Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento

Se utilizaron 177 juveniles de Piaractus brachypomus, mantenidos durante 84 días en dos estanques asignados a dos tratamientos de alimentación: T1: diaria y T2: un día sí y un día no. Se realizaron colectas de sangre los días 1, 28, 42, 56, 70 y 84 de 7 animales por tratamiento para determinación de...

Full description

Autores:
Rodríguez, Liliana
Landines-Parra, Miguel A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad de los Llanos
Repositorio:
Repositorio Digital Universidad de los LLanos
Idioma:
spa
OAI Identifier:
oai:repositorio.unillanos.edu.co:001/2693
Acceso en línea:
https://repositorio.unillanos.edu.co/handle/001/2693
https://doi.org/10.22579/20112629.480
Palabra clave:
Agroforestry system
SAF
forest
grassland
indicator.
Sistema agroforestal
SAF
bosque
pradera
indicador
Rights
openAccess
License
Orinoquia - 2019
id Unillanos2_98e8c2e0394f8181fc98ee30a25f54e0
oai_identifier_str oai:repositorio.unillanos.edu.co:001/2693
network_acronym_str Unillanos2
network_name_str Repositorio Digital Universidad de los LLanos
repository_id_str
dc.title.spa.fl_str_mv Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
dc.title.translated.eng.fl_str_mv Productive and Physiological Performance of Juveniles of Piaractus brachypomus Subjected to Food Restriction
title Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
spellingShingle Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
Agroforestry system
SAF
forest
grassland
indicator.
Sistema agroforestal
SAF
bosque
pradera
indicador
title_short Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
title_full Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
title_fullStr Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
title_full_unstemmed Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
title_sort Desempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimento
dc.creator.fl_str_mv Rodríguez, Liliana
Landines-Parra, Miguel A.
dc.contributor.author.spa.fl_str_mv Rodríguez, Liliana
Landines-Parra, Miguel A.
dc.subject.eng.fl_str_mv Agroforestry system
SAF
forest
grassland
indicator.
topic Agroforestry system
SAF
forest
grassland
indicator.
Sistema agroforestal
SAF
bosque
pradera
indicador
dc.subject.spa.fl_str_mv Sistema agroforestal
SAF
bosque
pradera
indicador
description Se utilizaron 177 juveniles de Piaractus brachypomus, mantenidos durante 84 días en dos estanques asignados a dos tratamientos de alimentación: T1: diaria y T2: un día sí y un día no. Se realizaron colectas de sangre los días 1, 28, 42, 56, 70 y 84 de 7 animales por tratamiento para determinación de hematocrito, hemoglobina, proteína, glucosa, lactato, triglicéridos, colesterol, cortisol e insulina. Los animales fueron pesados, medidos y sacrificados para cálculo de índices hepatosomático (IHS), viscerosomático (IVS) y grasa visceral (IGV); al final del ensayo a los animales muestreados se les realizó análisis proximal y de energía en filete. El hematocrito presentó diferencias significativas entre tratamientos los días 56 y 84, siendo superior en T1 el día 56 e inferior el día 84. Excepto los días 1 y 42, en los que la hemoglobina fue superior en T1, no hubo diferencias significativas entre tratamientos. Para glucosa, insulina y lactato hubo diferencias significativas el día 28: las dos primeras fueron superiores en T1, mientras que el lactato lo fue en T2. La proteína aumentó significativamente en T1 el día 42, nivel que se mantuvo el día 56, disminuyendo el día 70 y manteniéndose así hasta el día 84. Para triglicéridos, colesterol y cortisol no hubo diferencias significativas entre tratamientos en ninguna de las colectas. Además, se presentaron diferencias significativas en peso los días 42 y 70, y en longitud el día 42, no existiendo diferencias entre tratamientos al final del ensayo. Para IHS e IVS hubo diferencias significativas el día 84, siendo superiores en T1, sin diferencias para IGV. La sobrevivencia fue 100% en ambos tratamientos. El análisis proximal y la energía del filete no presentaron diferencias entre tratamientos. Se concluye que la restricción alimenticia del 50% en el esquema alternado utilizado, no afectó la condición fisiológica de los animales, pues no se evidenció ningún daño metabólico importante, ni cambios en la composición del producto final.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-07-16 00:00:00
2022-06-13T17:42:21Z
dc.date.available.none.fl_str_mv 2018-07-16 00:00:00
2022-06-13T17:42:21Z
dc.date.issued.none.fl_str_mv 2018-07-16
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Sección Ciencias agrarias
dc.type.local.eng.fl_str_mv Sección Agricultural sciences
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0121-3709
dc.identifier.uri.none.fl_str_mv https://repositorio.unillanos.edu.co/handle/001/2693
dc.identifier.doi.none.fl_str_mv 10.22579/20112629.480
dc.identifier.eissn.none.fl_str_mv 2011-2629
dc.identifier.url.none.fl_str_mv https://doi.org/10.22579/20112629.480
identifier_str_mv 0121-3709
10.22579/20112629.480
2011-2629
url https://repositorio.unillanos.edu.co/handle/001/2693
https://doi.org/10.22579/20112629.480
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdel M, Khattab Y, Ahmad M, Shalaby A. 2006. Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Aquaculture. 18(3):17-36.
Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A. Compensatory growth in juvenile roach Rutilus caspicus: effect of starvation and re-feeding on growth and digestive surface area. J Fish Biol. 2012;81:1880-1890.
Ali M, Nicieza A, Wootton JR. Compensatory growth in fishes: a response to growth depression. Fish Fish. 2003;4:147-190.
AOAC. 2012. Official Method of Analysis of the Association of Analytical Chemists 19 Edition, Association of Official Analytical Chemists. Washington, DC, USA, p. 1018.
Azodi M, Ebrahimi E, Farhadian O, Mahboobi-Soofiani N, Morshedi V. Compensatory growth response of rainbow trout Oncorhynchus mykiss Walbaum following short starvation periods. Chin J Oceanol Limn. 2015;33(4):928-933.
Barcellos L, Marqueze A, Trapp M, Quevedo R, Ferreira D. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture. 2010;300:231-236
Blasco J, Fernández J, Gutiérrez J. Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. J Comp Physiol. 1992;162(B):539-546
Caruso G, Denaro MG, Caruso R, Mancari F, Genovese L, Maricchiolo. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar Environ Res. 2011;72:46-52.
Cho S. Compensatory Growth of Juvenile Flounder Paralichthys olivaceus L. and Changes in Biochemical Composition and Body Condition Indices during Starvation and after Refeeding in Winter Season. J World Aquacult Soc. 2005;36(4):508-514.
Cho S, Lee S, Park B, Ji S. Compensatory growth of juvenile Olive Flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J World Aquacult Soc. 2006;37(2):168-174.
El Sayed AL, Martínez-Llorens S, Moñino AV, Cerda M, Tomás-Vidal A. Effects of weekly feeding frequency and previous ration restriction on the compensatory growth and body composition of Nile tilapia fingerlings. Egypt J Aquat Res. 2016;42:357-363.
Engelhardt W, Breves, G. 2006. Fisiología veterinaria. Editorial Acribia. 683p.
Eroldoğan OT, Kumlu M, Kiris GA, Sezer B. Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquacult Nutr. 2006;12:203-210.
Figueiredo-Garutti M, Navarro I, Capilla E, Souza R, Moraes G, Gutiérrez J, Vicentini-Paulino M. Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting. Comp Biochem Physiol A. 2002;132:467-476.
Hemre GI, Lie O, Lambertsen G, Sundby A. Dietary carbohydrate utilization in cod (Gadus morhua). Hormonal response of insulin, glucagon and glucagon-like peptide to diet and starvation. Comp Biochem Physiol A. 1990;97:41-44.
Houlihan D, Boujard T, Jobling M. 2001. Food intake in fish. Oxford, UK: Blackwell Science; 1st edition. 40 p.
Hung S, Liu W, Li H, Storebakken T, Cui Y. Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus. Aquaculture. 1997;151:357-363.
Johansen KA, Overturf K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp Biochem Physiol B. 2006;144:119-127.
Lagardère JP, Bégout ML, Claireaux G. 1998. Advances in invertebrates and fish telemetry. Kluwer Academic Publishiers. Belgium, 363 p.
MacKenzie D, VanPutte C, Leiner K. Nutrient regulation of endocrine function in fish. Aquaculture. 1998;161:3-25.
Malpica A, Ramírez JA, Torres A. Evaluación de la restricción alimenticia sobre el crecimiento compensatorio en alevinos de cachama blanca (Piaractus brachypomus). Rev Colombiana Cienc Anim. 2014;7:59-74.
Mohanta KN, Rath SC, Nayak KC, Pradhan C, Mohanty K, Giri SS. 2016. Effect or restricted feeding and refeeding on compensatory growth, nutrient utilization and gain, production performance and whole body composition of carp cultured in earthen pond. Aquaculture Nutrition. In press, early view.
Mohanty RK. Effects of feed restriction on compensatory growth performance of Indian major carps in a carp-prawn polyculture system: a response to growth depression. Aquaculture Nutrition 2015;21:464-473.
Montserrat N, Gómez P, Bellini G, Capilla E, Pérez J, Navarro I, Gutiérrez J. Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of Gilthead Sea bream (Sparus aurata). Aquaculture. 2007;267:188-198.
Morales AE, Pérez A, Hidalgo MC, Abellan E, Cardenete G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol C. 2004;139:153-161.
Oh SY, Noh CH, Cho SH. Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, Pagrus major. J World Aquacult Soc. 2007;38(3):443-449.
Pérez-Jiménez A, Guedes MJ, Morales AE, Oliva A. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture. 2007;265:325-335.
Pottinger T, Rand-Weaver M, Sumpter, J. Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilization. Comp Biochem Physiol B. 2003;136:403-417.
Power D, Melo J, Santos C. The effect of food deprivation and refeeding on the liver, thyroid hormones and transthyretin in sea bream. J Fish Biol. 2000;56:374-387.
Reigh R, Williams MB, Jacob BJ. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture. 2006;254:506-516.
Riaño FY, Landines MA, Díaz GJ. Efecto de la restricción alimenticia y la realimentación sobre la composición del músculo blanco de Piaractus brachypomus. Rev Med Vet Zoot. 2011;58(2):84-98.
Rios F, Oba E, Fernandes M, Kalinin A, Rantin F. Erythrocyte senescence and haematological changes induced by starvation in the neotropical fish traíra, Hoplias malabaricus (Characiformes, Erythrinidae). Comp Biochem Physiol A. 2005;140:281-287.
Rodríguez L, Landines MA. Evaluación de la restricción alimenticia sobre el desempeño productivo y fisiológico en juveniles de cachama blanca, Piaractus brachypomus, en condiciones de laboratorio. Rev Med Vet Zoot. 2011;58(3):141-155.
Rossi A, Cazenavea J, Bacchetta C, Campana M, Parma MJ. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecol Indic. 2015;56:161-170.
Small B. Effect of fasting on nychthemeral concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp Biochem Physiol B. 2005;142:217-223.
Soengas JL, Strong EF, Fuentes J, Veira JAR, Andrés MD. Food deprivation and refeeding in Atlantic salmon, Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem. 1996;15(6):491-511.
Soengas JL, Aldegunde M. Energy metabolism of fish brain. Comparative Comp Biochem Physiol B. 2002;131(3):271-296
Takei Y, Loretz C. 2006. Endocrinology. En: Evans D, Claiborne J, editors. The physiology of fishes 3rd ed. CRC Press. 601 p.
Turano MJ, Borski RJ, Daniels HV. Effects of cyclic feeding on compensatory growth of hybrid striped bass (Morone chrysops x M. saxitilis) foodfish and water quality in production ponds. Aquacult Res. 2008;39:1514-1523.
Urbinati E, Jiménez S, Susumo L. Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture. 2014;433:430-433.
Wang T, Hung C, Randall DJ. The comparative physiology of food deprivation: From feast to famine. Annu Rev Physiol. 2006;68:223-251.
Xiao JX, Zhou F, Yin N, Zhou J, Gao S, Li H, Shao QJ, Xu JZ. Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii with cyclical feed deprivation and refeeding. Aquacult Res. 2013;44:1045-1057.
Yang G, Ziwei W, Jun-Wook H, Jeong-Yeol L. Body composition and compensatory growth in Nile tilapia Oreochromis niloticus under different feeding intervals. Chin J Oceanol Limn. 2015;33(4): 945-956.
Zamudio JF, Landines MA. Efecto de la restricción de alimento y posterior realimentación sobre algunas variables fisiológicas en yamú (Brycon amazonicus). Rev Med Vet Zoot. 2018;65(2): 154-171.
Zhu XM, Xie SQ, Lei W, Cui YB, Yang, YX, Wootton RJ. Compensatory growth in the chinese longsnout catfish, Leiocassis longirostris following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture. 2005;248(1-4):307-314.
dc.relation.bitstream.none.fl_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/480/1061
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2018
dc.relation.citationendpage.none.fl_str_mv 67
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 57
dc.relation.citationvolume.spa.fl_str_mv 22
dc.relation.ispartofjournal.spa.fl_str_mv Orinoquia
dc.rights.spa.fl_str_mv Orinoquia - 2019
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Orinoquia - 2019
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Llanos
dc.source.spa.fl_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/480
institution Universidad de los Llanos
bitstream.url.fl_str_mv https://dspace7-unillanos.metacatalogo.org/bitstreams/4aa8d2cf-1950-4d71-b483-4d3590e7d98d/download
bitstream.checksum.fl_str_mv 31dee4fa7238a2a9b14199af8002ec46
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Los Llanos
repository.mail.fl_str_mv repositorio@unillanos.edu.co
_version_ 1812104603245740032
spelling Rodríguez, Liliana21b4117836fd422d48f8fb624dac8e51300Landines-Parra, Miguel A.9e411872b3bab513e3960b8d667000595002018-07-16 00:00:002022-06-13T17:42:21Z2018-07-16 00:00:002022-06-13T17:42:21Z2018-07-160121-3709https://repositorio.unillanos.edu.co/handle/001/269310.22579/20112629.4802011-2629https://doi.org/10.22579/20112629.480Se utilizaron 177 juveniles de Piaractus brachypomus, mantenidos durante 84 días en dos estanques asignados a dos tratamientos de alimentación: T1: diaria y T2: un día sí y un día no. Se realizaron colectas de sangre los días 1, 28, 42, 56, 70 y 84 de 7 animales por tratamiento para determinación de hematocrito, hemoglobina, proteína, glucosa, lactato, triglicéridos, colesterol, cortisol e insulina. Los animales fueron pesados, medidos y sacrificados para cálculo de índices hepatosomático (IHS), viscerosomático (IVS) y grasa visceral (IGV); al final del ensayo a los animales muestreados se les realizó análisis proximal y de energía en filete. El hematocrito presentó diferencias significativas entre tratamientos los días 56 y 84, siendo superior en T1 el día 56 e inferior el día 84. Excepto los días 1 y 42, en los que la hemoglobina fue superior en T1, no hubo diferencias significativas entre tratamientos. Para glucosa, insulina y lactato hubo diferencias significativas el día 28: las dos primeras fueron superiores en T1, mientras que el lactato lo fue en T2. La proteína aumentó significativamente en T1 el día 42, nivel que se mantuvo el día 56, disminuyendo el día 70 y manteniéndose así hasta el día 84. Para triglicéridos, colesterol y cortisol no hubo diferencias significativas entre tratamientos en ninguna de las colectas. Además, se presentaron diferencias significativas en peso los días 42 y 70, y en longitud el día 42, no existiendo diferencias entre tratamientos al final del ensayo. Para IHS e IVS hubo diferencias significativas el día 84, siendo superiores en T1, sin diferencias para IGV. La sobrevivencia fue 100% en ambos tratamientos. El análisis proximal y la energía del filete no presentaron diferencias entre tratamientos. Se concluye que la restricción alimenticia del 50% en el esquema alternado utilizado, no afectó la condición fisiológica de los animales, pues no se evidenció ningún daño metabólico importante, ni cambios en la composición del producto final.177 juveniles of Piaractus brachypomus were kept during 84 days in two ponds. Each group was assigned one of the following treatments: T1: fed every day, and T2: fed every other day. Blood samples from 7 animals of each treatment were taken on days 1, 28, 42, 56, 70, and 84 to determine hematocrit, hemoglobin, glucose, lactate, protein, triglycerides, cholesterol, cortisol, and insulin. Fish were weighted, measured, and sacrificed to remove the liver, viscera, and visceral fat to calculate the hepatosomatic index (HSI), viscerosomatic index (VSI), and visceral fat index (VFI). At the end of the trial, the group of sampled animals were filleted to do the energy and proximal analysis. There were significant differences in hematocrit between treatments, on days 56 and 84, they were higher in T1 on day 56, and lower in T1 on day 84. On days 1 and 42, hemoglobin was higher in T1, there were no significant differences among treatments. There were significant differences in glucose, insulin and lactate on day 28; the first two were higher in T1, while lactate was higher in T2. Protein significantly increased in T1 on day 42, and was the same on day 56, then decreased on day 70, and remained stable until day 84. There were no significant differences between treatments in triglycerides, cholesterol, and cortisol during any of the sample times. There were significant differences in the weight on days 42 and 70, and in length on day 42, but there were no significant differences between treatments at the end of the test. There were significant differences in IHS and IVS on day 84, they were higher in T1. There were no differences in IGV. Survival was 100% in both treatments. There were no differences in energy and proximal analysis of the fillets between the treatments. We can conclude that a 50% food restriction in the alternated scheme did not affect the physiological condition of the animals because there was not any significant metabolic damage or changes in the composition of the final product.application/pdfspaUniversidad de los LlanosOrinoquia - 2019https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/480Agroforestry systemSAFforestgrasslandindicator.Sistema agroforestalSAFbosquepraderaindicadorDesempeño productivo y fisiológico de juveniles de Piaractus brachypomus sometidos a restricción de alimentoProductive and Physiological Performance of Juveniles of Piaractus brachypomus Subjected to Food RestrictionArtículo de revistaJournal Articleinfo:eu-repo/semantics/articleSección Ciencias agrariasSección Agricultural sciencesinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/coar/version/c_970fb48d4fbd8a85Abdel M, Khattab Y, Ahmad M, Shalaby A. 2006. Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Aquaculture. 18(3):17-36.Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A. Compensatory growth in juvenile roach Rutilus caspicus: effect of starvation and re-feeding on growth and digestive surface area. J Fish Biol. 2012;81:1880-1890.Ali M, Nicieza A, Wootton JR. Compensatory growth in fishes: a response to growth depression. Fish Fish. 2003;4:147-190.AOAC. 2012. Official Method of Analysis of the Association of Analytical Chemists 19 Edition, Association of Official Analytical Chemists. Washington, DC, USA, p. 1018.Azodi M, Ebrahimi E, Farhadian O, Mahboobi-Soofiani N, Morshedi V. Compensatory growth response of rainbow trout Oncorhynchus mykiss Walbaum following short starvation periods. Chin J Oceanol Limn. 2015;33(4):928-933.Barcellos L, Marqueze A, Trapp M, Quevedo R, Ferreira D. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture. 2010;300:231-236Blasco J, Fernández J, Gutiérrez J. Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. J Comp Physiol. 1992;162(B):539-546Caruso G, Denaro MG, Caruso R, Mancari F, Genovese L, Maricchiolo. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar Environ Res. 2011;72:46-52.Cho S. Compensatory Growth of Juvenile Flounder Paralichthys olivaceus L. and Changes in Biochemical Composition and Body Condition Indices during Starvation and after Refeeding in Winter Season. J World Aquacult Soc. 2005;36(4):508-514.Cho S, Lee S, Park B, Ji S. Compensatory growth of juvenile Olive Flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J World Aquacult Soc. 2006;37(2):168-174.El Sayed AL, Martínez-Llorens S, Moñino AV, Cerda M, Tomás-Vidal A. Effects of weekly feeding frequency and previous ration restriction on the compensatory growth and body composition of Nile tilapia fingerlings. Egypt J Aquat Res. 2016;42:357-363.Engelhardt W, Breves, G. 2006. Fisiología veterinaria. Editorial Acribia. 683p.Eroldoğan OT, Kumlu M, Kiris GA, Sezer B. Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquacult Nutr. 2006;12:203-210.Figueiredo-Garutti M, Navarro I, Capilla E, Souza R, Moraes G, Gutiérrez J, Vicentini-Paulino M. Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting. Comp Biochem Physiol A. 2002;132:467-476.Hemre GI, Lie O, Lambertsen G, Sundby A. Dietary carbohydrate utilization in cod (Gadus morhua). Hormonal response of insulin, glucagon and glucagon-like peptide to diet and starvation. Comp Biochem Physiol A. 1990;97:41-44.Houlihan D, Boujard T, Jobling M. 2001. Food intake in fish. Oxford, UK: Blackwell Science; 1st edition. 40 p.Hung S, Liu W, Li H, Storebakken T, Cui Y. Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus. Aquaculture. 1997;151:357-363.Johansen KA, Overturf K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp Biochem Physiol B. 2006;144:119-127.Lagardère JP, Bégout ML, Claireaux G. 1998. Advances in invertebrates and fish telemetry. Kluwer Academic Publishiers. Belgium, 363 p.MacKenzie D, VanPutte C, Leiner K. Nutrient regulation of endocrine function in fish. Aquaculture. 1998;161:3-25.Malpica A, Ramírez JA, Torres A. Evaluación de la restricción alimenticia sobre el crecimiento compensatorio en alevinos de cachama blanca (Piaractus brachypomus). Rev Colombiana Cienc Anim. 2014;7:59-74.Mohanta KN, Rath SC, Nayak KC, Pradhan C, Mohanty K, Giri SS. 2016. Effect or restricted feeding and refeeding on compensatory growth, nutrient utilization and gain, production performance and whole body composition of carp cultured in earthen pond. Aquaculture Nutrition. In press, early view.Mohanty RK. Effects of feed restriction on compensatory growth performance of Indian major carps in a carp-prawn polyculture system: a response to growth depression. Aquaculture Nutrition 2015;21:464-473.Montserrat N, Gómez P, Bellini G, Capilla E, Pérez J, Navarro I, Gutiérrez J. Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of Gilthead Sea bream (Sparus aurata). Aquaculture. 2007;267:188-198.Morales AE, Pérez A, Hidalgo MC, Abellan E, Cardenete G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol C. 2004;139:153-161.Oh SY, Noh CH, Cho SH. Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, Pagrus major. J World Aquacult Soc. 2007;38(3):443-449.Pérez-Jiménez A, Guedes MJ, Morales AE, Oliva A. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture. 2007;265:325-335.Pottinger T, Rand-Weaver M, Sumpter, J. Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilization. Comp Biochem Physiol B. 2003;136:403-417.Power D, Melo J, Santos C. The effect of food deprivation and refeeding on the liver, thyroid hormones and transthyretin in sea bream. J Fish Biol. 2000;56:374-387.Reigh R, Williams MB, Jacob BJ. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture. 2006;254:506-516.Riaño FY, Landines MA, Díaz GJ. Efecto de la restricción alimenticia y la realimentación sobre la composición del músculo blanco de Piaractus brachypomus. Rev Med Vet Zoot. 2011;58(2):84-98.Rios F, Oba E, Fernandes M, Kalinin A, Rantin F. Erythrocyte senescence and haematological changes induced by starvation in the neotropical fish traíra, Hoplias malabaricus (Characiformes, Erythrinidae). Comp Biochem Physiol A. 2005;140:281-287.Rodríguez L, Landines MA. Evaluación de la restricción alimenticia sobre el desempeño productivo y fisiológico en juveniles de cachama blanca, Piaractus brachypomus, en condiciones de laboratorio. Rev Med Vet Zoot. 2011;58(3):141-155.Rossi A, Cazenavea J, Bacchetta C, Campana M, Parma MJ. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecol Indic. 2015;56:161-170.Small B. Effect of fasting on nychthemeral concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp Biochem Physiol B. 2005;142:217-223.Soengas JL, Strong EF, Fuentes J, Veira JAR, Andrés MD. Food deprivation and refeeding in Atlantic salmon, Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem. 1996;15(6):491-511.Soengas JL, Aldegunde M. Energy metabolism of fish brain. Comparative Comp Biochem Physiol B. 2002;131(3):271-296Takei Y, Loretz C. 2006. Endocrinology. En: Evans D, Claiborne J, editors. The physiology of fishes 3rd ed. CRC Press. 601 p.Turano MJ, Borski RJ, Daniels HV. Effects of cyclic feeding on compensatory growth of hybrid striped bass (Morone chrysops x M. saxitilis) foodfish and water quality in production ponds. Aquacult Res. 2008;39:1514-1523.Urbinati E, Jiménez S, Susumo L. Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture. 2014;433:430-433.Wang T, Hung C, Randall DJ. The comparative physiology of food deprivation: From feast to famine. Annu Rev Physiol. 2006;68:223-251.Xiao JX, Zhou F, Yin N, Zhou J, Gao S, Li H, Shao QJ, Xu JZ. Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii with cyclical feed deprivation and refeeding. Aquacult Res. 2013;44:1045-1057.Yang G, Ziwei W, Jun-Wook H, Jeong-Yeol L. Body composition and compensatory growth in Nile tilapia Oreochromis niloticus under different feeding intervals. Chin J Oceanol Limn. 2015;33(4): 945-956.Zamudio JF, Landines MA. Efecto de la restricción de alimento y posterior realimentación sobre algunas variables fisiológicas en yamú (Brycon amazonicus). Rev Med Vet Zoot. 2018;65(2): 154-171.Zhu XM, Xie SQ, Lei W, Cui YB, Yang, YX, Wootton RJ. Compensatory growth in the chinese longsnout catfish, Leiocassis longirostris following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture. 2005;248(1-4):307-314.https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/480/1061Núm. 1 , Año 20186715722OrinoquiaPublicationOREORE.xmltext/xml2611https://dspace7-unillanos.metacatalogo.org/bitstreams/4aa8d2cf-1950-4d71-b483-4d3590e7d98d/download31dee4fa7238a2a9b14199af8002ec46MD51001/2693oai:dspace7-unillanos.metacatalogo.org:001/26932024-04-17 16:37:12.712https://creativecommons.org/licenses/by/4.0/Orinoquia - 2019metadata.onlyhttps://dspace7-unillanos.metacatalogo.orgRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.co