stimulating the biosynthesis of estradiol and testosterone which are necessary for gametogenesis, whilst Lh is involved in the reproductive cycle’s final stages (final gamete maturation and spawning). However, Lh occurs throughout the cycle, in parallel with Fsh, in species having asynchronous development and multiple spawning, suggesting the need for both hormones during gametogenesis and final maturation. Recent research regarding species having reproductive migratory behaviour has highlighted a significant decrease in Lh β subunit (LHβ) mRNA expression when individuals are kept in captivity; this may have led to reproductive dysfunction in current culture systems, considered today as being the greatest problem facing contemporary aquaculture. Unfortunately, studying such topics related to South American species is still in its early stages so research must be focused on clarifying native species’ neuroendocrine control of reproduction, especially when these species are kept in captivity.application/pdfspaUniversidad de los LlanosOrinoquia - 2020https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/601¿Qué sabemos de los esteroides sexuales y las gonadotropinas en la reproducción de teleósteos neotropicales?What do we know about sex steroids and gonadotropins regarding Neotropical teleost reproduction?Artículo de revistaJournal Articleinfo:eu-repo/semantics/articleSección Ciencias agrariasSección Agricultural sciencesinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/coar/version/c_970fb48d4fbd8a85Masafumi A, Shunsuke M, Masayuki L, Shoji K, Noriko A, Kunio Y, Kazuyoshi U, Kazuyoshi T. Novel fish hypothalamic neuropeptides stimulate the release of gonadotrophins and growth hormone from the pituitary of sockeye salmon. J Endocrinol, 2006;188(3):417-423. doi: 10.1677/joe.1.06494.Mohamed AA, Takeshi M, Chiemi M, Kohei Y. Involvement of Sex Steroid Hormones in the Early Stages of Spermatogenesis in Japanese Huchen (Hucho perryi )1. Biol Reprod, 2001; 65(4):1057-1066. doi: 10.1095/biolreprod65.4.1057.Ando H, Shahjahan M, Kitahashi T. Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction. Gen Comp Endocrinol, 2018;265:149-153. doi: 10.1016/j.ygcen.2018.04.006.Andreu-Vieyra CV, Buret AG, Habibi HR. Gronadotropin-releasing hormone induction of apoptosis in the testes of goldfish (Caraasius auratus). Endocrinology, 2005;146(3):1588-1596. doi: 10.1210/en.2004-0818.Barrero M, Small BC, D’Abramo LR, Hanson LA, Kelly AM. Comparison of estradiol, testosterone, vitellogenin and cathepsin profiles among young adult channel catfish (Ictalurus punctatus) females from four selectively bred strains. Aquaculture, 2007:264(1-4):390–397. doi: 10.1016/j.aquaculture.2006.12.003.Biran J, Golan M, Mizrahi N, Ogawa S, Parhar IS, Levavi-Sivan B. LPXRFa, the Piscine Ortholog of GnIH, and LPXRF Receptor Positively Regulate Gonadotropin Secretion in Tilapia (Oreochromis niloticus). Endocrinology, 2014;155(11):4391-4401. doi: 10.1210/en.2013-2047.Borg B. Androgens in teleost fishes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994;109(3):219-245. doi: 10.1016/0742-8413(94)00063-G.Breton B, Govoroun M, Mikolajczyk T. GTH I and GTH II Secretion Profiles during the Reproductive Cycle in Female Rainbow Trout : Relationship with Pituitary Responsiveness to GnRH-A Stimulation. Gen Comp Endocrinol, 1998;111(1):38-50. doi.org/10.1006/gcen.1998.7088Burow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, et al. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol, 2018;272:93-108. doi: 10.1016/j.ygcen.2018.12.006.Cavaco JE, Bogerd J, Goos H, Schulz RW. Testosterone Inhibits 11-Ketotestosterone-Induced Spermatogenesis in African Catfish (Clarias gariepinus)1. Biol Reprod, 2001;65(6):1807-1812. doi: 10.1095/biolreprod65.6.1807.Chaube R, Mishra S, Singh RK. A comparison of steroid profiles in the testis and seminal vesicle of the catfish (Heteropneustes fossilis). Theriogenology, 2018; 105:90-96. doi: 10.1016/j.theriogenology.2017.09.010.Chowdhury VS, Ubuka T, Osugi T, Shimura T, Tsutsui K. Identification, localization and expression of LPXRFamide peptides, and melatonin-dependent induction of their precursor mRNA in the newt brain. J Endocrinol, 2011;209(2):211-220. doi: 10.1530/JOE-10-0494.Ciccone NA, Dunn IC, Boswell T, Tsutsui K, Ubuka T, Ukena K, Sharp PJ. Gonadotrophin Inhibitory Hormone Depresses Gonadotrophin alpha and Follicle-Stimulating Hormone beta Subunit Expression in the Pituitary of the Domestic Chicken”, J Neuroendocrinol, 2004;16(12):999-1006. doi: 10.1111/j.1365-2826.2005.01260.x.Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002;208(3-4):191-364. doi: 10.1016/S0044-8486(02)00057-1.Felip A, Zanuy S, Pineda R, Pinilla L, Carrillo M, Tena-Sempere M, Gómez A. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Mol Cell Endocrinol, 2009;312(1-2):61-71. doi: 10.1016/j.mce.2008.11.017.Hollander-Cohen, L. et al. Characterization of carp gonadotropins: Structure, annual profile, and carp and zebrafish pituitary topographic organization. Gen Comp Endocrinol. 2018;264:28-38. doi: 10.1016/j.ygcen.2017.11.022.Honji RM, Caneppele D, Pandolfi M, Lo Nostro FL, Guimarães-Moreiraa R. Characterization of the gonadotropin-releasing hormone system in the Neotropical teleost, Steindachneridion parahybae during the annual reproductive cycle in captivity. Gen Comp Endocrinol, 2019;273:73-85.doi: 10.1016/j.ygcen.2018.05.007.Hoskins LJ, Xu M, Volkoff H. Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus). Horm Behav, 2008;54(3):379-385. doi: 10.1016/j.yhbeh.2008.04.011.Hou ZS, Wen HS, Li JF, He F, Li Y, Tao YX. Hypothalamus-pituitary-gonad axis of rainbow trout (Oncorhynchus mykiss) during early ovarian development and under dense rearing condition. Gen Comp Endocrinol, 2016;236:131-138. doi: 10.1016/j.ygcen.2016.07.011.de Jesus LWO, Bogerd J, Vieceli FM, Branco GS, Camargo MP, Cassel M, Moreira RG, et al. Gonadotropin subunits of the characiform Astyanax altiparanae: Molecular characterization, spatiotemporal expression and their possible role on female reproductive dysfunction in captivity. Gen Comp Endocrinol, 2017;246:150-163. doi: 10.1016/j.ygcen.2016.12.004.Kajimura S. et al. cDNA Cloning of Two Gonadotropin β Subunits (GTH-Iβ and -IIβ) and Their Expression Profiles during Gametogenesis in the Japanese Flounder (Paralichthys olivaceus). Gen Comp Endocrinol, 2001;122(2):117-129. doi: 10.1006/GCEN.2000.7610.Karigo T, Oka Y. Neurobiological Study of Fish Brains Gives Insights into the Nature of Gonadotropin-Releasing Hormone 1–3 Neurons. Front Endocrinol, 2013;4:177. doi: 10.3389/fendo.2013.00177.Landines MA, Prieto CA, Rodriguez L, Rosado R. Perfil de esteroides sexuales del capitán de la sabana (Eremophilus mutisii) durante un ciclo hidrológico completo. Rev udca Actual Divulg Cient, 2017;20(1):43-50.doi: <http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000100006&lng=en&nrm=iso>.Levavi-Sivan B, Bogerd J, Mananos EL, Gomez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol, 2010;165(3):412-437. doi: 10.1016/J.YGCEN.2009.07.019.Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: How fish eggs are formed. Gen Comp Endocrinol, 2010;165(3):367-389. doi: 10.1016/J.YGCEN.2009.05.022.Maitra SK, Hattoraj A, Mukherjee S, Moniruzzaman M. Melatonin: A potent candidate in the regulation of fish oocyte growth and maturation. Gen Comp Endocrinol, 2013;181(1):215-222. doi: 10.1016/j.ygcen.2012.09.015.Mateos J, Mañanósa E, Martínez-Rodríguez G, Carrillo M, Querat B, Zanuy S. Molecular characterization of sea bass gonadotropin subunits (α, FSHβ, and LHβ) and their expression during the reproductive cycle. Gen Comp Endocrinol, 2003;133(2):216-232. doi: 10.1016/S0016-6480(03)00164-3.Matsuda K, Nakamura K, Shimakura SI, Miura T, Kageyama H, Uchiyama M, Shioda S, Ando H. Inhibitory effect of chicken gonadotropin-releasing hormone II on food intake in the goldfish, Carassius auratus. Horm Behav, 2008;54(1):83-89. doi: 10.1016/j.yhbeh.2008.01.011.Melamed P, Sherwood N. (2005) Hormones and Their Receptors in Fish Reproduction. WORLD SCIENTIFIC (Molecular Aspects of Fish & Marine Biology). doi: 10.1142/5533.Melo MC, Dijk P, Andersson E, Nilsen T, Fjelldal P, Male R, et al. Androgens directly stimulate spermatogonial differentiation in juvenile Atlantic salmon (Salmo salar). Gen Comp Endocrinol, 2015;211:52-61. doi: 10.1016/j.ygcen.2014.11.015.Miranda LA, Chalde T, Elisio M, Strüssmann CA. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. Gen Comp Endocrinol, 2013;192:45-54. doi: 10.1016/j.ygcen.2013.02.034.Miura T, Miura C, Ohta T, Nader MR, Todo T, Yamauchi K. Estradiol-17β Stimulates the Renewal of Spermatogonial Stem Cells in Males. Biochem Biophys Res Commun, 1999;264(1):230-234. doi: 10.1006/BBRC.1999.1494.Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisher, 1999;9(3):211–268. doi: 10.1023/A:1008924418720.Moreira RG, Honji RM, Melo RG, Narcizo AM, Amaral JS, Araújo RC, Hilsdorf AW. The involvement of gonadotropins and gonadal steroids in the ovulatory dysfunction of the potamodromous Salminus hilarii (Teleostei: Characidae) in captivity. Fish Physiol Biochem, 2015;41(6):1435-1447. doi: 10.1007/s10695-015-0097-y.Nagahama Y. 7 alpha, 20 beta-Dihydroxy-4-pregnen-3-one: A Teleost Maturation-Inducing Hormone. Dev Growth Differ. 1987;29:1–12.Nagahama Y. Endocrine regulation of gametogenesis in fish. Int J Dev BioI, 1994;38(2):217-229. doi: doi=7981031.Nagahama Y. 17α,20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: Mechanisms of synthesis and action. Steroids. Elsevier, 1997;62(1):190-196. doi: 10.1016/S0039-128X(96)00180-8.Nagahama Y, Yamashita M. Regulation of oocyte maturation in fish. Dev Growth Differ, 2008;50(suppl1):S195-219. doi: 10.1111/j.1440-169X.2008.01019.x.Nyuji M, Hamada K, Kazeto Y, Mekuchi M, Gen K, Soyano K, Okuzawa K. Photoperiodic regulation of plasma gonadotropin levels in previtellogenic greater amberjack (Seriola dumerili). Gen Comp Endocrinol, 2018;269:149-155. doi: 10.1016/j.ygcen.2018.09.007.Okubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiologica, 2008;193(1):3-15. doi: 10.1111/j.1748-1716.2008.01832.x.Park JW, Jin YH, Oh SY, Kwon JY. Kisspeptin2 stimulates the HPG axis in immature Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol Part B: Biochem Mol Biol, Biochemistry and Molecular Biology, 2016;202:31-38. doi: 10.1016/j.cbpb.2016.07.009.Passini G, Carvalho CVA, Carneiro-Sterzelecki F, Francisco-Baloia M, Ronzani-Cerqueira V. Spermatogenesis and steroid hormone profile in puberty of laboratory-reared common snook (Centropomus undecimalis). Aquaculture, 2019;500:622-630. doi: 10.1016/j.aquaculture.2018.10.031.Peng C, Chang JP, Yu KL, Wong AO, Van-Goor F, Peter RE, Rivier JE. Neuropeptide-Y stimulates growth hormone and gonadotropin-II secretion in the goldfish pituitary: involvement of both presynaptic and pituitary cell actions. Endocrinology, 1993;132(4):1820-1829. doi: 10.1210/endo.132.4.8462479.Peng W, Cao M, Chen J, Li Y, Wang Y, Zhu Z, Hu W. GnIH plays a negative role in regulating GtH expression in the common carp, Cyprinus carpio L. Gen Comp Endocrinol, 2016;235:18-28. doi: 10.1016/j.ygcen.2016.06.001.Planas JV, Swanson P. Maturation-Associated Changes in the Response of the Salmon Testis to the Steroidogenic Actions of Gonadotropins (GTH I and GTH II ) In Vitro. Biol Reprod, 1995;52(3):697-704. doi:10.1095/biolreprod52.3.697Qi X, Zhou W, Li S, Lu D, Yi S, Xie R, Liu X, Zhang Y, Lin H. “Evidences for the regulation of GnRH and GTH expression by GnIH in the goldfish, Carassius auratus”, Mol Cell Endocrinol, 2013;366(1):9-20. doi: 10.1016/j.mce.2012.11.001.Rather MA, Bhat IA, Gireesh-Babu P, Chaudhari A, Sundaray JK, Sharma R. Molecular characterization of kisspeptin gene and effect of nano-encapsulted kisspeptin-10 on reproductive maturation in Catla catla. Domest Anim Endocrinol, 2016;56:36-47. doi: 10.1016/j.domaniend.2016.01.005.Rocha MJ, Arukwe A, Kapoor BG. (2008) Fish reproduction. 1st ed. Science Publishers. Pp.632.Saborido-Rey F. (2008) Ecología de la reproducción y potencial reproductivo en las poblaciones de peces marinos. Instituto de Investigaciones Marinas (CSIC) Universidad de Vigo. Pp.71.Sawada K, Ukena A, Satake H, Iwakoshi E, Minakata H, Tsutsui K. “Novel fish hypothalamic neuropeptide”. Eur J Biochem, 2002;269(24):6000-6008. doi: 10.1046/j.1432-1033.2002.03351.x.Schulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. Spermatogenesis in fish. Gen Comp Endocrinol, 2010;165(3):390-411. doi: 10.1016/j.ygcen.2009.02.013.Swanson P, Dickey JT, Campbell B. Biochemistry and physiology of fish gonadotropins. Fish Physiol Biochem, 2003;28:53-59.Tena-Sempere M, Felip A, Gómez A, Zanuy S, Carrillo M. Comparative insights of the kisspeptin/kisspeptin receptor system: Lessons from non-mammalian vertebrates”. Gen Comp Endocrinol, 2012;175(2):234-243. doi: 10.1016/j.ygcen.2011.11.015.Thorson JF, Prezotto LD, Cardoso RC, Sharpton SM, Edwards JF, et al. (2014) “Hypothalamic Distribution, Adenohypophyseal Receptor Expression, and Ligand Functionality of RFamide-Related Peptide 3 in the Mare During the Breeding and Nonbreeding Seasons1”. Biology of Reproduction, 2014;90(2):1-9. doi: 10.1095/biolreprod.113.112185.Tokarz J, Möller G, de Angelis MH, Adamski J. “Zebrafish and steroids: What do we know and what do we need to know?”. J Steroid Biochem Mol Biol, 2013;137:165-173. doi: 10.1016/j.jsbmb.2013.01.003.Tokarz J, Möller G1, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids, 2015;103:123-144. doi: 10.1016/j.steroids.2015.06.011.Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, et al. A Novel Avian Hypothalamic Peptide Inhibiting Gonadotropin Release. Biochem Biophys Res Commun, 2000;275(2):661-667. doi: 10.1006/BBRC.2000.3350.Tsutsui K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Progress in Neurobiology, 2009;88(1):76-88. doi: 10.1016/j.pneurobio.2009.02.003.Tsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol, 2018;264:48-57. doi: 10.1016/j.ygcen.2017.07.024.Ubuka T, Bentley GE, Ukena K, Wingfield JC, Tsutsui K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc Natl Acad Sci USA, 2005;102(8):3052-3057. doi: 10.1073/PNAS.0403840102.Ubuka T, Morgan K, Pawson AJ, Osugi T, Chowdhury VS, Minakata H, et al. Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis. PLoS One, 2009;4(12):e8400. doi: 10.1371/journal.pone.0008400.Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol, 2016;227:27-50. doi: 10.1016/j.ygcen.2015.09.009.Ukena K, Iwakoshi-Ukena E, Osugi T, Tsutsui K. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans. Gen Comp Endocrinol, 2016;227:69-76. doi: 10.1016/j.ygcen.2015.06.009.Valdebenito I, Paiva L, Berland M. Atresia folicular en peces teleósteos : una revisión. Arch Med Vet, 2011;43(1):11-25. doi.org/10.4067/S0301-732X2011000100003Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci, 2016;10:540. doi: 10.3389/fnins.2016.00540.Wu C, Patiño R, Davis KB, Chang X. Localization of estrogen receptor α and β RNA in germinal and nongerminal epithelia of the channel catfish testis. Gen Comp Endocrinol, 2001;124(1):12-20. doi: 10.1006/gcen.2001.7668.Wylie MJ, Setiawan AN, Irvine GW, Symonds JE, Elizur A, Lokman PM. Effects of neuropeptides and sex steroids on the pituitary-gonadal axis of pre-pubertal F1 wreckfish (hāpuku) Polyprion oxygeneios in vivo: Evidence of inhibitory effects of androgens. Gen Comp Endocrinol, 2018;257:113-121. doi: 10.1016/j.ygcen.2017.08.018.Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. Int Rev Cytol, 2003;225:131-185. doi.org/10.1016/S0074-7696(05)25004-0Yu KL, Peter RE. Alterations in gonadotropin-releasing hormone immunoactivities in discrete brain areas of male goldfish during spawning behavior. Brain Research, 1990;512(1):89-94. doi: 10.1016/0006-8993(90)91174-F.Yu KL, Rosenblum PM, Peter RE. In vitro release of gonadotropin-releasing hormone from the brain preoptic-anterior hypothalamic region and pituitary of female goldfish. Gen Comp Endocrinol, 1991;81(2):256-267. doi: 10.1016/0016-6480(91)90010-4.Zhang Y, Li S, Liu Y, Lu D, Chen H, Huang X, et al. Structural diversity of the gnih/gnih receptor system in teleost: Its involvement in early development and the negative control of LH release. Peptides, 2010;31(6):1034-1043. doi: 10.1016/j.peptides.2010.03.003.Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol, 2010;165(3):438-455. doi: 10.1016/j.ygcen.2009.04.017.https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/601/pdfNúm. 1 , Año 20206315224OrinoquiaPublicationOREORE.xmltext/xml2611https://dspace7-unillanos.metacatalogo.org/bitstreams/6460ec87-02db-425b-bc81-a4c00123d629/download1dec109201d717c19e1929153bfc3baaMD51001/2751oai:dspace7-unillanos.metacatalogo.org:001/27512024-04-17 16:40:55.525https://creativecommons.org/licenses/by/4.0/Orinoquia - 2020metadata.onlyhttps://dspace7-unillanos.metacatalogo.orgRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.co