Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero
The conversion of rates or equivalence of interest rates is the initial and fundamental basis for the proper understanding of the topics of financial mathematics. Traditional methods are all effective (they achieve their objective), but at the same time they are very complex and often not as efficie...
- Autores:
-
Triana Lozano, Milton Hernando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Llanos
- Repositorio:
- Repositorio Digital Universidad de los LLanos
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unillanos.edu.co:001/1711
- Acceso en línea:
- https://repositorio.unillanos.edu.co/handle/001/1711
- Palabra clave:
- INTERES
TASA DE INTERES
ENSEÑANZA
APRENDIZAJE
OPERACIONES BANCARIAS
Revista GEON
Gestión
- Rights
- closedAccess
- License
- Universidad de los Llanos, 2020
id |
Unillanos2_72acb35001a1e1aa66f2924ee367d30a |
---|---|
oai_identifier_str |
oai:repositorio.unillanos.edu.co:001/1711 |
network_acronym_str |
Unillanos2 |
network_name_str |
Repositorio Digital Universidad de los LLanos |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
dc.title.alternative.spa.fl_str_mv |
Novel teaching tool for the conversion of financial interest rates |
title |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
spellingShingle |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero INTERES TASA DE INTERES ENSEÑANZA APRENDIZAJE OPERACIONES BANCARIAS Revista GEON Gestión |
title_short |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
title_full |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
title_fullStr |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
title_full_unstemmed |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
title_sort |
Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés Financiero |
dc.creator.fl_str_mv |
Triana Lozano, Milton Hernando |
dc.contributor.author.spa.fl_str_mv |
Triana Lozano, Milton Hernando |
dc.subject.proposal.spa.fl_str_mv |
INTERES TASA DE INTERES ENSEÑANZA APRENDIZAJE OPERACIONES BANCARIAS Revista GEON |
topic |
INTERES TASA DE INTERES ENSEÑANZA APRENDIZAJE OPERACIONES BANCARIAS Revista GEON Gestión |
dc.subject.tee.spa.fl_str_mv |
Gestión |
description |
The conversion of rates or equivalence of interest rates is the initial and fundamental basis for the proper understanding of the topics of financial mathematics. Traditional methods are all effective (they achieve their objective), but at the same time they are very complex and often not as efficient in the teaching-learning process. Initially, it was necessary to carry out a documentary work with multiple bibliographic consultations to understand the structure and operation of the traditional methods for the conversion of rates. A tool, called the “MILHER Matrix” was built, which facilitates the work of conversion of rates for its practicality and efficiency, for which an initial experimental phase was taken and the quantitative method was used, making approchaes with key practical exercises, both teachers and students of financial mathematics. The results have been positive, since the “MILHER Matrix” contrasted with the traditional methods in terms of practicality is less complex and friendlier in its use, and in terms of efficiency it facilitates a very interesting time saving of the resource, achieving identical and similar results that with the traditional methods used for the same purpose. It is expected to continue applying this innovative educational tool with the university academic community inside and outside the country. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-26T01:08:21Z |
dc.date.available.spa.fl_str_mv |
2020-07-26T01:08:21Z |
dc.date.issued.spa.fl_str_mv |
2020-01-20 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Collection |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Triana Lozano, M. (2020). Novedosa herramienta didáctica para la conversión de tasas de interés financiero. Revista GEON (Gestión, Organizaciones Y Negocios), 7(1), 49-69. https://doi.org/10.22579/23463910.188 |
dc.identifier.issn.spa.fl_str_mv |
2346-3910 |
dc.identifier.uri.spa.fl_str_mv |
https://repositorio.unillanos.edu.co/handle/001/1711 |
dc.identifier.doi.spa.fl_str_mv |
10.22579/23463910.188 |
identifier_str_mv |
Triana Lozano, M. (2020). Novedosa herramienta didáctica para la conversión de tasas de interés financiero. Revista GEON (Gestión, Organizaciones Y Negocios), 7(1), 49-69. https://doi.org/10.22579/23463910.188 2346-3910 10.22579/23463910.188 |
url |
https://repositorio.unillanos.edu.co/handle/001/1711 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Revista GEON |
dc.relation.ispartofseries.spa.fl_str_mv |
Vol;7 No;1 |
dc.relation.references.spa.fl_str_mv |
Agudelo Fernández, D. A. (2019). Las matemáticas financieras. Conceptos y aplicaciones. Bogotá D.C.: Editorial Pearson Educación. Baca Currea, G. (2007). Ingeniería Económica. Bogotá D.C.: Fondo Educativo Panamericano. Blank, L., & Tarquin, A. (2006). Ingeniería económica. México D.F.: Mc Graw Hill Interamericana Editores S.A. de C.V. Buenaventura Vera, G. (2018). Fundamentos de matemáticas financiera. Bogotá D.C.: ECOE Ediciones. Cano Morales, A. M. (2017). Matemáticas financieras, aplicado a ciencias económicas, administrativas y contables. Bogotá D.C.: Ediciones de la U. Carrasco Manchado, A. I., & Rábade Obradó, M. I. (2008). Pecar en la Edad Media. Madrid (España): Silex Ediciones. Obtenido de https://books.google.com.co/books?id=iFUWdwjGeDMC&lpg=PA193&dq=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20antigua&hl=es&pg=PA193#v=onepage&q=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20antigua&f=false Diaz Mata, A., & Aguilera Gómez, V. M. (2013). Matemáticas financieras. México D.F.: Mc Graw Hill Interamericana Editores S.A. de C.V. Frare, M. J. (2005). La generación del interés desde el modelo matemático. Revista de la Facultad de ciencias económicas, 82-101. Gutiérrez Carmona, J. (2012). Matemáticas financieras. Bogotá D.C.: ECOE Ediciones. Hernandez Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. d. (2010). Metodología de la investigación. México D.F.: McGraw Hill / Interamericana Editores S.A. de C.V. Herrera Aráuz, D. (2017). Matemática financiera. Bogotá D.C.: Alfaomega Colombiana S.A. Jiménez Muñoz, F. J. (2010). La Usura. Evolución histórica y patología de los intereses. Madrid (España): Dikynson S.L. Obtenido de https://books.google.com.co/books?id=g_Tb3ugx8jQC&lpg=PA32&dq=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20moderna&hl=es&pg=PA42#v=onepage&q=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20moderna&f=false Lezama Vásquez, J. (2006). Matemáticas financieras II. Chimbote (Perú): Sistema de Educación Abierta - ULADECH. Margaria, O., & Bravino, L. (2014). Matemática financiera. Montería (Colombia): Universidad Nacional de Córdoba. Meza Orozco, J. d. (2017). Matemáticas financieras aplicadas. Bogotá D.C.: ECOE Ediciones. Mira Navarro, J. C. (2019). Introducción a las operaciones financieras. Madrid (España). Morales Castaño, C. M. (2014). Finanzas del Proyecto. Introducción a las matemáticas financieras. Medellín Colombia: Centro Editorial Esumer. Moreno Gómez, N. E., & Rueda Forero, P. (1998). Matemáticas financieras. Bucaramanga (Colombia): Universidad Industrial de Santander, UIS. Pérez Paredes, A., Cruz de los Ángeles, J. A., & Gómez Pulido, A. M. (2018). Situación actual de la Educación financiera en los Jóvenes Universitarios de Villavicencio Colombia. Revista GEON, 5(2), 115-130. Obtenido de http://revistageon.unillanos.edu.co/index.php/geon/article/view/81/70 Ramírez Mora, J. M., & Martínez Cárdenas, É. E. (2016). Matemática financiera. Interés, tasas y equivalencias. Bogotá D.C.: Editorial TRILLAS de Colombia Ltda. Reichardt, C. S., & Cook, T. D. (1986). Métodos cualtitativos y cuantitativos en investigación evaluativa. Madrid: Ediciones Morata, S. L. Ramírez Mora, J. M., & Martínez Cárdenas, É. E. (2016). Matemática financiera. Interés, tasas y equivalencias. Bogotá D.C.: Editorial TRILLAS de Colombia Ltda. Reichardt, C. S., & Cook, T. D. (1986). Métodos cualtitativos y cuantitativos en investigación evaluativa. Madrid: Ediciones Morata, S. L. Rosillo C., J. S. (2009). Matemáticas financieras para decisiones de inversión y financiación. Bogotá D.C.: Cengage Learning Editores S.A. de C. V. Torres Flórez, D. (2019). El entrenamiento del colaborador como estrategia de mejoramiento continuo. GEON Revista, 6(1), 4-9. Obtenido de https://doi.org/10.22579/23463910.149 Vélez Pareja, I. (2006). Decisiones de inversión para valoración financiera de proyectos y empresas. Bogotá D.C.: Pontificia Universidad Javeriana. Villalobos Pérez, J. L. (2017). Matemáticas financieras. Bogotá D.C.: Editorial Pearson Educación. |
dc.rights.spa.fl_str_mv |
Universidad de los Llanos, 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Universidad de los Llanos, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Revista GEON (Gestión, Organizaciones y Negocios) |
dc.source.spa.fl_str_mv |
https://doi.org/10.22579/23463910.188 http://revistageon.unillanos.edu.co/index.php/geon/article/view/188 |
institution |
Universidad de los Llanos |
bitstream.url.fl_str_mv |
https://dspace7-unillanos.metacatalogo.org/bitstreams/ed1b5d09-7807-411e-a9c8-8826a42d38d2/download https://dspace7-unillanos.metacatalogo.org/bitstreams/dd0f6dff-fd4c-458b-aecc-2d391d09cda8/download https://dspace7-unillanos.metacatalogo.org/bitstreams/2508aabf-5d50-4128-9f36-b43545993d71/download https://dspace7-unillanos.metacatalogo.org/bitstreams/6ab260c7-9805-4d6b-bff0-31475e8436fe/download |
bitstream.checksum.fl_str_mv |
ca12398a07728d5f2ad717c0bd8ad823 f661acf14bedbf9f5d13897a0387e751 948a1a2424f3f249df4f1190c2eaed1e 117abb106764ee0d09c8fdeebad04130 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Los Llanos |
repository.mail.fl_str_mv |
repositorio@unillanos.edu.co |
_version_ |
1812104623567142912 |
spelling |
Triana Lozano, Milton Hernando8859af2422578307cfb24124413a1930-12020-07-26T01:08:21Z2020-07-26T01:08:21Z2020-01-20Triana Lozano, M. (2020). Novedosa herramienta didáctica para la conversión de tasas de interés financiero. Revista GEON (Gestión, Organizaciones Y Negocios), 7(1), 49-69. https://doi.org/10.22579/23463910.1882346-3910https://repositorio.unillanos.edu.co/handle/001/171110.22579/23463910.188The conversion of rates or equivalence of interest rates is the initial and fundamental basis for the proper understanding of the topics of financial mathematics. Traditional methods are all effective (they achieve their objective), but at the same time they are very complex and often not as efficient in the teaching-learning process. Initially, it was necessary to carry out a documentary work with multiple bibliographic consultations to understand the structure and operation of the traditional methods for the conversion of rates. A tool, called the “MILHER Matrix” was built, which facilitates the work of conversion of rates for its practicality and efficiency, for which an initial experimental phase was taken and the quantitative method was used, making approchaes with key practical exercises, both teachers and students of financial mathematics. The results have been positive, since the “MILHER Matrix” contrasted with the traditional methods in terms of practicality is less complex and friendlier in its use, and in terms of efficiency it facilitates a very interesting time saving of the resource, achieving identical and similar results that with the traditional methods used for the same purpose. It is expected to continue applying this innovative educational tool with the university academic community inside and outside the country.La conversión de tasas o equivalencia de tasas de interés es la base inicial y fundamental para la adecuada comprensión de los temas de matemáticas financieras. Los métodos tradicionales son todos eficaces (consiguen su objetivo), pero al mismo tiempo son bien complejos y muchas veces no son tan eficientes en el proceso de enseñanza-aprendizaje. Se construyó una herramienta, denominada la “Matriz MILHER”, que facilita la labor de conversión de tasas por su practicidad y eficiencia, para lo cual se cursó una fase experimental inicial y se acudió al método cuantitativo, realizando planteamientos con ejercicios prácticos claves, tanto a docentes como a estudiantes de matemáticas financieras. Los resultados han sido positivos, ya que la “Matriz MILHER” contrastada con los métodos tradiciones en términos de practicidad es menos compleja y más amigable en su uso, y en términos de eficiencia facilita un ahorro del recurso tiempo bien interesante, logrando idénticos y similares resultados que con los métodos tradicionales empleados para el mismo fin. Se espera poder seguir replicando esta novedosa herramienta educativa con la comunidad académica universitaria dentro y fuera del país.application/pdfspaRevista GEON (Gestión, Organizaciones y Negocios)Revista GEONVol;7No;1Agudelo Fernández, D. A. (2019). Las matemáticas financieras. Conceptos y aplicaciones. Bogotá D.C.: Editorial Pearson Educación.Baca Currea, G. (2007). Ingeniería Económica. Bogotá D.C.: Fondo Educativo Panamericano.Blank, L., & Tarquin, A. (2006). Ingeniería económica. México D.F.: Mc Graw Hill Interamericana Editores S.A. de C.V.Buenaventura Vera, G. (2018). Fundamentos de matemáticas financiera. Bogotá D.C.: ECOE Ediciones.Cano Morales, A. M. (2017). Matemáticas financieras, aplicado a ciencias económicas, administrativas y contables. Bogotá D.C.: Ediciones de la U.Carrasco Manchado, A. I., & Rábade Obradó, M. I. (2008). Pecar en la Edad Media. Madrid (España): Silex Ediciones. Obtenido de https://books.google.com.co/books?id=iFUWdwjGeDMC&lpg=PA193&dq=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20antigua&hl=es&pg=PA193#v=onepage&q=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20antigua&f=falseDiaz Mata, A., & Aguilera Gómez, V. M. (2013). Matemáticas financieras. México D.F.: Mc Graw Hill Interamericana Editores S.A. de C.V.Frare, M. J. (2005). La generación del interés desde el modelo matemático. Revista de la Facultad de ciencias económicas, 82-101.Gutiérrez Carmona, J. (2012). Matemáticas financieras. Bogotá D.C.: ECOE Ediciones.Hernandez Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. d. (2010). Metodología de la investigación. México D.F.: McGraw Hill / Interamericana Editores S.A. de C.V.Herrera Aráuz, D. (2017). Matemática financiera. Bogotá D.C.: Alfaomega Colombiana S.A.Jiménez Muñoz, F. J. (2010). La Usura. Evolución histórica y patología de los intereses. Madrid (España): Dikynson S.L. Obtenido de https://books.google.com.co/books?id=g_Tb3ugx8jQC&lpg=PA32&dq=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20moderna&hl=es&pg=PA42#v=onepage&q=el%20inter%C3%A9s%20de%20los%20pr%C3%A9stamos%20en%20la%20edad%20moderna&f=falseLezama Vásquez, J. (2006). Matemáticas financieras II. Chimbote (Perú): Sistema de Educación Abierta - ULADECH.Margaria, O., & Bravino, L. (2014). Matemática financiera. Montería (Colombia): Universidad Nacional de Córdoba.Meza Orozco, J. d. (2017). Matemáticas financieras aplicadas. Bogotá D.C.: ECOE Ediciones.Mira Navarro, J. C. (2019). Introducción a las operaciones financieras. Madrid (España).Morales Castaño, C. M. (2014). Finanzas del Proyecto. Introducción a las matemáticas financieras. Medellín Colombia: Centro Editorial Esumer.Moreno Gómez, N. E., & Rueda Forero, P. (1998). Matemáticas financieras. Bucaramanga (Colombia): Universidad Industrial de Santander, UIS.Pérez Paredes, A., Cruz de los Ángeles, J. A., & Gómez Pulido, A. M. (2018). Situación actual de la Educación financiera en los Jóvenes Universitarios de Villavicencio Colombia. Revista GEON, 5(2), 115-130. Obtenido de http://revistageon.unillanos.edu.co/index.php/geon/article/view/81/70Ramírez Mora, J. M., & Martínez Cárdenas, É. E. (2016). Matemática financiera. Interés, tasas y equivalencias. Bogotá D.C.: Editorial TRILLAS de Colombia Ltda.Reichardt, C. S., & Cook, T. D. (1986). Métodos cualtitativos y cuantitativos en investigación evaluativa. Madrid: Ediciones Morata, S. L.Ramírez Mora, J. M., & Martínez Cárdenas, É. E. (2016). Matemática financiera. Interés, tasas y equivalencias. Bogotá D.C.: Editorial TRILLAS de Colombia Ltda.Reichardt, C. S., & Cook, T. D. (1986). Métodos cualtitativos y cuantitativos en investigación evaluativa. Madrid: Ediciones Morata, S. L.Rosillo C., J. S. (2009). Matemáticas financieras para decisiones de inversión y financiación. Bogotá D.C.: Cengage Learning Editores S.A. de C. V.Torres Flórez, D. (2019). El entrenamiento del colaborador como estrategia de mejoramiento continuo. GEON Revista, 6(1), 4-9. Obtenido de https://doi.org/10.22579/23463910.149Vélez Pareja, I. (2006). Decisiones de inversión para valoración financiera de proyectos y empresas. Bogotá D.C.: Pontificia Universidad Javeriana.Villalobos Pérez, J. L. (2017). Matemáticas financieras. Bogotá D.C.: Editorial Pearson Educación.Universidad de los Llanos, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbhttps://doi.org/10.22579/23463910.188http://revistageon.unillanos.edu.co/index.php/geon/article/view/188Novedosa Herramienta Didáctica para la Conversión de Tasas de Interés FinancieroNovel teaching tool for the conversion of financial interest ratesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Collectionhttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85INTERESTASA DE INTERESENSEÑANZAAPRENDIZAJEOPERACIONES BANCARIASRevista GEONGestiónPublicationORIGINAL04 NOVEDOSA HERRAMIENTA DIDACTICA PARA LA CONVERSION DE TASAS DE INTERES FINANCIERO REVISTA GEON.pdf04 NOVEDOSA HERRAMIENTA DIDACTICA PARA LA CONVERSION DE TASAS DE INTERES FINANCIERO REVISTA GEON.pdfPDFapplication/pdf1280529https://dspace7-unillanos.metacatalogo.org/bitstreams/ed1b5d09-7807-411e-a9c8-8826a42d38d2/downloadca12398a07728d5f2ad717c0bd8ad823MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814775https://dspace7-unillanos.metacatalogo.org/bitstreams/dd0f6dff-fd4c-458b-aecc-2d391d09cda8/downloadf661acf14bedbf9f5d13897a0387e751MD52TEXT04 NOVEDOSA HERRAMIENTA DIDACTICA PARA LA CONVERSION DE TASAS DE INTERES FINANCIERO REVISTA GEON.pdf.txt04 NOVEDOSA HERRAMIENTA DIDACTICA PARA LA CONVERSION DE TASAS DE INTERES FINANCIERO REVISTA GEON.pdf.txtExtracted texttext/plain52857https://dspace7-unillanos.metacatalogo.org/bitstreams/2508aabf-5d50-4128-9f36-b43545993d71/download948a1a2424f3f249df4f1190c2eaed1eMD55THUMBNAIL04 NOVEDOSA HERRAMIENTA DIDACTICA PARA LA CONVERSION DE TASAS DE INTERES FINANCIERO REVISTA GEON.pdf.jpg04 NOVEDOSA HERRAMIENTA DIDACTICA PARA LA CONVERSION DE TASAS DE INTERES FINANCIERO REVISTA GEON.pdf.jpgGenerated Thumbnailimage/jpeg13046https://dspace7-unillanos.metacatalogo.org/bitstreams/6ab260c7-9805-4d6b-bff0-31475e8436fe/download117abb106764ee0d09c8fdeebad04130MD56001/1711oai:dspace7-unillanos.metacatalogo.org:001/17112024-04-17 16:38:29.723https://creativecommons.org/licenses/by-nc-nd/4.0/Universidad de los Llanos, 2020open.accesshttps://dspace7-unillanos.metacatalogo.orgRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KNC4gUmVzdHJpY2Npb25lcy4KTGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6CmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KYi4JVXN0ZWQgbm8gcHVlZGUgZWplcmNlciBuaW5ndW5vIGRlIGxvcyBkZXJlY2hvcyBxdWUgbGUgaGFuIHNpZG8gb3RvcmdhZG9zIGVuIGxhIFNlY2Npw7NuIDMgcHJlY2VkZW50ZSBkZSBtb2RvIHF1ZSBlc3TDqW4gcHJpbmNpcGFsbWVudGUgZGVzdGluYWRvcyBvIGRpcmVjdGFtZW50ZSBkaXJpZ2lkb3MgYSBjb25zZWd1aXIgdW4gcHJvdmVjaG8gY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuIEVsIGludGVyY2FtYmlvIGRlIGxhIE9icmEgcG9yIG90cmFzIG9icmFzIHByb3RlZ2lkYXMgcG9yIGRlcmVjaG9zIGRlIGF1dG9yLCB5YSBzZWEgYSB0cmF2w6lzIGRlIHVuIHNpc3RlbWEgcGFyYSBjb21wYXJ0aXIgYXJjaGl2b3MgZGlnaXRhbGVzIChkaWdpdGFsIGZpbGUtc2hhcmluZykgbyBkZSBjdWFscXVpZXIgb3RyYSBtYW5lcmEgbm8gc2Vyw6EgY29uc2lkZXJhZG8gY29tbyBlc3RhciBkZXN0aW5hZG8gcHJpbmNpcGFsbWVudGUgbyBkaXJpZ2lkbyBkaXJlY3RhbWVudGUgYSBjb25zZWd1aXIgdW4gcHJvdmVjaG8gY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEsIHNpZW1wcmUgcXVlIG5vIHNlIHJlYWxpY2UgdW4gcGFnbyBtZWRpYW50ZSB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgZW4gcmVsYWNpw7NuIGNvbiBlbCBpbnRlcmNhbWJpbyBkZSBvYnJhcyBwcm90ZWdpZGFzIHBvciBlbCBkZXJlY2hvIGRlIGF1dG9yLgpjLglTaSB1c3RlZCBkaXN0cmlidXllLCBleGhpYmUgcMO6YmxpY2FtZW50ZSwgZWplY3V0YSBww7pibGljYW1lbnRlIG8gZWplY3V0YSBww7pibGljYW1lbnRlIGVuIGZvcm1hIGRpZ2l0YWwgbGEgT2JyYSBvIGN1YWxxdWllciBPYnJhIERlcml2YWRhIHUgT2JyYSBDb2xlY3RpdmEsIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0YSB0b2RhIGxhIGluZm9ybWFjacOzbiBkZSBkZXJlY2hvIGRlIGF1dG9yIGRlIGxhIE9icmEgeSBwcm9wb3JjaW9uYXIsIGRlIGZvcm1hIHJhem9uYWJsZSBzZWfDum4gZWwgbWVkaW8gbyBtYW5lcmEgcXVlIFVzdGVkIGVzdMOpIHV0aWxpemFuZG86IChpKSBlbCBub21icmUgZGVsIEF1dG9yIE9yaWdpbmFsIHNpIGVzdMOhIHByb3Zpc3RvIChvIHNldWTDs25pbW8sIHNpIGZ1ZXJlIGFwbGljYWJsZSksIHkvbyAoaWkpIGVsIG5vbWJyZSBkZSBsYSBwYXJ0ZSBvIGxhcyBwYXJ0ZXMgcXVlIGVsIEF1dG9yIE9yaWdpbmFsIHkvbyBlbCBMaWNlbmNpYW50ZSBodWJpZXJlbiBkZXNpZ25hZG8gcGFyYSBsYSBhdHJpYnVjacOzbiAodi5nLiwgdW4gaW5zdGl0dXRvIHBhdHJvY2luYWRvciwgZWRpdG9yaWFsLCBwdWJsaWNhY2nDs24pIGVuIGxhIGluZm9ybWFjacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIExpY2VuY2lhbnRlLCB0w6lybWlub3MgZGUgc2VydmljaW9zIG8gZGUgb3RyYXMgZm9ybWFzIHJhem9uYWJsZXM7IGVsIHTDrXR1bG8gZGUgbGEgT2JyYSBzaSBlc3TDoSBwcm92aXN0bzsgZW4gbGEgbWVkaWRhIGRlIGxvIHJhem9uYWJsZW1lbnRlIGZhY3RpYmxlIHksIHNpIGVzdMOhIHByb3Zpc3RvLCBlbCBJZGVudGlmaWNhZG9yIFVuaWZvcm1lIGRlIFJlY3Vyc29zIChVbmlmb3JtIFJlc291cmNlIElkZW50aWZpZXIpIHF1ZSBlbCBMaWNlbmNpYW50ZSBlc3BlY2lmaWNhIHBhcmEgc2VyIGFzb2NpYWRvIGNvbiBsYSBPYnJhLCBzYWx2byBxdWUgdGFsIFVSSSBubyBzZSByZWZpZXJhIGEgbGEgbm90YSBzb2JyZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgbyBhIGxhIGluZm9ybWFjacOzbiBzb2JyZSBlbCBsaWNlbmNpYW1pZW50byBkZSBsYSBPYnJhOyB5IGVuIGVsIGNhc28gZGUgdW5hIE9icmEgRGVyaXZhZGEsIGF0cmlidWlyIGVsIGNyw6lkaXRvIGlkZW50aWZpY2FuZG8gZWwgdXNvIGRlIGxhIE9icmEgZW4gbGEgT2JyYSBEZXJpdmFkYSAodi5nLiwgIlRyYWR1Y2Npw7NuIEZyYW5jZXNhIGRlIGxhIE9icmEgZGVsIEF1dG9yIE9yaWdpbmFsLCIgbyAiR3Vpw7NuIENpbmVtYXRvZ3LDoWZpY28gYmFzYWRvIGVuIGxhIE9icmEgb3JpZ2luYWwgZGVsIEF1dG9yIE9yaWdpbmFsIikuIFRhbCBjcsOpZGl0byBwdWVkZSBzZXIgaW1wbGVtZW50YWRvIGRlIGN1YWxxdWllciBmb3JtYSByYXpvbmFibGU7IGVuIGVsIGNhc28sIHNpbiBlbWJhcmdvLCBkZSBPYnJhcyBEZXJpdmFkYXMgdSBPYnJhcyBDb2xlY3RpdmFzLCB0YWwgY3LDqWRpdG8gYXBhcmVjZXLDoSwgY29tbyBtw61uaW1vLCBkb25kZSBhcGFyZWNlIGVsIGNyw6lkaXRvIGRlIGN1YWxxdWllciBvdHJvIGF1dG9yIGNvbXBhcmFibGUgeSBkZSB1bmEgbWFuZXJhLCBhbCBtZW5vcywgdGFuIGRlc3RhY2FkYSBjb21vIGVsIGNyw6lkaXRvIGRlIG90cm8gYXV0b3IgY29tcGFyYWJsZS4KZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CmkuCVJlZ2Fsw61hcyBwb3IgaW50ZXJwcmV0YWNpw7NuIHkgZWplY3VjacOzbiBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgYXV0b3JpemFyIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSB5IGRlIHJlY29sZWN0YXIsIHNlYSBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBTQVlDTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvIFdlYmNhc3QpIGxpY2VuY2lhZGEgYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLCBzaSBsYSBpbnRlcnByZXRhY2nDs24gbyBlamVjdWNpw7NuIGRlIGxhIG9icmEgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIG9yaWVudGFkYSBwb3IgbyBkaXJpZ2lkYSBhIGxhIG9idGVuY2nDs24gZGUgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCmlpLglSZWdhbMOtYXMgcG9yIEZvbm9ncmFtYXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFjaW5wcm8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgoK |