Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil
El virus Chikungunya (CHIKV) es un virus de ARN monocatenario de sentido positivo que pertenece al género Alphavirus de la familia Togaviridae. Se transmite principalmente por mosquitos Aedes aegypti y albopictus. Su genoma codifica cuatro proteínas no estructurales (NSP 1-4) y tres proteínas estruc...
- Autores:
-
Villarreal Julio, Rafael Guillermo
Yepes-Blandón, Jonny Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Llanos
- Repositorio:
- Repositorio Digital Universidad de los LLanos
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unillanos.edu.co:001/4050
- Acceso en línea:
- https://repositorio.unillanos.edu.co/handle/001/4050
https://doi.org/10.22579/20112629.789
- Palabra clave:
- Emerging alphaviruses
Chikungunya fever
Genome
genoma sequencing
Vírus alfa emergentes
febre de Chikungunya
genoma
sequenciamento
Alfavirus emergentes
Fiebre Chikungunya
Genoma
Secuenciación
- Rights
- openAccess
- License
- Orinoquia - 2023
id |
Unillanos2_799109826b590c9eb0934a5c1e446532 |
---|---|
oai_identifier_str |
oai:repositorio.unillanos.edu.co:001/4050 |
network_acronym_str |
Unillanos2 |
network_name_str |
Repositorio Digital Universidad de los LLanos |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
dc.title.translated.eng.fl_str_mv |
Genetic characterization of the complete genome of a strain of Chikungunya virus circulating in Brazil |
title |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
spellingShingle |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil Emerging alphaviruses Chikungunya fever Genome genoma sequencing Vírus alfa emergentes febre de Chikungunya genoma sequenciamento Alfavirus emergentes Fiebre Chikungunya Genoma Secuenciación |
title_short |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
title_full |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
title_fullStr |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
title_full_unstemmed |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
title_sort |
Caracterización genética del genoma completo de una cepa del virus Chikungunya circulante en Brasil |
dc.creator.fl_str_mv |
Villarreal Julio, Rafael Guillermo Yepes-Blandón, Jonny Andrés |
dc.contributor.author.spa.fl_str_mv |
Villarreal Julio, Rafael Guillermo Yepes-Blandón, Jonny Andrés |
dc.subject.eng.fl_str_mv |
Emerging alphaviruses Chikungunya fever Genome genoma sequencing Vírus alfa emergentes febre de Chikungunya genoma sequenciamento |
topic |
Emerging alphaviruses Chikungunya fever Genome genoma sequencing Vírus alfa emergentes febre de Chikungunya genoma sequenciamento Alfavirus emergentes Fiebre Chikungunya Genoma Secuenciación |
dc.subject.spa.fl_str_mv |
Alfavirus emergentes Fiebre Chikungunya Genoma Secuenciación |
description |
El virus Chikungunya (CHIKV) es un virus de ARN monocatenario de sentido positivo que pertenece al género Alphavirus de la familia Togaviridae. Se transmite principalmente por mosquitos Aedes aegypti y albopictus. Su genoma codifica cuatro proteínas no estructurales (NSP 1-4) y tres proteínas estructurales (C, E1 y E2). Se han identificado cuatro linajes de este virus que son los linajes de África occidental, África oriental, central y sudafricana (ECSA), asiático (AL) y del océano Índico (IOL).1. CHIKV es un arbovirus endémico circulante en 51 países de las Américas. Las manifestaciones clínicas que se le atribuyen son; fiebre alta, erupción cutánea, mialgia y episodios de artralgia, que en consecuencia provocan dolor crónico y discapacidad, especialmente en articulaciones. La secuenciación del genoma completo del virus del Chikungunya es esencial para comprender su biología, evolución y propagación, y para desarrollar estrategias efectivas de prevención, diagnóstico y tratamiento. Esta información es fundamental para combatir la enfermedad y minimizar su impacto en la salud pública. Por esas razones se secuenció el genoma completo del virus Chikungunya br33, identificada en la ciudad nororiental de Recife, en el estado de Pernambuco, Brasil. El genoma tiene un tamaño de 11601 nucleótidos y fragmentos que codifican para dos poliproteínas.Se realizó un análisis filogénico que indica que la reciente cepa brasileña del CHIKV pertenece al linaje del este, centro y sur de África (ECSA). Dicha identificación filogenética es importante porque este genotipo en particular ha sido asociado a mayor daño y severidad clínica.Hasta 2016, el virus CHIKV estaba asociadas directamente a viajes y la transmisión era limitada. Posteriormente se produjo el brote más grande en el estado asociado con la introducción de un nuevo linaje ECSA como el indetificado en este estudio. Es muy probable que se produzcan nuevos brotes de CHIKV en un futuro cercano debido a la abundancia de vectores competentes en brazil y a una población susceptible, exponiendo a más de 11 millones de habitantes a un riesgo de infección cada vez mayor. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-04T00:00:00Z 2024-07-25T18:15:22Z |
dc.date.available.none.fl_str_mv |
2023-07-04T00:00:00Z 2024-07-25T18:15:22Z |
dc.date.issued.none.fl_str_mv |
2023-07-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0121-3709 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unillanos.edu.co/handle/001/4050 |
dc.identifier.doi.none.fl_str_mv |
10.22579/20112629.789 |
dc.identifier.eissn.none.fl_str_mv |
2011-2629 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.22579/20112629.789 |
identifier_str_mv |
0121-3709 10.22579/20112629.789 2011-2629 |
url |
https://repositorio.unillanos.edu.co/handle/001/4050 https://doi.org/10.22579/20112629.789 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.references.eng.fl_str_mv |
Alguridi HI, Alzahrani F, Altayb HN, Almalki S, Zaki E, Algarni S, Assiri A, Memish ZA. The First Genomic Characterization of the Chikungunya Virus in Saudi Arabia. Journal of Epidemiology and Global Health, 2023;13(2):191–199. https://doi.org/10.1007/s44197-023-00098-0 Ang SK, Lam S, Chu JJH. Propagation of Chikungunya Virus Using Mosquito Cells. Methods in Molecular Biology (Clifton, N.J.), 2016;1426:87–92. https://doi.org/10.1007/978-1-4939-3618-2_8 Carrillo MA, Cardenas R, Yañez J, Petzold M, Kroeger A. Risk of dengue, Zika, and Chikungunya transmission in the metropolitan area of Cucuta, Colombia: Cross-sectional analysis, baseline for a cluster-randomised controlled trial of a novel vector tool for water containers. BMC Public Health, 2023;23(1):1000. https://doi.org/10.1186/s12889-023-15893-4 Conteville LC, Zanella L, Marín MA, Filippis AMB, de Nogueira RMR, Vicente ACP, Mendonça MCL de. Phylogenetic analyses of Chikungunya virus among travelers in Rio de Janeiro, Brazil, 2014-2015. Memorias Do Instituto Oswaldo Cruz, 2016;111(5):347–348. https://doi.org/10.1590/0074-02760160004 Haas B, Papanicolaou A, Yassour M, Grabherr M, Blood P, Bowden J, Couger M, Eccles D, Li B, Lieber M, Macmanes M, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C, Regev A. De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis. Nature Protocols, 2013;8:1494–1512. https://doi.org/10.1038/nprot.2013.084 Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses, 2022;15(1):48. https://doi.org/10.3390/v15010048 Hartline DK, Cieslak MC, Castelfranco AM, Lieberman B, Roncalli V, Lenz PH. De novo transcriptomes of six calanoid copepods (Crustacea): A resource for the discovery of novel genes. Scientific Data, 2023;10(1):Article 1. https://doi.org/10.1038/s41597-023-02130-1 Kumar A, Mamidi P, Das I, Nayak TK, Kumar S, Chhatai J, Chattopadhyay S, Suryawanshi AR, Chattopadhyay S. A novel 2006 Indian outbreak strain of Chikungunya virus exhibits different pattern of infection as compared to prototype strain. PloS One, 2014;9(1):e85714. https://doi.org/10.1371/journal.pone.0085714 Lima-Camara TN. Emerging arboviruses and public health challenges in Brazil. Revista De Saude Publica, 2016;50(3):S0034-89102016000100600. https://doi.org/10.1590/S1518-8787.2016050006791 Miller JR, Koren S, Dilley KA, Puri V, Brown DM, Harkins DM, Thibaud-Nissen F, Rosen B, Chen XG, Tu Z, Sharakhov IV, Sharakhova MV, Sebra R, Stockwell TB, Bergman NH, Sutton GG, Phillippy AM, Piermarini PM, Shabman RS. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. GigaScience, 2018;7(3): gix135. https://doi.org/10.1093/gigascience/gix135 Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, Azevedo R. do S. da S, da Silva DEA, da Silva EVP, da Silva SP, Carvalho VL, Coelho GE, Cruz ACR, Rodrigues SG, da Silva Gonçalves-Vianez JL, Nunes BTD, Cardoso JF, Tesh RB, Hay SI, da Costa-Vasconcelos PF. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Medicine, 2015;13(1):102. https://doi.org/10.1186/s12916-015-0348-x Spicher T, Delitz M, Schneider AdeB, Wolfinger MT. Dynamic Molecular Epidemiology Reveals Lineage-Associated Single-Nucleotide Variants That Alter RNA Structure in Chikungunya Virus. Genes, 2021;12(2):239. https://doi.org/10.3390/genes12020239 Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC. Genome-scale phylogenetic analyses of Chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. Journal of Virology, 2010;84(13):6497–6504. https://doi.org/10.1128/JVI.01603-09 Xf T, Yh H, Yf S, Pf Z, Lz H, Hs LHP. The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects. BMC Genomics, 2023;24(1):https://doi.org/10.1186/s12864-023-09327-z Zerfu B, Kassa T, Legesse M. Epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection, and its trend in Ethiopia: A comprehensive literature review. Tropical Medicine and Health, 2023;51(1):11. https://doi.org/10.1186/s41182-023-00504-0 Huh JE, Han S, Yoon T. Data mining of coronavirus: SARS-CoV-2, SARS-CoV and MERS-CoV. BMC Research Notes, 2021;14(1):doi:10.1186/s13104-021-05561-4 |
dc.relation.bitstream.none.fl_str_mv |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/789/1312 |
dc.relation.citationendpage.none.fl_str_mv |
789 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
27 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Orinoquia |
dc.rights.eng.fl_str_mv |
Orinoquia - 2023 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Orinoquia - 2023 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Llanos |
dc.source.eng.fl_str_mv |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/789 |
institution |
Universidad de los Llanos |
bitstream.url.fl_str_mv |
https://repositorio.unillanos.edu.co/bitstreams/b6ffc8fe-ff2c-4bc7-a899-2ab46601dda7/download |
bitstream.checksum.fl_str_mv |
86845c02ba4730962e41b30e9c83a71f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Los Llanos |
repository.mail.fl_str_mv |
repositorio@unillanos.edu.co |
_version_ |
1812104616756641792 |
spelling |
Villarreal Julio, Rafael GuillermoYepes-Blandón, Jonny Andrés2023-07-04T00:00:00Z2024-07-25T18:15:22Z2023-07-04T00:00:00Z2024-07-25T18:15:22Z2023-07-040121-3709https://repositorio.unillanos.edu.co/handle/001/405010.22579/20112629.7892011-2629https://doi.org/10.22579/20112629.789El virus Chikungunya (CHIKV) es un virus de ARN monocatenario de sentido positivo que pertenece al género Alphavirus de la familia Togaviridae. Se transmite principalmente por mosquitos Aedes aegypti y albopictus. Su genoma codifica cuatro proteínas no estructurales (NSP 1-4) y tres proteínas estructurales (C, E1 y E2). Se han identificado cuatro linajes de este virus que son los linajes de África occidental, África oriental, central y sudafricana (ECSA), asiático (AL) y del océano Índico (IOL).1. CHIKV es un arbovirus endémico circulante en 51 países de las Américas. Las manifestaciones clínicas que se le atribuyen son; fiebre alta, erupción cutánea, mialgia y episodios de artralgia, que en consecuencia provocan dolor crónico y discapacidad, especialmente en articulaciones. La secuenciación del genoma completo del virus del Chikungunya es esencial para comprender su biología, evolución y propagación, y para desarrollar estrategias efectivas de prevención, diagnóstico y tratamiento. Esta información es fundamental para combatir la enfermedad y minimizar su impacto en la salud pública. Por esas razones se secuenció el genoma completo del virus Chikungunya br33, identificada en la ciudad nororiental de Recife, en el estado de Pernambuco, Brasil. El genoma tiene un tamaño de 11601 nucleótidos y fragmentos que codifican para dos poliproteínas.Se realizó un análisis filogénico que indica que la reciente cepa brasileña del CHIKV pertenece al linaje del este, centro y sur de África (ECSA). Dicha identificación filogenética es importante porque este genotipo en particular ha sido asociado a mayor daño y severidad clínica.Hasta 2016, el virus CHIKV estaba asociadas directamente a viajes y la transmisión era limitada. Posteriormente se produjo el brote más grande en el estado asociado con la introducción de un nuevo linaje ECSA como el indetificado en este estudio. Es muy probable que se produzcan nuevos brotes de CHIKV en un futuro cercano debido a la abundancia de vectores competentes en brazil y a una población susceptible, exponiendo a más de 11 millones de habitantes a un riesgo de infección cada vez mayor.The Chikungunya virus (CHIKV) is a single-stranded positive-sense RNA virus that belongs to the Alphavirus genus of the Togaviridae family. It is primarily transmitted by Aedes aegypti and albopictus mosquitoes. Its genome encodes four non-structural proteins (NSP 1-4) and three structural proteins (C, E1, and E2). Four lineages of this virus have been identified, namely the West African, East African, Central and South African (ECSA), Asian (AL), and Indian Ocean Lineages (IOL). CHIKV is an endemic arbovirus circulating in 51 countries in the Americas. Clinical manifestations attributed to it include high fever, rash, myalgia, and episodes of arthralgia, which subsequently lead to chronic pain and disability, especially in the joints. Sequencing the complete genome of the Chikungunya virus is essential to understand its biology, evolution, and spread and to develop effective strategies for prevention, diagnosis, and treatment. This information is crucial for combating the disease and minimizing its impact on public health. For these reasons, the complete genome of the Chikungunya virus strain br33, identified in the northeastern city of Recife, in the state of Pernambuco, Brazil, was sequenced. The genome has a size of 11,601 nucleotides and contains coding regions for two polyproteins. A phylogenetic analysis indicates that the recent Brazilian strain of CHIKV belongs to the East, Central, and South African lineage (ECSA). This phylogenetic identification is important because this particular genotype has been associated with greater damage and clinical severity. Until 2016, the CHIKV virus was directly associated with travel, and its transmission was limited. Subsequently, the largest outbreak occurred in the state associated with the introduction of a new ECSA lineage, as identified in this study. It is highly likely that new CHIKV outbreaks will occur in the near future due to the abundance of competent vectors in Brazil and a susceptible population, exposing more than 11 million inhabitants to an increasing risk of infection.application/pdfengUniversidad de los LlanosOrinoquia - 2023https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/789Emerging alphavirusesChikungunya feverGenomegenoma sequencingVírus alfa emergentesfebre de ChikungunyagenomasequenciamentoAlfavirus emergentesFiebre ChikungunyaGenomaSecuenciaciónCaracterización genética del genoma completo de una cepa del virus Chikungunya circulante en BrasilGenetic characterization of the complete genome of a strain of Chikungunya virus circulating in BrazilArtículo de revistainfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/coar/version/c_970fb48d4fbd8a85Alguridi HI, Alzahrani F, Altayb HN, Almalki S, Zaki E, Algarni S, Assiri A, Memish ZA. The First Genomic Characterization of the Chikungunya Virus in Saudi Arabia. Journal of Epidemiology and Global Health, 2023;13(2):191–199. https://doi.org/10.1007/s44197-023-00098-0Ang SK, Lam S, Chu JJH. Propagation of Chikungunya Virus Using Mosquito Cells. Methods in Molecular Biology (Clifton, N.J.), 2016;1426:87–92. https://doi.org/10.1007/978-1-4939-3618-2_8Carrillo MA, Cardenas R, Yañez J, Petzold M, Kroeger A. Risk of dengue, Zika, and Chikungunya transmission in the metropolitan area of Cucuta, Colombia: Cross-sectional analysis, baseline for a cluster-randomised controlled trial of a novel vector tool for water containers. BMC Public Health, 2023;23(1):1000. https://doi.org/10.1186/s12889-023-15893-4Conteville LC, Zanella L, Marín MA, Filippis AMB, de Nogueira RMR, Vicente ACP, Mendonça MCL de. Phylogenetic analyses of Chikungunya virus among travelers in Rio de Janeiro, Brazil, 2014-2015. Memorias Do Instituto Oswaldo Cruz, 2016;111(5):347–348. https://doi.org/10.1590/0074-02760160004Haas B, Papanicolaou A, Yassour M, Grabherr M, Blood P, Bowden J, Couger M, Eccles D, Li B, Lieber M, Macmanes M, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C, Regev A. De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis. Nature Protocols, 2013;8:1494–1512. https://doi.org/10.1038/nprot.2013.084Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses, 2022;15(1):48. https://doi.org/10.3390/v15010048Hartline DK, Cieslak MC, Castelfranco AM, Lieberman B, Roncalli V, Lenz PH. De novo transcriptomes of six calanoid copepods (Crustacea): A resource for the discovery of novel genes. Scientific Data, 2023;10(1):Article 1. https://doi.org/10.1038/s41597-023-02130-1Kumar A, Mamidi P, Das I, Nayak TK, Kumar S, Chhatai J, Chattopadhyay S, Suryawanshi AR, Chattopadhyay S. A novel 2006 Indian outbreak strain of Chikungunya virus exhibits different pattern of infection as compared to prototype strain. PloS One, 2014;9(1):e85714. https://doi.org/10.1371/journal.pone.0085714Lima-Camara TN. Emerging arboviruses and public health challenges in Brazil. Revista De Saude Publica, 2016;50(3):S0034-89102016000100600. https://doi.org/10.1590/S1518-8787.2016050006791Miller JR, Koren S, Dilley KA, Puri V, Brown DM, Harkins DM, Thibaud-Nissen F, Rosen B, Chen XG, Tu Z, Sharakhov IV, Sharakhova MV, Sebra R, Stockwell TB, Bergman NH, Sutton GG, Phillippy AM, Piermarini PM, Shabman RS. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. GigaScience, 2018;7(3): gix135. https://doi.org/10.1093/gigascience/gix135Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, Azevedo R. do S. da S, da Silva DEA, da Silva EVP, da Silva SP, Carvalho VL, Coelho GE, Cruz ACR, Rodrigues SG, da Silva Gonçalves-Vianez JL, Nunes BTD, Cardoso JF, Tesh RB, Hay SI, da Costa-Vasconcelos PF. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Medicine, 2015;13(1):102. https://doi.org/10.1186/s12916-015-0348-xSpicher T, Delitz M, Schneider AdeB, Wolfinger MT. Dynamic Molecular Epidemiology Reveals Lineage-Associated Single-Nucleotide Variants That Alter RNA Structure in Chikungunya Virus. Genes, 2021;12(2):239. https://doi.org/10.3390/genes12020239Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC. Genome-scale phylogenetic analyses of Chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. Journal of Virology, 2010;84(13):6497–6504. https://doi.org/10.1128/JVI.01603-09Xf T, Yh H, Yf S, Pf Z, Lz H, Hs LHP. The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects. BMC Genomics, 2023;24(1):https://doi.org/10.1186/s12864-023-09327-zZerfu B, Kassa T, Legesse M. Epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection, and its trend in Ethiopia: A comprehensive literature review. Tropical Medicine and Health, 2023;51(1):11. https://doi.org/10.1186/s41182-023-00504-0Huh JE, Han S, Yoon T. Data mining of coronavirus: SARS-CoV-2, SARS-CoV and MERS-CoV. BMC Research Notes, 2021;14(1):doi:10.1186/s13104-021-05561-4https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/789/1312789227OrinoquiaPublicationOREORE.xmltext/xml2637https://repositorio.unillanos.edu.co/bitstreams/b6ffc8fe-ff2c-4bc7-a899-2ab46601dda7/download86845c02ba4730962e41b30e9c83a71fMD51001/4050oai:repositorio.unillanos.edu.co:001/40502024-07-25 13:15:22.447https://creativecommons.org/licenses/by-nc-nd/4.0Orinoquia - 2023metadata.onlyhttps://repositorio.unillanos.edu.coRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.co |