Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia

El cambio climático, ocasionado por el incremento en la concentración de gases efecto invernadero (GEI), genera alteraciones en el clima del planeta, aumentando la temperatura media global, lo que afecta patrones de precipitación. El área de estudio se ubicó en el Municipio de Yopal, corregimiento T...

Full description

Autores:
Carvajal-Agudelo, Blanca N.
Andrade, Hernán J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de los Llanos
Repositorio:
Repositorio Digital Universidad de los LLanos
Idioma:
spa
OAI Identifier:
oai:repositorio.unillanos.edu.co:001/3973
Acceso en línea:
https://repositorio.unillanos.edu.co/handle/001/3973
https://doi.org/10.22579/20112629.587
Palabra clave:
Biomass
climate change
allometric equation
emission
mitigation
ecosystem service
agroforestry system
Biomasa
cambio climático
ecuación alométrica
emisión
mitigación
sistema agroforestal
Biomassa
mudança climática
equação alométrica
emissão
mitigação
sistema agroflorestal
Rights
openAccess
License
Orinoquia - 2020
id Unillanos2_7f9f127079444ffcfc429fbf881fb243
oai_identifier_str oai:repositorio.unillanos.edu.co:001/3973
network_acronym_str Unillanos2
network_name_str Repositorio Digital Universidad de los LLanos
repository_id_str
dc.title.spa.fl_str_mv Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
dc.title.translated.eng.fl_str_mv Carbon capture regarding biomass from rural land use systems near the municipality of Yopal, Casanare, Colombia
title Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
spellingShingle Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
Biomass
climate change
allometric equation
emission
mitigation
ecosystem service
agroforestry system
Biomasa
cambio climático
ecuación alométrica
emisión
mitigación
sistema agroforestal
Biomassa
mudança climática
equação alométrica
emissão
mitigação
sistema agroflorestal
title_short Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
title_full Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
title_fullStr Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
title_full_unstemmed Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
title_sort Captura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, Colombia
dc.creator.fl_str_mv Carvajal-Agudelo, Blanca N.
Andrade, Hernán J.
dc.contributor.author.spa.fl_str_mv Carvajal-Agudelo, Blanca N.
Andrade, Hernán J.
dc.subject.eng.fl_str_mv Biomass
climate change
allometric equation
emission
mitigation
ecosystem service
agroforestry system
topic Biomass
climate change
allometric equation
emission
mitigation
ecosystem service
agroforestry system
Biomasa
cambio climático
ecuación alométrica
emisión
mitigación
sistema agroforestal
Biomassa
mudança climática
equação alométrica
emissão
mitigação
sistema agroflorestal
dc.subject.spa.fl_str_mv Biomasa
cambio climático
ecuación alométrica
emisión
mitigación
sistema agroforestal
Biomassa
mudança climática
equação alométrica
emissão
mitigação
sistema agroflorestal
description El cambio climático, ocasionado por el incremento en la concentración de gases efecto invernadero (GEI), genera alteraciones en el clima del planeta, aumentando la temperatura media global, lo que afecta patrones de precipitación. El área de estudio se ubicó en el Municipio de Yopal, corregimiento Tacarimena, compuesta por ocho veredas, la cual presenta clima cálido – húmedo con promedio de precipitación anual de 2270 mm; temporada seca de diciembre-marzo y lluviosa de abril-noviembre y alturas inferiores a 380 m. En concordancia con la necesidad del desarrollo bajo en carbono, la presente investigación estima la biomasa arriba y abajo del suelo y con éstas el carbono total almacenado en siete sistemas de uso del suelo: 1) plátano con sombrío (SAF+ plátano), 2) cacao con sombrío (Ca+S), 3) cítricos (C), 4) sistema silvopastoril bajo (SSPB), 5) sistema silvopastoril alto (SSPA), 6) bosques de galería (BG), y 7) mata de monte (MM). Se trabajó con diseño experimental completamente al azar con cinco repeticiones, para un total de 35 unidades experimentales. Se establecieron parcelas temporales de muestreo, tomando datos en 832 árboles de 66 especies botánicas. Se estimó la biomasa arriba del suelo mediante modelos alometricos, utilizando datos de campo (diámetro a la altura del pecho dap y la altura total). La biomasa abajo del suelo (raíces) se estimó empleando el modelo general para bosques tropicales. Todos los usos del suelo en estudio ofrecen el servicio ecosistémico de captura de carbono, siendo el BG y la MM los de mayor carbono, mientras que el SAF+plátano almacenó la menor cantidad de carbono. Potenciales cambios de sistemas productivos a sistemas forestales (BG y MM) implican una ganancia de carbono (adicionalidad), mientras que los cambios contrarios, es decir deforestación, representan emisiones de CO2. Estos resultados son claves para la orientación a políticas y proyectos de captura de carbono.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-11T00:00:00Z
2024-07-25T18:15:00Z
dc.date.available.none.fl_str_mv 2020-05-11T00:00:00Z
2024-07-25T18:15:00Z
dc.date.issued.none.fl_str_mv 2020-05-11
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0121-3709
dc.identifier.uri.none.fl_str_mv https://repositorio.unillanos.edu.co/handle/001/3973
dc.identifier.doi.none.fl_str_mv 10.22579/20112629.587
dc.identifier.eissn.none.fl_str_mv 2011-2629
dc.identifier.url.none.fl_str_mv https://doi.org/10.22579/20112629.587
identifier_str_mv 0121-3709
10.22579/20112629.587
2011-2629
url https://repositorio.unillanos.edu.co/handle/001/3973
https://doi.org/10.22579/20112629.587
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alcaldía de Yopal. 2013. Plan básico de ordenamiento territorial municipio de Yopal- Casanare, acuerdo 024/2013. Yopal, Colombia.
Alvarado J, Andrade-Castañeda HJ, Segura-Madrigal MA. Almacenamiento de carbono orgánico en suelos en sistemas de producción de café (coffea arábica l.) en el municipio del Líbano, Tolima, Colombia. Rev Colomb For, 2013;16(1): 31-21.
Álvarez E, Duque A, Saldarriaga J, Cabrera K, De las Salas G, Del Valle I, et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecol Manag, 2012;267(1):297-308.
Andrade-Castañeda HJ. 1999. Dinámica productiva de sistemas silvopastoriles con Acacia mangium y Eucalyptus deglupta en el trópico húmedo. Tesis Mag. Sc. Turrialba, CR, CATIE. 70 p.
Andrade-Castañeda HJ, Segura-Madrigal MA. ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes?, Costa Rica. Agrofor Am, 2008;46(1):89-96.
Andrade-Castañeda HJ, Segura-Madrigal MA, Rojas-Patiño AS. Carbono orgánico del suelo en bosques riparios, arrozales y pasturas en piedras, Tolima, Colombia. Agron Mesoam, 2015;27(2):233-241.
Andrade-Castañeda HJ, Segura-Madrigal MA, Canal-Daza DS, Huertas-Gonzales A, Mosos-Torres C. Composición florística y reservas de carbono en bosques ribereños en paisajes agropecuarios de la zona seca del Tolima, Colombia. Rev Biol Trop, 2017;65(4):1245-1260.
Arce N, Ortiz-Malavasi E, Villalobos M, Cordero S. Existencias de carbono en charrales y sistemas agroforestales de cacao y banano de fincas indígenas bribri y cabécar de Talamanca Costa Rica. Agrofor Am, 2008;46(1):30-33.
Burbano-Orjuela, H. El carbono orgánico del suelo y su papel frente al cambio climático. Rev Cienc Agr, 2018;35(1):82-96.
Cairns MA, Brown S, Helmer EH, Baumgardner GA. Root biomass allocation in the word’s upland forests. Revista Oecología, 1997;111(1):1-11.
Concha J, Alegre JC, Pocomucha V. Determinación de las reservas de carbono en la biomasa aérea de sistemas agroforestales de Theobroma cacao L. en el Departamento de San Martín, Perú. Departamento Académico de Biología, Universidad Nacional Agraria La Molina, Lima – Perú. Ecol apl, 2007;6(1-2):75-82.
CORPORINOQUIA - Corporación Autónoma Regional de la Orinoquía. 2019. Actualización POMCA Plan de ordenación y manejo de la cuenca del Río Cravo Sur. Yopal, Colombia.
El Congreso de Colombia. 2018. Ley No. 1931 de 2018 por la cual se establecen directrices para la gestión del cambio climático. Gestor normativo de la función pública. Publicado en el Diario Oficial No. 50.667 de 27 de julio de 2018. Bogotá, Colombia
FAO – Organización de las Naciones Unidas para la Alimentación y la Agricultura. 2002. Captura de carbono en los suelos para un mejor manejo de la tierra. Basado en el trabajo de Michel Robert. Institut national de recherche agronomique. París, Francia.
Fonseca W, Alice F, Montero J, Toruño H, Leblanc H. Acumulación de biomasa y carbono en bosques secundarios y plantaciones forestales de (Vochysia guatemalensis e Hieronyma alchorneoides) en el Caribe de Costa Rica. 2008. Agrofor Am, 2008;46(1):57-64.
Galindo GA, Cabrera E, Vargas DM, Pabón HR, Cabrera KR, Yepes AP, Phillips JF, Navarrete DA, Duque AJ, García MC, Ordoñez MF. 2011. Estimación de la Biomasa Aérea usando Datos de Campo e información De Sensores Remotos. Instituto de Hidrología, Meteorología, y Estudios Ambientales. IDEAM. Bogotá D.C., Colombia. 52 p.
IGAC - Instituto Geográfico Agustín Codazzi. 2014. Estudio general de suelos y zonificación de tierras del Departamento de Casanare; escala 1:100.000. Bogotá, Colombia.
IPCC - Intergovernmental Panel on Climate Change. 2003. National Greenhouse Gas Inventories Programme Intergovernmental. Good Practice Guidance for Land Use Land-Use Change and Forestry. En IPCC Good Practice Guidance for LULUCF, Chapter 4: Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Panel on Climate Change. pp. 113-116. Hayama, Kanagawa, Japón.
IPCC - Intergovernmental panel on climate change). 2006. Pautas para los inventarios nacionales de gases de efecto invernadero. Preparado por el Programa Nacional de Inventarios de Gases de Efecto Invernadero, Eggleston H.S., Buendia L., Miwa K., Ngara T. y Tanabe K. (eds). Publicado por: IGES, Japan.
IPCC - Intergovernmental Panel on Climate Change. 2013. Cambio climático: bases físicas. Contribución del grupo de trabajo I al quinto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. IPCC, Ginebra, Suiza.
Lozano-Botache LA, Gómez-Aguiar FA, Valderrama-Chaves S. Estado de fragmentación de los bosques naturales en el norte del departamento del Tolima. Revista Tumbaga, 2011;6 (1):125-140.
Marín-Q MDP, Andrade-Castañeda HJ, Sandoval AP. Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Rev UDCA Actual Divulg Cient, 2016; 19(2):351-360.
Mena VE, Andrade-Castañeda HJ, Navarro, CM. Biomasa y carbono almacenado en sistemas agroforestales con café y en bosques secundarios en gradientes altitudinales en Costa Rica. Rev Agrofor Neotrop, 2011;1(1):1-20.
MADS - Dirección de Cambio Climático. Estrategia Colombiana de Desarrollo Bajo en Carbono (ECDBC). 2011 CONPES 3700. Bogotá, Colombia.
Onyekwelu JC. Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in south-western Nigeria. Biomass Bioenergy, 2004;26(1):39-46.
Ordóñez, JAB; Masera O. Captura de carbono ante el cambio climático. Madera y Bosques, 2001;7(1):3-12. Bogotá, Colombia.
Ortiz A, Riascos L, Somarriba E. Almacenamiento y tasas de fijación de biomasa y carbono en sistemas agroforestales de cacao (Theobroma cacao) y laurel (Cordia alliodora) Avances de Investigación. Agrofor Am, 2008;46(1):26-29.
Patiño S, Suárez LN, Andrade-Castañeda HJ, Segura-Madrigal MA. Captura de carbono en biomasa en plantaciones forestales y sistemas agroforestales en Armero-Guayabal, Tolima, Colombia. Rev Investig Agrar Ambient, 2018;9(2):121-133.
Pérez-Cordero LD, Kanninen M. Above-Ground Biomass of Tectona grandis Plantations in Costa Rica. J Trop For Sci, 2003;15(1):199-213.
Phillips JF, Duque AJ, Yepes AP, Cabrera KR, García MC, Navarrete DA, Álvarez E, Cárdenas D. 2011. Estimación de las reservas actuales (2010) de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia. Estratificación, alometría y métodos analíticos. Instituto de Hidrología, Meteorología, y Estudios Ambientales IDEAM-. Bogotá D.C., Colombia. 68 p.
Segura-Madrigal MA, Andrade-Castañeda HJ. ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Costa Rica. Agrofor Am, 2008;46(1):90-100.
Segura-Madrigal MA, Andrade-Castañeda HJ. Huella de carbono en cadenas productivas de café (coffea arabica l.) con diferentes estándares de certificación en Costa Rica. Costa Rica. Rev Luna azul, 2012;35(1):60-77.
Sierra CA, del Valle JI, Orrego SA. 2001. Ecuaciones de biomasa de raíces y sus tasas de acumulación en bosques sucesionales y maduros tropicales de Colombia. Simposio internacional Medición y monitoreo de la captura de carbono en ecosistemas forestales. Valdivia, Chile. 1-16.
WWF – Fondo Mundial para la Naturaleza. 2014. Estimación del carbono en la biomasa aérea de los bosques de la región de madre de Dios. Reporte. Lima, Perú.
Zanne AE, López G, Coomes DA, Llic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave, J. 2009. Global Wood Density Database.xls.
dc.relation.bitstream.none.fl_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/587/pdf
dc.relation.citationendpage.none.fl_str_mv 22
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 13
dc.relation.citationvolume.spa.fl_str_mv 24
dc.relation.ispartofjournal.spa.fl_str_mv Orinoquia
dc.rights.spa.fl_str_mv Orinoquia - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Orinoquia - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Llanos
dc.source.spa.fl_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/587
institution Universidad de los Llanos
bitstream.url.fl_str_mv https://repositorio.unillanos.edu.co/bitstreams/5571163c-b7d3-40fb-a3b4-61bd9183fe07/download
bitstream.checksum.fl_str_mv 6d7630210e2114b5b5722215507957b1
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Los Llanos
repository.mail.fl_str_mv repositorio@unillanos.edu.co
_version_ 1808490983767146496
spelling Carvajal-Agudelo, Blanca N.Andrade, Hernán J.2020-05-11T00:00:00Z2024-07-25T18:15:00Z2020-05-11T00:00:00Z2024-07-25T18:15:00Z2020-05-110121-3709https://repositorio.unillanos.edu.co/handle/001/397310.22579/20112629.5872011-2629https://doi.org/10.22579/20112629.587El cambio climático, ocasionado por el incremento en la concentración de gases efecto invernadero (GEI), genera alteraciones en el clima del planeta, aumentando la temperatura media global, lo que afecta patrones de precipitación. El área de estudio se ubicó en el Municipio de Yopal, corregimiento Tacarimena, compuesta por ocho veredas, la cual presenta clima cálido – húmedo con promedio de precipitación anual de 2270 mm; temporada seca de diciembre-marzo y lluviosa de abril-noviembre y alturas inferiores a 380 m. En concordancia con la necesidad del desarrollo bajo en carbono, la presente investigación estima la biomasa arriba y abajo del suelo y con éstas el carbono total almacenado en siete sistemas de uso del suelo: 1) plátano con sombrío (SAF+ plátano), 2) cacao con sombrío (Ca+S), 3) cítricos (C), 4) sistema silvopastoril bajo (SSPB), 5) sistema silvopastoril alto (SSPA), 6) bosques de galería (BG), y 7) mata de monte (MM). Se trabajó con diseño experimental completamente al azar con cinco repeticiones, para un total de 35 unidades experimentales. Se establecieron parcelas temporales de muestreo, tomando datos en 832 árboles de 66 especies botánicas. Se estimó la biomasa arriba del suelo mediante modelos alometricos, utilizando datos de campo (diámetro a la altura del pecho dap y la altura total). La biomasa abajo del suelo (raíces) se estimó empleando el modelo general para bosques tropicales. Todos los usos del suelo en estudio ofrecen el servicio ecosistémico de captura de carbono, siendo el BG y la MM los de mayor carbono, mientras que el SAF+plátano almacenó la menor cantidad de carbono. Potenciales cambios de sistemas productivos a sistemas forestales (BG y MM) implican una ganancia de carbono (adicionalidad), mientras que los cambios contrarios, es decir deforestación, representan emisiones de CO2. Estos resultados son claves para la orientación a políticas y proyectos de captura de carbono.Climate change caused by increased greenhouse gas (GHG) concentration causes alterations in the planet’s climate and increases the average global temperature, thereby affecting rainfall patterns. This study’s target area was the town of Tacarimena in the municipality of Yopal; it has eight rural areas. The area is located around 380 masl and has a warm, humid climate, a mean annual rainfall of 2,270 mm, a dry season between December and March and a rainy season from April to November. This research has estimated seven land-use systems’ above- and below-ground biomass and total carbon storage in line with a low-carbon development policy: 1) plantain with shade (SAF + plantain), 2) cocoa with shade (Ca + S), 3) citrus (C), 4) low-lying silvopastoral system (LSS), 5) high-lying silvopastoral system (HSS), 6) gallery forest (GF) and 7) bush (B). A completely randomised experimental design with five repetitions was used, giving 35 experimental units. Temporary sampling plots were established for taking information regarding 832 trees from 66 botanical species. Allometric models were used for estimating above-ground biomass using field data/measurements (diameter at breast height (DBH) and total height (TH). A general tropical forest model was used for estimating below-ground biomass. All the land-use systems being studied had the essential ecosystem service of carbon capture/CO2 sequestration where GF and B had the highest carbon storage; on the contrary, SAF + plantain stored the lowest amount of carbon. Changing from production to forestry systems (GF and B) implies increased carbon capture (additionality), whereas the opposite (i.e. deforestation) represents CO2 emission. Such results represent a key input for policy design and carbon capture projects.application/pdfspaUniversidad de los LlanosOrinoquia - 2020https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/587Biomassclimate changeallometric equationemissionmitigationecosystem serviceagroforestry systemBiomasacambio climáticoecuación alométricaemisiónmitigaciónsistema agroforestalBiomassamudança climáticaequação alométricaemissãomitigaçãosistema agroflorestalCaptura de carbono en biomasa de sistemas de uso del suelo, municipio de Yopal, Casanare, ColombiaCarbon capture regarding biomass from rural land use systems near the municipality of Yopal, Casanare, ColombiaArtículo de revistainfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/coar/version/c_970fb48d4fbd8a85Alcaldía de Yopal. 2013. Plan básico de ordenamiento territorial municipio de Yopal- Casanare, acuerdo 024/2013. Yopal, Colombia.Alvarado J, Andrade-Castañeda HJ, Segura-Madrigal MA. Almacenamiento de carbono orgánico en suelos en sistemas de producción de café (coffea arábica l.) en el municipio del Líbano, Tolima, Colombia. Rev Colomb For, 2013;16(1): 31-21.Álvarez E, Duque A, Saldarriaga J, Cabrera K, De las Salas G, Del Valle I, et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecol Manag, 2012;267(1):297-308.Andrade-Castañeda HJ. 1999. Dinámica productiva de sistemas silvopastoriles con Acacia mangium y Eucalyptus deglupta en el trópico húmedo. Tesis Mag. Sc. Turrialba, CR, CATIE. 70 p.Andrade-Castañeda HJ, Segura-Madrigal MA. ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes?, Costa Rica. Agrofor Am, 2008;46(1):89-96.Andrade-Castañeda HJ, Segura-Madrigal MA, Rojas-Patiño AS. Carbono orgánico del suelo en bosques riparios, arrozales y pasturas en piedras, Tolima, Colombia. Agron Mesoam, 2015;27(2):233-241.Andrade-Castañeda HJ, Segura-Madrigal MA, Canal-Daza DS, Huertas-Gonzales A, Mosos-Torres C. Composición florística y reservas de carbono en bosques ribereños en paisajes agropecuarios de la zona seca del Tolima, Colombia. Rev Biol Trop, 2017;65(4):1245-1260.Arce N, Ortiz-Malavasi E, Villalobos M, Cordero S. Existencias de carbono en charrales y sistemas agroforestales de cacao y banano de fincas indígenas bribri y cabécar de Talamanca Costa Rica. Agrofor Am, 2008;46(1):30-33.Burbano-Orjuela, H. El carbono orgánico del suelo y su papel frente al cambio climático. Rev Cienc Agr, 2018;35(1):82-96.Cairns MA, Brown S, Helmer EH, Baumgardner GA. Root biomass allocation in the word’s upland forests. Revista Oecología, 1997;111(1):1-11.Concha J, Alegre JC, Pocomucha V. Determinación de las reservas de carbono en la biomasa aérea de sistemas agroforestales de Theobroma cacao L. en el Departamento de San Martín, Perú. Departamento Académico de Biología, Universidad Nacional Agraria La Molina, Lima – Perú. Ecol apl, 2007;6(1-2):75-82.CORPORINOQUIA - Corporación Autónoma Regional de la Orinoquía. 2019. Actualización POMCA Plan de ordenación y manejo de la cuenca del Río Cravo Sur. Yopal, Colombia.El Congreso de Colombia. 2018. Ley No. 1931 de 2018 por la cual se establecen directrices para la gestión del cambio climático. Gestor normativo de la función pública. Publicado en el Diario Oficial No. 50.667 de 27 de julio de 2018. Bogotá, ColombiaFAO – Organización de las Naciones Unidas para la Alimentación y la Agricultura. 2002. Captura de carbono en los suelos para un mejor manejo de la tierra. Basado en el trabajo de Michel Robert. Institut national de recherche agronomique. París, Francia.Fonseca W, Alice F, Montero J, Toruño H, Leblanc H. Acumulación de biomasa y carbono en bosques secundarios y plantaciones forestales de (Vochysia guatemalensis e Hieronyma alchorneoides) en el Caribe de Costa Rica. 2008. Agrofor Am, 2008;46(1):57-64.Galindo GA, Cabrera E, Vargas DM, Pabón HR, Cabrera KR, Yepes AP, Phillips JF, Navarrete DA, Duque AJ, García MC, Ordoñez MF. 2011. Estimación de la Biomasa Aérea usando Datos de Campo e información De Sensores Remotos. Instituto de Hidrología, Meteorología, y Estudios Ambientales. IDEAM. Bogotá D.C., Colombia. 52 p.IGAC - Instituto Geográfico Agustín Codazzi. 2014. Estudio general de suelos y zonificación de tierras del Departamento de Casanare; escala 1:100.000. Bogotá, Colombia.IPCC - Intergovernmental Panel on Climate Change. 2003. National Greenhouse Gas Inventories Programme Intergovernmental. Good Practice Guidance for Land Use Land-Use Change and Forestry. En IPCC Good Practice Guidance for LULUCF, Chapter 4: Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Panel on Climate Change. pp. 113-116. Hayama, Kanagawa, Japón.IPCC - Intergovernmental panel on climate change). 2006. Pautas para los inventarios nacionales de gases de efecto invernadero. Preparado por el Programa Nacional de Inventarios de Gases de Efecto Invernadero, Eggleston H.S., Buendia L., Miwa K., Ngara T. y Tanabe K. (eds). Publicado por: IGES, Japan.IPCC - Intergovernmental Panel on Climate Change. 2013. Cambio climático: bases físicas. Contribución del grupo de trabajo I al quinto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. IPCC, Ginebra, Suiza.Lozano-Botache LA, Gómez-Aguiar FA, Valderrama-Chaves S. Estado de fragmentación de los bosques naturales en el norte del departamento del Tolima. Revista Tumbaga, 2011;6 (1):125-140.Marín-Q MDP, Andrade-Castañeda HJ, Sandoval AP. Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Rev UDCA Actual Divulg Cient, 2016; 19(2):351-360.Mena VE, Andrade-Castañeda HJ, Navarro, CM. Biomasa y carbono almacenado en sistemas agroforestales con café y en bosques secundarios en gradientes altitudinales en Costa Rica. Rev Agrofor Neotrop, 2011;1(1):1-20.MADS - Dirección de Cambio Climático. Estrategia Colombiana de Desarrollo Bajo en Carbono (ECDBC). 2011 CONPES 3700. Bogotá, Colombia.Onyekwelu JC. Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in south-western Nigeria. Biomass Bioenergy, 2004;26(1):39-46.Ordóñez, JAB; Masera O. Captura de carbono ante el cambio climático. Madera y Bosques, 2001;7(1):3-12. Bogotá, Colombia.Ortiz A, Riascos L, Somarriba E. Almacenamiento y tasas de fijación de biomasa y carbono en sistemas agroforestales de cacao (Theobroma cacao) y laurel (Cordia alliodora) Avances de Investigación. Agrofor Am, 2008;46(1):26-29.Patiño S, Suárez LN, Andrade-Castañeda HJ, Segura-Madrigal MA. Captura de carbono en biomasa en plantaciones forestales y sistemas agroforestales en Armero-Guayabal, Tolima, Colombia. Rev Investig Agrar Ambient, 2018;9(2):121-133.Pérez-Cordero LD, Kanninen M. Above-Ground Biomass of Tectona grandis Plantations in Costa Rica. J Trop For Sci, 2003;15(1):199-213.Phillips JF, Duque AJ, Yepes AP, Cabrera KR, García MC, Navarrete DA, Álvarez E, Cárdenas D. 2011. Estimación de las reservas actuales (2010) de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia. Estratificación, alometría y métodos analíticos. Instituto de Hidrología, Meteorología, y Estudios Ambientales IDEAM-. Bogotá D.C., Colombia. 68 p.Segura-Madrigal MA, Andrade-Castañeda HJ. ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Costa Rica. Agrofor Am, 2008;46(1):90-100.Segura-Madrigal MA, Andrade-Castañeda HJ. Huella de carbono en cadenas productivas de café (coffea arabica l.) con diferentes estándares de certificación en Costa Rica. Costa Rica. Rev Luna azul, 2012;35(1):60-77.Sierra CA, del Valle JI, Orrego SA. 2001. Ecuaciones de biomasa de raíces y sus tasas de acumulación en bosques sucesionales y maduros tropicales de Colombia. Simposio internacional Medición y monitoreo de la captura de carbono en ecosistemas forestales. Valdivia, Chile. 1-16.WWF – Fondo Mundial para la Naturaleza. 2014. Estimación del carbono en la biomasa aérea de los bosques de la región de madre de Dios. Reporte. Lima, Perú.Zanne AE, López G, Coomes DA, Llic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave, J. 2009. Global Wood Density Database.xls.https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/587/pdf2211324OrinoquiaPublicationOREORE.xmltext/xml2611https://repositorio.unillanos.edu.co/bitstreams/5571163c-b7d3-40fb-a3b4-61bd9183fe07/download6d7630210e2114b5b5722215507957b1MD51001/3973oai:repositorio.unillanos.edu.co:001/39732024-07-25 13:15:00.147https://creativecommons.org/licenses/by-nc-sa/4.0/Orinoquia - 2020metadata.onlyhttps://repositorio.unillanos.edu.coRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.co