Semigrupos cuánticos de Markov: pasado, presente y futuro
Los semigrupos cuánticos de Markov (SCM) son una extensión no conmutativa de los semigrupos de Markov definidos en probabilidad clásica. Ellos representan una evolución sin memoria de un sistema microscopico acorde a las leyes de la física cuántica y a la estructura de los sistemas cuánticos abierto...
- Autores:
-
Agredo Echeverry, Julián Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Llanos
- Repositorio:
- Repositorio Digital Universidad de los LLanos
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unillanos.edu.co:001/2649
- Acceso en línea:
- https://repositorio.unillanos.edu.co/handle/001/2649
https://doi.org/10.22579/20112629.427
- Palabra clave:
- Editorial
Editorial
- Rights
- openAccess
- License
- Orinoquia - 2019
id |
Unillanos2_661331e2dcb06de9e79e959f8255f850 |
---|---|
oai_identifier_str |
oai:repositorio.unillanos.edu.co:001/2649 |
network_acronym_str |
Unillanos2 |
network_name_str |
Repositorio Digital Universidad de los LLanos |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
dc.title.translated.eng.fl_str_mv |
Quantum Markov semigroups (QMS): past, present and future panorama |
title |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
spellingShingle |
Semigrupos cuánticos de Markov: pasado, presente y futuro Editorial Editorial |
title_short |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
title_full |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
title_fullStr |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
title_full_unstemmed |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
title_sort |
Semigrupos cuánticos de Markov: pasado, presente y futuro |
dc.creator.fl_str_mv |
Agredo Echeverry, Julián Andrés |
dc.contributor.author.spa.fl_str_mv |
Agredo Echeverry, Julián Andrés |
dc.subject.eng.fl_str_mv |
Editorial |
topic |
Editorial Editorial |
dc.subject.spa.fl_str_mv |
Editorial |
description |
Los semigrupos cuánticos de Markov (SCM) son una extensión no conmutativa de los semigrupos de Markov definidos en probabilidad clásica. Ellos representan una evolución sin memoria de un sistema microscopico acorde a las leyes de la física cuántica y a la estructura de los sistemas cuánticos abiertos. Esto significa que la dinámica reducida del sistema principal es descrita por un espacio de Hilbert separable complejo ???? por medio de un semigrupo ????=(????t)t≥0, el cual actúa sobre una subálgebra de von Neumann ???? del álgebra ????(????) de todos los operadores lineales acotados definidos en ????. Por simplicidad, algunas veces asumiremos que ????=????(????). El semigrupo ???? corresponde al cuadro de Heisenberg en el sentido que dado cualquier observable x, ????t(x) describe su evolución en el tiempo t. De esta forma, dada una matriz de densidad p, su dinámica (cuadro de Schrödinger) es dada por el semigrupo predual ????*t(ρ) , donde tr(ρ????t(x))=tr(????*t(ρ)x), tr(⋅) denota la operación traza. En este trabajo ofrecemos una exposición de varios resultados básicos sobre SCM. Además discutimos aplicaciones de SCM en teoría de la información cuántica y computación cuántica. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-07-16 00:00:00 2022-06-13T17:42:07Z |
dc.date.available.none.fl_str_mv |
2017-07-16 00:00:00 2022-06-13T17:42:07Z |
dc.date.issued.none.fl_str_mv |
2017-07-16 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Sección Artículos |
dc.type.local.eng.fl_str_mv |
Sección Articles |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0121-3709 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unillanos.edu.co/handle/001/2649 |
dc.identifier.doi.none.fl_str_mv |
10.22579/20112629.427 |
dc.identifier.eissn.none.fl_str_mv |
2011-2629 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.22579/20112629.427 |
identifier_str_mv |
0121-3709 10.22579/20112629.427 2011-2629 |
url |
https://repositorio.unillanos.edu.co/handle/001/2649 https://doi.org/10.22579/20112629.427 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Accardi L, Frigerio A, Lu YG. The weak coupling limit as a quantum functional central limit, Comm Math Phys. 1990;131(3):537-570. https://doi.org/10.1007/BF02098275 Accardi L, Lu YG. Volovich I. 2002. Quantum theory and its stochastic limit, Springer-Verlag, Berlin. Accardi L, Lu YG, Volovich I. 2002. Quantum Theory and Its Stochastic Limit, Springer, New York. Phys. Agarwal GS. Open quantum Markovian systems and the microreversibility, Z. Physik 1973;258:409 Agredo J, Fagnola F, Rebolledo R. Decoherence free subspaces of a quantum Markov Semigroup, J. Math. Phys. 2014;55: Alicki R. On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 1976;10: Alicki R. K: Lendi Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics. 1987;286: Springer-Verlag, Berlin. Attal S. 2006. Elements of Operators Algebras and Modular Theory, Open Quantum Systems I: The Hamiltonian approach. Springer Verlag, Lectures Notes in Mathematics, Pp. 1-105. Bratelli O, Robinson DW. Operator Algebras and Quantum Statistical Mechanics, 1987;1: second e.d., springer-Verlag, Cipriani F. Dirichlet forms and markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 1997;147:259 Davies EB. Markovian master equations, Comm. Math. Phys. 1974;39: Dereziński J, De Roeck W. Extended weak coupling limit for Pauli-Fierz operators, Comm. Math. Phys. 2008;279: Derezynski J, Fruboes R. Fermi golden rule and open quantum systems, Open Quantum Systems III - Recent Developments, Lecture Notes in Mathematics 1882, Springer Berlin, Heidelberg (2006), pp. 67116. Fagnola F. Quantum Markov semigroups and quantum flows, Proyecciones. J. Math. 1999;18(3): Fagnola F, Rebolledo R. Entropy production for quantum Markov semigroups, arXiv:1212.1366v1 Fagnola F, Rebolledo R. From classical to quantum entropy production, QP-–PQ:Quantum Probab. White Noise Anal. 2010;25:245 Fagnola F, Umanità V. Generators of KMS symmetric Markov semigroups on B(h). Symmetry and quantum detailed balance, Commun. Math. Phys. 2010;298:298 Fagnola F, Umanità V. Generators of detailed balance quantum Markov semigroups, Inf. Dim. Anal. Quantum Probab. Rel. Topics. 2007;10:335 Goldstein S, Lindsay JM. Beurling-Deny condition for KMS symmetric dynamical semigroups, C. R. Acad. Sci. Paris. 1993;317:1053 Kossakowski A, Gorini V, Verri M. Quantum detailed balance and KMS condition, Comm. Math. Phys. 1977;57:97 Majewski WA. The detailed balance condition in quantum statistical mechanics, J. Math. Phys. 1984;25:614 Majewski WA, Streater RF. Detailed balance and quantum dynamical maps, J. Phys. A: Math. Gen. 1998;31:7981 Parthasarathy KR. An introduction to quantum stochastic calculus, Monographs in Mathematics Birkhäuser- Verlag, Basel. 1992;85: Rebolledo R. 2006. Complete Positivity and the Markov structure of Open Quantum Systems, Open Quantum Systems II: The Markovian approach. Springer Verlag, Lectures Notes in Mathematics. Pp. 149-182. |
dc.relation.bitstream.none.fl_str_mv |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/427/1018 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 Sup , Año 2017 |
dc.relation.citationendpage.none.fl_str_mv |
29 |
dc.relation.citationissue.spa.fl_str_mv |
1 Sup |
dc.relation.citationstartpage.none.fl_str_mv |
20 |
dc.relation.citationvolume.spa.fl_str_mv |
21 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Orinoquia |
dc.rights.spa.fl_str_mv |
Orinoquia - 2019 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Orinoquia - 2019 https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Llanos |
dc.source.spa.fl_str_mv |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/427 |
institution |
Universidad de los Llanos |
bitstream.url.fl_str_mv |
https://dspace7-unillanos.metacatalogo.org/bitstreams/4fd7d7e5-d618-4ee2-858f-22196a64cddd/download |
bitstream.checksum.fl_str_mv |
c38ce16c141d7059149293d207e1f995 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Los Llanos |
repository.mail.fl_str_mv |
repositorio@unillanos.edu.co |
_version_ |
1818111646626742272 |
spelling |
Agredo Echeverry, Julián Andrés87ceb0cd0d669b9ea5a452b768c99b0e3002017-07-16 00:00:002022-06-13T17:42:07Z2017-07-16 00:00:002022-06-13T17:42:07Z2017-07-160121-3709https://repositorio.unillanos.edu.co/handle/001/264910.22579/20112629.4272011-2629https://doi.org/10.22579/20112629.427Los semigrupos cuánticos de Markov (SCM) son una extensión no conmutativa de los semigrupos de Markov definidos en probabilidad clásica. Ellos representan una evolución sin memoria de un sistema microscopico acorde a las leyes de la física cuántica y a la estructura de los sistemas cuánticos abiertos. Esto significa que la dinámica reducida del sistema principal es descrita por un espacio de Hilbert separable complejo ???? por medio de un semigrupo ????=(????t)t≥0, el cual actúa sobre una subálgebra de von Neumann ???? del álgebra ????(????) de todos los operadores lineales acotados definidos en ????. Por simplicidad, algunas veces asumiremos que ????=????(????). El semigrupo ???? corresponde al cuadro de Heisenberg en el sentido que dado cualquier observable x, ????t(x) describe su evolución en el tiempo t. De esta forma, dada una matriz de densidad p, su dinámica (cuadro de Schrödinger) es dada por el semigrupo predual ????*t(ρ) , donde tr(ρ????t(x))=tr(????*t(ρ)x), tr(⋅) denota la operación traza. En este trabajo ofrecemos una exposición de varios resultados básicos sobre SCM. Además discutimos aplicaciones de SCM en teoría de la información cuántica y computación cuántica.Quantum Markov semigroups (SCM) are a non-commutative extension of the Markov semigroups defined in classical probability. They represent an evolution without memory of a microscopic system according to the laws of quantum physics and the structure of open quantum systems. This means that the reduced dynamics of the main system is described by a complex separable Hilbert space ???? by means of a semigroup ????=(????t)t≥0, acting on a von Neumann algebra ????(????) of the linear operators defined on ????. For simplicity, we will sometimes assume that ????=????(????). The semigroup ???? corresponds to the Heisenberg picture in the sense that given any observable x, ????t(x) describes its evolution at time t. Thus, given a density matrix p, its dynamics (Schrödinger's picure) is given by the predual semigroup ????*t(ρ), where tr(ρ????t(x))=tr(????*t(ρ)x), tr(⋅) denote trace of a matrix. In this paper we offer an exposition of several basic results on SCM. We also discuss SCM applications in quantum information theory and quantum computing.application/pdfspaUniversidad de los LlanosOrinoquia - 2019https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/427EditorialEditorialSemigrupos cuánticos de Markov: pasado, presente y futuroQuantum Markov semigroups (QMS): past, present and future panoramaArtículo de revistaJournal Articleinfo:eu-repo/semantics/articleSección ArtículosSección Articlesinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/coar/version/c_970fb48d4fbd8a85Accardi L, Frigerio A, Lu YG. The weak coupling limit as a quantum functional central limit, Comm Math Phys. 1990;131(3):537-570. https://doi.org/10.1007/BF02098275 Accardi L, Lu YG. Volovich I. 2002. Quantum theory and its stochastic limit, Springer-Verlag, Berlin.Accardi L, Lu YG, Volovich I. 2002. Quantum Theory and Its Stochastic Limit, Springer, New York. Phys.Agarwal GS. Open quantum Markovian systems and the microreversibility, Z. Physik 1973;258:409Agredo J, Fagnola F, Rebolledo R. Decoherence free subspaces of a quantum Markov Semigroup, J. Math. Phys. 2014;55:Alicki R. On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 1976;10:Alicki R. K: Lendi Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics. 1987;286: Springer-Verlag, Berlin.Attal S. 2006. Elements of Operators Algebras and Modular Theory, Open Quantum Systems I:The Hamiltonian approach. Springer Verlag, Lectures Notes in Mathematics, Pp. 1-105.Bratelli O, Robinson DW. Operator Algebras and Quantum Statistical Mechanics, 1987;1: second e.d., springer-Verlag,Cipriani F. Dirichlet forms and markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 1997;147:259Davies EB. Markovian master equations, Comm. Math. Phys. 1974;39:Dereziński J, De Roeck W. Extended weak coupling limit for Pauli-Fierz operators, Comm. Math. Phys. 2008;279:Derezynski J, Fruboes R. Fermi golden rule and open quantum systems, Open Quantum Systems III - Recent Developments, Lecture Notes in Mathematics 1882, Springer Berlin, Heidelberg (2006), pp. 67116.Fagnola F. Quantum Markov semigroups and quantum flows, Proyecciones. J. Math. 1999;18(3):Fagnola F, Rebolledo R. Entropy production for quantum Markov semigroups, arXiv:1212.1366v1Fagnola F, Rebolledo R. From classical to quantum entropy production, QP-–PQ:Quantum Probab. White Noise Anal. 2010;25:245Fagnola F, Umanità V. Generators of KMS symmetric Markov semigroups on B(h). Symmetry and quantum detailed balance, Commun. Math. Phys. 2010;298:298Fagnola F, Umanità V. Generators of detailed balance quantum Markov semigroups, Inf. Dim. Anal. Quantum Probab. Rel. Topics. 2007;10:335Goldstein S, Lindsay JM. Beurling-Deny condition for KMS symmetric dynamical semigroups, C. R. Acad. Sci. Paris. 1993;317:1053Kossakowski A, Gorini V, Verri M. Quantum detailed balance and KMS condition, Comm. Math. Phys. 1977;57:97Majewski WA. The detailed balance condition in quantum statistical mechanics, J. Math. Phys. 1984;25:614Majewski WA, Streater RF. Detailed balance and quantum dynamical maps, J. Phys. A: Math. Gen. 1998;31:7981Parthasarathy KR. An introduction to quantum stochastic calculus, Monographs in Mathematics Birkhäuser- Verlag, Basel. 1992;85:Rebolledo R. 2006. Complete Positivity and the Markov structure of Open Quantum Systems, Open Quantum Systems II: The Markovian approach. Springer Verlag, Lectures Notes in Mathematics. Pp. 149-182.https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/427/1018Núm. 1 Sup , Año 2017291 Sup2021OrinoquiaPublicationOREORE.xmltext/xml2505https://dspace7-unillanos.metacatalogo.org/bitstreams/4fd7d7e5-d618-4ee2-858f-22196a64cddd/downloadc38ce16c141d7059149293d207e1f995MD51001/2649oai:dspace7-unillanos.metacatalogo.org:001/26492024-04-17 16:40:40.219https://creativecommons.org/licenses/by/4.0/Orinoquia - 2019metadata.onlyhttps://dspace7-unillanos.metacatalogo.orgRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.co |