Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira
El medio ambiente es el conjunto de las condiciones físicas, geográficas y bioquímicas en las que vivimos. Influye significativamente en todos los aspectos de la sociedad humana, incluida la agricultura, la industria, la salud, los recursos, entre otros. En las últimas décadas, nos hemos visto desaf...
- Autores:
-
Arregocés Reinoso, Heli Alfonso
Rojano Alvarado, Roberto Eliécer
Restrepo Vázquez, Gloria María
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2020
- Institución:
- Universidad de la Guajira
- Repositorio:
- Repositorio Uniguajira
- Idioma:
- spa
- OAI Identifier:
- oai:repositoryinst.uniguajira.edu.co:uniguajira/749
- Acceso en línea:
- https://repositoryinst.uniguajira.edu.co/handle/uniguajira/749
- Palabra clave:
- Calidad del aire
Contaminación del aire
Saneamiento ambiental
Investigación ambiental
- Rights
- openAccess
- License
- Copyright - Universidad de La Guajira, 2020
id |
Uniguajra2_79c7e77a1e1aaea402e7f190f14dbb43 |
---|---|
oai_identifier_str |
oai:repositoryinst.uniguajira.edu.co:uniguajira/749 |
network_acronym_str |
Uniguajra2 |
network_name_str |
Repositorio Uniguajira |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
title |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
spellingShingle |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira Calidad del aire Contaminación del aire Saneamiento ambiental Investigación ambiental |
title_short |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
title_full |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
title_fullStr |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
title_full_unstemmed |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
title_sort |
Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira |
dc.creator.fl_str_mv |
Arregocés Reinoso, Heli Alfonso Rojano Alvarado, Roberto Eliécer Restrepo Vázquez, Gloria María |
dc.contributor.author.none.fl_str_mv |
Arregocés Reinoso, Heli Alfonso Rojano Alvarado, Roberto Eliécer Restrepo Vázquez, Gloria María |
dc.subject.lemb.none.fl_str_mv |
Calidad del aire Contaminación del aire Saneamiento ambiental Investigación ambiental |
topic |
Calidad del aire Contaminación del aire Saneamiento ambiental Investigación ambiental |
description |
El medio ambiente es el conjunto de las condiciones físicas, geográficas y bioquímicas en las que vivimos. Influye significativamente en todos los aspectos de la sociedad humana, incluida la agricultura, la industria, la salud, los recursos, entre otros. En las últimas décadas, nos hemos visto desafiados por los cambios ambientales inducidos por el hombre, como la deforestación, la destrucción de la capa de ozono, el aumento de las emisiones de gases de efecto invernadero y la contaminación del suelo, el agua y el aire. Proteger el medio ambiente requiere una compresión de los procesos y entender su dinamismo para escoger las medidas correctas de una gama de opciones. La modelización forma una parte crítica de esta tarea. El medio ambiente es un sistema interactivo y complejo que puede categorizarse en sistemas hidrológicos, ecológicos y climáticos. La modelización se refiere al comportamiento de los componentes individuales y sus interacciones, a través de la representación matemática y numérica de los procesos físicos, químicos y biológicos que tienen lugar en el sistema medioambiental. En todo el mundo existe una creciente necesidad de mejorar la calidad de vida de las personas, de comprender los procesos medioambientales y una mayor capacidad para predecir los cambios resultantes de las interferencias de las variaciones naturales o humanas. Numerosos estudios que tratan de la modelización y de sus componentes individuales se han llevado a cabo en el pasado con resultados que han aportado más a esa compresión del mundo natural y estrategias para beneficios de la humanidad. |
publishDate |
2020 |
dc.date.available.none.fl_str_mv |
2020 2023-07-28T23:19:15Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-07-28T23:19:15Z |
dc.type.spa.fl_str_mv |
Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/LIB |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
publishedVersion |
dc.identifier.isbn.spa.fl_str_mv |
9789585178335 |
dc.identifier.uri.none.fl_str_mv |
https://repositoryinst.uniguajira.edu.co/handle/uniguajira/749 |
identifier_str_mv |
9789585178335 |
url |
https://repositoryinst.uniguajira.edu.co/handle/uniguajira/749 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahuja, S., 1996. Evaluation of MESOPUFF-II-Sox Transport and Deposition in the Great Lakes Region. University of Toledo. Amarillo, A.C., Carreras, H.A., 2012. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine. Environ. Pollut. 170, 217–221. https://doi.org/10.1016/j.envpol.2012.07.005 Andrade, C.A., 1993. Analysis of the surface-wind speed over the Caribbean Sea. Bull. Sci. Cent. Invest. Hidrogr 1, 33–44. Aneja, V.P., Isherwood, A., Morgan, P., 2012. Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos. Environ. 54, 496–501. https://doi.org/10.1016/j.atmosenv.2012.02.063 Aral, M.M., 2010. Environmental modeling and health risk analysis (Acts/Risk), Environmental Modeling and Health Risk Analysis (Acts/Risk). https://doi. org/10.1007/978-90-481-8608-2 Arregocés, H., Rojano, R., Restrepo, G., Angulo, L., 2016. Using CALPUFF to determine the environmental impact of a coal mine open pit, in: Transactions on Ecology and The Environment. pp. 55–66. https://doi.org/10.2495/AIR160061 Arregoces, H.A., Mendoza, Y.I., Rojano, R.E., 2018. Evaluación del CALPUFF para Estimar Concentraciones Ambientales de PM 10 de una Cantera en Terrenos Complejos. Inf. tecnológica 29, 131–142. Arregocés, H.A., Rojano, R., Angulo, L., Restrepo, G., 2018. Intake Fraction of PM10 from Coal Mine Emissions in the North of Colombia. J. Environ. Public Health 2018. Arregoces, H.A., Rojano, R.E., Ângulo, L.C., Restrepo, G.M., 2016. Predicción y Análisis de la Contribución de PM10 desde Pilas de Carbón en una Mina a Cielo Abierto. Inf. Tecnol. 27, 93–102. https://doi.org/10.4067/S0718-07642016000400010 Barclay, J., Scire, J., 2011. Generic Guidance and Optimum Model Settings for the CALPUFF Modeling System for Inclusion into the ‘Approved Methods for the Modeling and Assessments of Air Pollutants in NSW, Australia.’ Benavides, H.O., Ayala, L., 2010. Análisis Descriptivo de Variables Metereológicas que Influyen en la Calidad del Aire de los Principales Centros Industriales del Pais, IDEAM. Bennett, D.H., McKone, T.E., Evans, J.S., Nazaroff, W.W., Margni, M.D., Jolliet, O., Smith, K.R., 2002. Defining intake fraction. Environ. Sci. Technol. 36, 207A-211A. https://doi.org/10.1021/es0222770 Bonan, G.B., Patton, E.G., Harman, I.N., Oleson, K.W., Finnigan, J.J., Lu, Y., Burakowski, E.A., 2018. Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev. https://doi.org/10.5194/gmd-11-14672018 Brabin, B., Smith, M., Milligan, P., Benjamin, C., Dunne, E., Pearson, M., 1994. Respiratory morbidity in Merseyside schoolchildren exposed to coal dust and air pollution. Arch. Dis. Child. 70, 305–12. https://doi.org/10.1136/adc.70.4.305 Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8 Burakowski, E., Tawfik, A., Ouimette, A., Lepine, L., Novick, K., Ollinger, S., Zarzycki, C., Bonan, G., 2018. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States. Agric. For. Meteorol. 249, 367–376. https://doi.org/10.1016/j.agrformet.2017.11.030 Bustamante, P., 2017. Modelación de la propagación de incendios de gran escala producidos por la combustión espontánea en los frentes de explotación en minería de carbón a cielo abierto y diseño de estrategias de apagado. Universidad Nacional de Colombia-Sede Medellín. Canepa, E., Builtjes, P.J.H., 2001. Methodology of model testing and application to dispersion simulation above complex terrain. Int. J. Environ. Pollut. 16, 101–115. Chalabi, Z., Milojevic, A., Doherty, R.M., Stevenson, D.S., MacKenzie, I.A., Milner, J., Vieno, M., Williams, M., Wilkinson, P., 2017. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies. Atmos. Environ. 167, 466–475. Chaulya, S.K., 2004. Assessment and management of air quality for an opencast coal mining area. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2003.09.018 Curci, G., Cinque, G., Tuccella, P., Visconti, G., Verdecchia, M., Iarlori, M., Rizi, V., 2012. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy. Atmos. Environ. 62, 248–255. https://doi.org/10.1016/j. atmosenv.2012.08.005 EETM, N.I., 2000. National Pollutant Inventory, Emission Estimation Technique Manual for Mining and Processing of Non-Metallic Minerals. Fonseca-Hernández, M., González-Mayor, Y., Fernández-Valdés, A.C., Cuesta-Santos, O., 2015. Análisis de sensibilidad del campo de viento producido por el modelo de diagnóstico CALMET. Ciencias la Tierra y el Espac. 16, 176–188. Forero, A., 1970. Estratigrafía del precretácico en el flanco occidental de la Serrania de Perijá. Geol. Colomb. 7, 7–77. Fox, D.G., 1981. Judging Air Quality Model Performance: A Summary of the AMS Workshop on Dispersion Model Performance, Woods Hole, Mass., 8--11 September 1980. Bull. Am. Meteorol. Soc. 62, 599–609. Ghannam, K., El-Fadel, M., 2013. Emissions characterization and regulatory compliance at an industrial complex: An integrated MM5/CALPUFF approach. Atmos. Environ. 69, 156–169. https://doi.org/10.1016/j.atmosenv.2012.12.022 Ghose, M.K., Majee, S.R., 2007. Characteristics of hazardous airborne dust around an Indian surface coal mining area. Environ. Monit. Assess. 130, 17–25. https://doi. org/10.1007/s10661-006-9448-6 Ghose, M.K., Majee, S.R., 2000. Assessment of dust generation due to opencast coal mining – an indian case study. Environ. Monit. Assess. 61, 255–263. https://doi. org/10.1016/S1352-2310(99)00302-7 Greco, S.L., Wilson, A.M., Spengler, J.D., Levy, J.I., 2007. Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos. Environ. 41, 1011–1025. https://doi.org/10.1016/j.atmosenv.2006.09.025 Gulia, S., Kumar, A., Khare, M., 2015. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J. Sci. Ind. Res. 74, 302–307. Hendryx, M., Ahern, M.M., 2008a. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health 98, 669–71. https://doi.org/10.2105/AJPH.2007.113472 Hendryx, M., Ahern, M.M., 2008b. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health 98, 669–671. https://doi.org/10.2105/AJPH.2007.113472 Hendryx, M., Zullig, K.J., 2009. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Prev. Med. (Baltim). 49, 355–359. https://doi.org/10.1016/j.ypmed.2009.09.011 Hendryx, M.S., Ahern, M.M., Nurkiewicz, T.R., 2007. Hospitalization patterns associated with Appalachian coal mining. J. Toxicol. Environ. Heal. Part A 70, 2064–2070. https://doi.org/10.1080/15287390701601236 Hernández-Garces, A., González, J.A., Casares, J., Turtos, L., Alvarez, L., Jauregui-Haza, U., 2017. Case Study in Jagua Bay at South of Cuba Using a Coupling WRF/ CALMET. Rev. Bras. Meteorol. 32, 659–667. Holmes, N.S., Morawska, L., 2006. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 40, 5902–5928. https://doi.org/http://dx.doi.org/10.1016/j. atmosenv.2006.06.003 Horvath, K., Koracin, D., Vellore, R., Jiang, J., Belu, R., 2012. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017432 Huang, L., Zhou, L., Chen, J., Chen, K., Liu, Y., Chen, X., Tang, F., 2016. Acute effects of air pollution on influenza-like illness in Nanjing, China: A population-based study. Chemosphere 147, 180–187. https://doi.org/10.1016/j.chemosphere.2015.12.082 Huertas, J.I., Huertas, M.E., Solís, D.A., 2012. Characterization of airborne particles in an open pit mining region. Sci. Total Environ. 423, 39–46. https://doi. org/10.1016/j.scitotenv.2012.01.065 Humbert, S., Manneh, R., Shaked, S., Wannaz, C., Horvath, A., Deschênes, L., Jolliet, O., Margni, M., 2009. Assessing regional intake fractions in North America. Sci. Total Environ. 407, 4812–4820. https://doi.org/10.1016/j.scitotenv.2009.05.024 Humbert, S., Marshall, J.D., Shaked, S., Spadaro, J. V., Nishioka, Y., Preiss, P., McKone, T.E., Horvath, A., Jolliet, O., 2011. Intake fraction for particulate matter: Recommendations for life cycle impact assessment. Environ. Sci. Technol. 45, 4808–4816. https://doi.org/10.1021/es103563z IDEAM, 2016. Informe del estado de la Calidad del Aire en Colombia 2011-2015, Comité de Comunicaciones y Publicaciones del IDEAM. J., Fox t. (U.S. Environmental Protection Agency, Research Triangle Park, N., 2009. Clarification on EPA-FLM Recommended Settings for CALMET. Jiménez, P., Jorba, O., Parra, R., Baldasano, J.M., 2006. Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2005.12.060 Jones, T., Blackmore, P., Leach, M., B??ruB??, K., Sexton, K., Richards, R., 2002. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K. Environ. Monit. Assess. 75, 293–312. https://doi. org/10.1023/A:1014808419171 Khandan, N., 2001. Modeling tools for environmental engineers and scientists. CRC Press. Kumar, A., Dixit, S., Varadarajan, C., Vijayan, A., Masuraha, A., 2006. Evaluation of the AERMOD dispersion model as a function of atmospheric stability for an urban area. Environ. Prog. 25, 141–151. https://doi.org/10.1002/ep.10129 Lamancusa, C., Parvez, F., Wagstrom, K., 2017. Spatially resolved intake fraction estimates for primary and secondary particulate matter in the United States. Atmos. Environ. 150, 229–237. https://doi.org/10.1016/j.atmosenv.2016.11.010 Lin, K.M., Juang, J.Y., Shiu, Y.W., Chang, L.F.W., 2016. Estimating the bowen ratio for application in air quality models by integrating a simplified analytical expression with measurement data. J. Appl. Meteorol. Climatol. https://doi.org/10.1175/ JAMC-D-15-0080.1 Liu, M.-K., Yocke, M.A., 1980. Siting of wind turbine generators in complex terrain. J. Energy 4, 10–16. MacIntosh, D.L., Stewart, J.H., Myatt, T. a., Sabato, J.E., Flowers, G.C., Brown, K.W., Hlinka, D.J., Sullivan, D. a., 2010. Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmos. Environ. 44, 262–270. https://doi. org/10.1016/j.atmosenv.2009.09.023 MADS, 2013. Programa de reducción de la contaminación del aire para las áreas fuente de la zona carbonífera del Cesar. Valleduprar. Maleki, H., Sorooshian, A., Goudarzi, G., Nikfal, A., Baneshi, M.M., 2016. Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 22, 135–140. https://doi.org/10.1016/j.aeolia.2016.08.006 Mandal, K., Kumar, A., Tripathi, N., Singh, R.S., Chaulya, S.K., Mishra, P.K., Bandyopadhyay, L.K., 2012. Characterization of different road dusts in opencast coal mining areas of India. Environ. Monit. Assess. 184, 3427–3441. https://doi.org/10.1007/ s10661-011-2197-1 Mandell, G.L., 2005. Mandell, Douglas, and Bennett&apos´s principles and practice of infectious diseases. karger.com. Ministerio de Minas y Energía, 2018. Análisis Minero [WWW Document]. Comport. la Prod. Minera en Colomb. URL https://www.minminas.gov.co/analisis-minero (accessed 1.21.18). Mueller, S.F., Mallard, J.W., Mao, Q., Shaw, S.L., 2015. Variability of natural dust erosion from a coal pile. J. Appl. Meteorol. Climatol. 54, 3–14. https://doi.org/10.1175/ JAMC-D-14-0126.1 Muñoz, E., Busalacchi, A.J., Nigam, S., Ruiz-Barradas, A., 2008. Winter and summer structure of the Caribbean low-level jet. J. Clim. 21, 1260–1276. https://doi.org/10.1175/2007JCLI1855.1 Muñoz, F., Carvalho, M.S., 2009. Effect of exposure time to PM10 on emergency admissions for acute bronchitis. Cad. Saude Publica 25, 529–539. Oleniacz, R., Rzeszutek, M., 2018. Intercomparison of the CALMET/CALPUFF Modeling System for Selected Horizontal Grid Resolutions at a Local Scale: A Case Study of the MSWI Plant in Krakow, Poland. Appl. Sci. 8, 2301. Ostro, B., 1995. 95/05299 Estimating the health effects of air pollutants: A method with an application to Jakarta, Fuel and Energy Abstracts. https://doi.org/10.1016/0140-6701(95)97038-L Otero, A., others, 2013. Rio Rancheria: Entre la economia, la biodiversidad y la cultura. Doc. Trab. sobre Econ. Reg. Banco la República. Cent. Estud. Económicos Reg. CEER. Cart. Patra, A.K., Gautam, S., Kumar, P., 2016. Emissions and human health impact of particulate matter from surface mining operation—A review. Environ. Technol. Innov. 5, 233–249. https://doi.org/10.1016/j.eti.2016.04.002 Pisoni, E., Albrecht, D., Mara, T.A., Rosati, R., Tarantola, S., Thunis, P., 2018. Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool. Atmos. Environ. 183, 84–93. Pope, C.A., Bates, D. V, Raizenne, M.E., 1995. Health effects of particulate air pollution: time for reassessment? Environ. Health Perspect. 103, 472–480. https://doi. org/10.1289/ehp.95103472 Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–41. https://doi.org/10.1001/ jama.287.9.1132 Pope, C.A., Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution : Lines that Connect. Air Waste Manag. Assoc. 56, 709–742. Pope III, C.A., Hill, R.W., Villegas, G.M., 1999. Particulate Air Pollution and Daily Mortality on Utah’s Wasatch Front. Environ. Health Perspect. 107, 567–573. https:// doi.org/10.1289/ehp.99107567 Posada, B., Henao, W., Guzman, G., 2009. Diagnóstico de la erosión en la zona costera del Caribe colombiano. Diagnóstico la erosión en la Zo. costera del Caribe Colomb. 124. https://doi.org/10.1159/000193188 Poveda, G., 2004. La Hidroclimatología De Colombia: Una Síntesis Desde La Escala Inter-Decadal Hasta La Escala Diurna. Rev. la Acad. Colomb. Ciencias XXVIII, 201–222. Poveda, G., Mesa, O.J., Salazar, L.F., Arias, P.A., Moreno, H.A., Vieira, S.C., Agudelo, P.A., Toro, V.G., Alvarez, J.F., 2005. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather Rev. 133, 228–240. https://doi.org/10.1175/ MWR-2853.1 Prospero, J.M., 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res. 104, 15917. https://doi.org/10.1029/1999JD900072 Radelli, L., Forero, A., 1970. Acerca de la geologia de la Serrania de Perijá entre Codazzi y Villanueva (Magdalena-Guajira, Colombia). Geol. Colomb. 7, 7–77. Ramírez Builes, V.H., Jaramillo Robledo, Á., 2009. Balances de energía asociados a los cambios de cobertura en la zona andina colombiana. Cenicafé. Samoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., Dominici, F., Burnett, R., Cohen, A., Krewski, D., Samet, J., Katsouyanni, K., 2008. Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environ. Health Perspect. 116, 1480–1486. https://doi. org/10.1289/ehp.11345 Sánchez-Triana, E., Ahmed, K., Awe, Y., 2007. Prioridades ambientales para la reducción de la pobreza en Colombia. Un análisis ambiental del país para Colombia, Banco Mund. ed. The International Bank for Reconstruction and Development/ The World Bank, Washington, DC. Santana, M.E.M., 2017. Parámetros de rugosidad representativos de terrenos naturales. Schutz, F., Massuquetti, A., Alves, T.W., 2013. Demanda e oferta energética : uma perspectiva mundial e nacional para o etanol. REGET 16, 3167–3186. Scire, J.S., Strimaitis, D.G., Yamartino, R.J., 2000. A User ’ s Guide for the CALPUFF Dispersion Model. Eearth Tech. Inc. Simon, H., Baker, K.R., Phillips, S., 2012. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 61, 124–139. Song, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 Mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci. Total Environ. 571, 1155–1163. https://doi.org/10.1016/j. scitotenv.2016.07.115 Sud, Y.C., Shukla, J., Mintz, Y., Sud, Y.C., Shukla, J., Mintz, Y., 1988. Influence of Land Surface Roughness on Atmospheric Circulation and Precipitation: A Sensitivity Study with a General Circulation Model. J. Appl. Meteorol. 27, 1036–1054. https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2 Sydow a, 2010. Encyclopedia of Life Support Systems, UNESCO. Elsevier. Tartakovsky, D., Broday, D.M., Stern, E., 2013. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ. Pollut. 179, 138–145. https://doi.org/10.1016/j.envpol.2013.04.023 Tartakovsky, D., Stern, E., Broday, D.M., 2016. Dispersion of TSP and PM10 emissions from quarries in complex terrain. Sci. Total Environ. 542, 946–954. https://doi. org/10.1016/j.scitotenv.2015.10.133 Toraño, J.A., Rodriguez, R., Diego, I., Rivas, J.M., Pelegry, A., 2007. Influence of the pile shape on wind erosion CFD emission simulation. Appl. Math. Model. 31, 2487–2502. https://doi.org/10.1016/j.apm.2006.10.012 Trivedi, R., Mondal, A., Chakraborty, M.K., Tewary, B.K., 2010. A statistical analysis of ambient air quality around 969 opencast coal projects in wardha valley coalfields, western coal fields limited, India. Indian J. Environ. Prot. 30. Tschanz, C.M., Marvin, R.F., Cruz, B.J., Mehnert, H.H., Cebula, G.T., 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284. Turner, D.B., 1994. Workbook of Atmosphere Dispersion Estimates 1994, 1st ed. Lewis publishers, Chapel Hil North Carolina UPME, 2017. Informe Departamental Minero-La Guajira. USEPA, 1995. Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors [WWW Document]. URL https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors Valdés, D., Silverio, A.Q., González, Y., Santos, O.C., Díaz, A.S., Pinar, U. De, Técnicas, F.D.C., Física, D. De, Río, P., Pinar, U. De, Técnicas, F.D.C., Matemáticas, D. De, Río, P., 2015. Variación de la estabilidad y altura de la capa de mezcla en la ciudad de Pinar del Río : su relación con condiciones sinópticas. Rev. Bras. Meteorol. 30, 1–15. https://doi.org/10.1590/0102-778620140014 Van Ulden, a. P., Holtslag, a. a. M., 1985. Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications. J. Clim. Appl. Meteorol. https://doi.org/10 .1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2 van Zelm, R., Huijbregts, M. a J., den Hollander, H. a., van Jaarsveld, H. a., Sauter, F.J., Struijs, J., van Wijnen, H.J., van de Meent, D., 2008. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 42, 441–453. https://doi.org/10.1016/j.atmosenv.2007.09.072 Venegas, L.E., Mazzeo, N.A., 2012. La velocidad del viento y la dispersión de contaminantes en la atmósfera. Argentina Cons. Nac. Investig. Cient. y Técnicas. WHO, 2016. Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization. Zhou, H., He, J., Zhao, B., Zhang, L., Fan, Q., Lü, C., Dudagula, Liu, T., Yuan, Y., 2016. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China. Atmos. Res. 178–179, 102–113. https://doi.org/10.1016/j.atmosres.2016.03.019 |
dc.rights.spa.fl_str_mv |
Copyright - Universidad de La Guajira, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
rights_invalid_str_mv |
Copyright - Universidad de La Guajira, 2020 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
138 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de La Guajira |
dc.publisher.place.spa.fl_str_mv |
Universidad de La Guajira |
institution |
Universidad de la Guajira |
bitstream.url.fl_str_mv |
http://dspace7-uniguajira.metabuscador.org/bitstreams/da5f2733-9720-4c06-90ca-47779e633569/download http://dspace7-uniguajira.metabuscador.org/bitstreams/f89b7a23-7fb3-4efc-94bf-784d52a92891/download http://dspace7-uniguajira.metabuscador.org/bitstreams/b89ecaa9-ac61-41fa-bf07-33eaa0ae5466/download http://dspace7-uniguajira.metabuscador.org/bitstreams/f096eda1-ae6c-4fa3-8873-236f622aa18a/download |
bitstream.checksum.fl_str_mv |
89b8343a122ed1612439af7a3a55d032 2f9959eaf5b71fae44bbf9ec84150c7a db28bcd9f2a54f26ac527d97f9cc5bd6 5ff2a13013bf5111f98a4957520c4485 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Universidad de la Guajira |
repository.mail.fl_str_mv |
repositorio@uniguajira.edu.co |
_version_ |
1814204053066874880 |
spelling |
Arregocés Reinoso, Heli AlfonsoRojano Alvarado, Roberto EliécerRestrepo Vázquez, Gloria María2023-07-28T23:19:15Z20202023-07-28T23:19:15Z20209789585178335https://repositoryinst.uniguajira.edu.co/handle/uniguajira/749El medio ambiente es el conjunto de las condiciones físicas, geográficas y bioquímicas en las que vivimos. Influye significativamente en todos los aspectos de la sociedad humana, incluida la agricultura, la industria, la salud, los recursos, entre otros. En las últimas décadas, nos hemos visto desafiados por los cambios ambientales inducidos por el hombre, como la deforestación, la destrucción de la capa de ozono, el aumento de las emisiones de gases de efecto invernadero y la contaminación del suelo, el agua y el aire. Proteger el medio ambiente requiere una compresión de los procesos y entender su dinamismo para escoger las medidas correctas de una gama de opciones. La modelización forma una parte crítica de esta tarea. El medio ambiente es un sistema interactivo y complejo que puede categorizarse en sistemas hidrológicos, ecológicos y climáticos. La modelización se refiere al comportamiento de los componentes individuales y sus interacciones, a través de la representación matemática y numérica de los procesos físicos, químicos y biológicos que tienen lugar en el sistema medioambiental. En todo el mundo existe una creciente necesidad de mejorar la calidad de vida de las personas, de comprender los procesos medioambientales y una mayor capacidad para predecir los cambios resultantes de las interferencias de las variaciones naturales o humanas. Numerosos estudios que tratan de la modelización y de sus componentes individuales se han llevado a cabo en el pasado con resultados que han aportado más a esa compresión del mundo natural y estrategias para beneficios de la humanidad.Prefacio 7 Introducción 9 Modelos y Modelización 13 Tipos de Sistemas Ambientales 13 Modelación en la Ingeniería Ambiental 14 Modelos de la calidad del aire 19 Evaluación: Calibración, Verificación y Validación 23 Modelo Lagrangiano Tipo Puff: Calpuff 25 Configuración óptima del sistema de modelado CALPUFF 31 Modelo Meteorológico CALMET 31 Parámetros en CALMET 34 Terrenos Complejos 40 Caso de estudio 1: estimación de las concentraciones ambientales de PM10 en una cantera en el sur de La Guajira 43 Introducción 44 Metodología 44 Resultados 50 Conclusión 54 Caso de estudio 2: determinación de la eficiencia en el control de emisiones de PM10 en un Pits de una mina de carbón 55 Introducción 56 Metodología 57 Cálculo de Emisiones de PM10 en Pits 60 Resultados 68 Conclusión 73 Caso de estudio 3: fracción de ingesta de PM10 de las emisiones de un complejo carbonífero en La Guajira 75 Introducción 76 Metodología 77 Resultados 79 Conclusión 85 Caso de estudio 4: dispersión de las emisiones de PM10 y CO por fuentes puntuales que utilizan carbón madera en una ciudad costera 87 Introducción 87 Metodología 88 Resultados 90 Conclusión 95 Caso de estudio 5: sensibilidad del modelo de dispersión CALPUFF aplicado a terrenos complejos en zona minera en La Guajira 97 Introducción 98 Metodología 99 Resultados 103 Conclusión 114 Caso de estudio 6: impacto local y regional de la dispersión de PM10 usando CALPUFF: caso Cerrejón 117 Referencias 131138 páginasapplication/pdfspaUniversidad de La GuajiraUniversidad de La GuajiraCopyright - Universidad de La Guajira, 2020info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2Modelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La GuajiraLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookhttps://purl.org/redcol/resource_type/LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ahuja, S., 1996. Evaluation of MESOPUFF-II-Sox Transport and Deposition in the Great Lakes Region. University of Toledo.Amarillo, A.C., Carreras, H.A., 2012. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine. Environ. Pollut. 170, 217–221. https://doi.org/10.1016/j.envpol.2012.07.005Andrade, C.A., 1993. Analysis of the surface-wind speed over the Caribbean Sea. Bull. Sci. Cent. Invest. Hidrogr 1, 33–44.Aneja, V.P., Isherwood, A., Morgan, P., 2012. Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos. Environ. 54, 496–501. https://doi.org/10.1016/j.atmosenv.2012.02.063Aral, M.M., 2010. Environmental modeling and health risk analysis (Acts/Risk), Environmental Modeling and Health Risk Analysis (Acts/Risk). https://doi. org/10.1007/978-90-481-8608-2Arregocés, H., Rojano, R., Restrepo, G., Angulo, L., 2016. Using CALPUFF to determine the environmental impact of a coal mine open pit, in: Transactions on Ecology and The Environment. pp. 55–66. https://doi.org/10.2495/AIR160061Arregoces, H.A., Mendoza, Y.I., Rojano, R.E., 2018. Evaluación del CALPUFF para Estimar Concentraciones Ambientales de PM 10 de una Cantera en Terrenos Complejos. Inf. tecnológica 29, 131–142.Arregocés, H.A., Rojano, R., Angulo, L., Restrepo, G., 2018. Intake Fraction of PM10 from Coal Mine Emissions in the North of Colombia. J. Environ. Public Health 2018.Arregoces, H.A., Rojano, R.E., Ângulo, L.C., Restrepo, G.M., 2016. Predicción y Análisis de la Contribución de PM10 desde Pilas de Carbón en una Mina a Cielo Abierto. Inf. Tecnol. 27, 93–102. https://doi.org/10.4067/S0718-07642016000400010Barclay, J., Scire, J., 2011. Generic Guidance and Optimum Model Settings for the CALPUFF Modeling System for Inclusion into the ‘Approved Methods for the Modeling and Assessments of Air Pollutants in NSW, Australia.’Benavides, H.O., Ayala, L., 2010. Análisis Descriptivo de Variables Metereológicas que Influyen en la Calidad del Aire de los Principales Centros Industriales del Pais, IDEAM.Bennett, D.H., McKone, T.E., Evans, J.S., Nazaroff, W.W., Margni, M.D., Jolliet, O., Smith, K.R., 2002. Defining intake fraction. Environ. Sci. Technol. 36, 207A-211A. https://doi.org/10.1021/es0222770Bonan, G.B., Patton, E.G., Harman, I.N., Oleson, K.W., Finnigan, J.J., Lu, Y., Burakowski, E.A., 2018. Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev. https://doi.org/10.5194/gmd-11-14672018Brabin, B., Smith, M., Milligan, P., Benjamin, C., Dunne, E., Pearson, M., 1994. Respiratory morbidity in Merseyside schoolchildren exposed to coal dust and air pollution. Arch. Dis. Child. 70, 305–12. https://doi.org/10.1136/adc.70.4.305Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8Burakowski, E., Tawfik, A., Ouimette, A., Lepine, L., Novick, K., Ollinger, S., Zarzycki, C., Bonan, G., 2018. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States. Agric. For. Meteorol. 249, 367–376. https://doi.org/10.1016/j.agrformet.2017.11.030Bustamante, P., 2017. Modelación de la propagación de incendios de gran escala producidos por la combustión espontánea en los frentes de explotación en minería de carbón a cielo abierto y diseño de estrategias de apagado. Universidad Nacional de Colombia-Sede Medellín.Canepa, E., Builtjes, P.J.H., 2001. Methodology of model testing and application to dispersion simulation above complex terrain. Int. J. Environ. Pollut. 16, 101–115.Chalabi, Z., Milojevic, A., Doherty, R.M., Stevenson, D.S., MacKenzie, I.A., Milner, J., Vieno, M., Williams, M., Wilkinson, P., 2017. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies. Atmos. Environ. 167, 466–475.Chaulya, S.K., 2004. Assessment and management of air quality for an opencast coal mining area. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2003.09.018Curci, G., Cinque, G., Tuccella, P., Visconti, G., Verdecchia, M., Iarlori, M., Rizi, V., 2012. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy. Atmos. Environ. 62, 248–255. https://doi.org/10.1016/j. atmosenv.2012.08.005EETM, N.I., 2000. National Pollutant Inventory, Emission Estimation Technique Manual for Mining and Processing of Non-Metallic Minerals.Fonseca-Hernández, M., González-Mayor, Y., Fernández-Valdés, A.C., Cuesta-Santos, O., 2015. Análisis de sensibilidad del campo de viento producido por el modelo de diagnóstico CALMET. Ciencias la Tierra y el Espac. 16, 176–188.Forero, A., 1970. Estratigrafía del precretácico en el flanco occidental de la Serrania de Perijá. Geol. Colomb. 7, 7–77.Fox, D.G., 1981. Judging Air Quality Model Performance: A Summary of the AMS Workshop on Dispersion Model Performance, Woods Hole, Mass., 8--11 September 1980. Bull. Am. Meteorol. Soc. 62, 599–609.Ghannam, K., El-Fadel, M., 2013. Emissions characterization and regulatory compliance at an industrial complex: An integrated MM5/CALPUFF approach. Atmos. Environ. 69, 156–169. https://doi.org/10.1016/j.atmosenv.2012.12.022Ghose, M.K., Majee, S.R., 2007. Characteristics of hazardous airborne dust around an Indian surface coal mining area. Environ. Monit. Assess. 130, 17–25. https://doi. org/10.1007/s10661-006-9448-6Ghose, M.K., Majee, S.R., 2000. Assessment of dust generation due to opencast coal mining – an indian case study. Environ. Monit. Assess. 61, 255–263. https://doi. org/10.1016/S1352-2310(99)00302-7Greco, S.L., Wilson, A.M., Spengler, J.D., Levy, J.I., 2007. Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos. Environ. 41, 1011–1025. https://doi.org/10.1016/j.atmosenv.2006.09.025Gulia, S., Kumar, A., Khare, M., 2015. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J. Sci. Ind. Res. 74, 302–307.Hendryx, M., Ahern, M.M., 2008a. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health 98, 669–71. https://doi.org/10.2105/AJPH.2007.113472Hendryx, M., Ahern, M.M., 2008b. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health 98, 669–671. https://doi.org/10.2105/AJPH.2007.113472Hendryx, M., Zullig, K.J., 2009. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Prev. Med. (Baltim). 49, 355–359. https://doi.org/10.1016/j.ypmed.2009.09.011Hendryx, M.S., Ahern, M.M., Nurkiewicz, T.R., 2007. Hospitalization patterns associated with Appalachian coal mining. J. Toxicol. Environ. Heal. Part A 70, 2064–2070. https://doi.org/10.1080/15287390701601236Hernández-Garces, A., González, J.A., Casares, J., Turtos, L., Alvarez, L., Jauregui-Haza, U., 2017. Case Study in Jagua Bay at South of Cuba Using a Coupling WRF/ CALMET. Rev. Bras. Meteorol. 32, 659–667.Holmes, N.S., Morawska, L., 2006. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 40, 5902–5928. https://doi.org/http://dx.doi.org/10.1016/j. atmosenv.2006.06.003Horvath, K., Koracin, D., Vellore, R., Jiang, J., Belu, R., 2012. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017432Huang, L., Zhou, L., Chen, J., Chen, K., Liu, Y., Chen, X., Tang, F., 2016. Acute effects of air pollution on influenza-like illness in Nanjing, China: A population-based study. Chemosphere 147, 180–187. https://doi.org/10.1016/j.chemosphere.2015.12.082Huertas, J.I., Huertas, M.E., Solís, D.A., 2012. Characterization of airborne particles in an open pit mining region. Sci. Total Environ. 423, 39–46. https://doi. org/10.1016/j.scitotenv.2012.01.065Humbert, S., Manneh, R., Shaked, S., Wannaz, C., Horvath, A., Deschênes, L., Jolliet, O., Margni, M., 2009. Assessing regional intake fractions in North America. Sci. Total Environ. 407, 4812–4820. https://doi.org/10.1016/j.scitotenv.2009.05.024Humbert, S., Marshall, J.D., Shaked, S., Spadaro, J. V., Nishioka, Y., Preiss, P., McKone, T.E., Horvath, A., Jolliet, O., 2011. Intake fraction for particulate matter: Recommendations for life cycle impact assessment. Environ. Sci. Technol. 45, 4808–4816. https://doi.org/10.1021/es103563zIDEAM, 2016. Informe del estado de la Calidad del Aire en Colombia 2011-2015, Comité de Comunicaciones y Publicaciones del IDEAM.J., Fox t. (U.S. Environmental Protection Agency, Research Triangle Park, N., 2009. Clarification on EPA-FLM Recommended Settings for CALMET.Jiménez, P., Jorba, O., Parra, R., Baldasano, J.M., 2006. Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2005.12.060Jones, T., Blackmore, P., Leach, M., B??ruB??, K., Sexton, K., Richards, R., 2002. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K. Environ. Monit. Assess. 75, 293–312. https://doi. org/10.1023/A:1014808419171Khandan, N., 2001. Modeling tools for environmental engineers and scientists. CRC Press.Kumar, A., Dixit, S., Varadarajan, C., Vijayan, A., Masuraha, A., 2006. Evaluation of the AERMOD dispersion model as a function of atmospheric stability for an urban area. Environ. Prog. 25, 141–151. https://doi.org/10.1002/ep.10129Lamancusa, C., Parvez, F., Wagstrom, K., 2017. Spatially resolved intake fraction estimates for primary and secondary particulate matter in the United States. Atmos. Environ. 150, 229–237. https://doi.org/10.1016/j.atmosenv.2016.11.010Lin, K.M., Juang, J.Y., Shiu, Y.W., Chang, L.F.W., 2016. Estimating the bowen ratio for application in air quality models by integrating a simplified analytical expression with measurement data. J. Appl. Meteorol. Climatol. https://doi.org/10.1175/ JAMC-D-15-0080.1Liu, M.-K., Yocke, M.A., 1980. Siting of wind turbine generators in complex terrain. J. Energy 4, 10–16.MacIntosh, D.L., Stewart, J.H., Myatt, T. a., Sabato, J.E., Flowers, G.C., Brown, K.W., Hlinka, D.J., Sullivan, D. a., 2010. Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmos. Environ. 44, 262–270. https://doi. org/10.1016/j.atmosenv.2009.09.023MADS, 2013. Programa de reducción de la contaminación del aire para las áreas fuente de la zona carbonífera del Cesar. Valleduprar.Maleki, H., Sorooshian, A., Goudarzi, G., Nikfal, A., Baneshi, M.M., 2016. Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 22, 135–140. https://doi.org/10.1016/j.aeolia.2016.08.006Mandal, K., Kumar, A., Tripathi, N., Singh, R.S., Chaulya, S.K., Mishra, P.K., Bandyopadhyay, L.K., 2012. Characterization of different road dusts in opencast coal mining areas of India. Environ. Monit. Assess. 184, 3427–3441. https://doi.org/10.1007/ s10661-011-2197-1Mandell, G.L., 2005. Mandell, Douglas, and Bennett&apos´s principles and practice of infectious diseases. karger.com.Ministerio de Minas y Energía, 2018. Análisis Minero [WWW Document]. Comport. la Prod. Minera en Colomb. URL https://www.minminas.gov.co/analisis-minero (accessed 1.21.18).Mueller, S.F., Mallard, J.W., Mao, Q., Shaw, S.L., 2015. Variability of natural dust erosion from a coal pile. J. Appl. Meteorol. Climatol. 54, 3–14. https://doi.org/10.1175/ JAMC-D-14-0126.1Muñoz, E., Busalacchi, A.J., Nigam, S., Ruiz-Barradas, A., 2008. Winter and summer structure of the Caribbean low-level jet. J. Clim. 21, 1260–1276. https://doi.org/10.1175/2007JCLI1855.1Muñoz, F., Carvalho, M.S., 2009. Effect of exposure time to PM10 on emergency admissions for acute bronchitis. Cad. Saude Publica 25, 529–539.Oleniacz, R., Rzeszutek, M., 2018. Intercomparison of the CALMET/CALPUFF Modeling System for Selected Horizontal Grid Resolutions at a Local Scale: A Case Study of the MSWI Plant in Krakow, Poland. Appl. Sci. 8, 2301.Ostro, B., 1995. 95/05299 Estimating the health effects of air pollutants: A method with an application to Jakarta, Fuel and Energy Abstracts. https://doi.org/10.1016/0140-6701(95)97038-LOtero, A., others, 2013. Rio Rancheria: Entre la economia, la biodiversidad y la cultura. Doc. Trab. sobre Econ. Reg. Banco la República. Cent. Estud. Económicos Reg. CEER. Cart.Patra, A.K., Gautam, S., Kumar, P., 2016. Emissions and human health impact of particulate matter from surface mining operation—A review. Environ. Technol. Innov. 5, 233–249. https://doi.org/10.1016/j.eti.2016.04.002Pisoni, E., Albrecht, D., Mara, T.A., Rosati, R., Tarantola, S., Thunis, P., 2018. Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool. Atmos. Environ. 183, 84–93.Pope, C.A., Bates, D. V, Raizenne, M.E., 1995. Health effects of particulate air pollution: time for reassessment? Environ. Health Perspect. 103, 472–480. https://doi. org/10.1289/ehp.95103472Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–41. https://doi.org/10.1001/ jama.287.9.1132Pope, C.A., Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution : Lines that Connect. Air Waste Manag. Assoc. 56, 709–742.Pope III, C.A., Hill, R.W., Villegas, G.M., 1999. Particulate Air Pollution and Daily Mortality on Utah’s Wasatch Front. Environ. Health Perspect. 107, 567–573. https:// doi.org/10.1289/ehp.99107567Posada, B., Henao, W., Guzman, G., 2009. Diagnóstico de la erosión en la zona costera del Caribe colombiano. Diagnóstico la erosión en la Zo. costera del Caribe Colomb. 124. https://doi.org/10.1159/000193188Poveda, G., 2004. La Hidroclimatología De Colombia: Una Síntesis Desde La Escala Inter-Decadal Hasta La Escala Diurna. Rev. la Acad. Colomb. Ciencias XXVIII, 201–222.Poveda, G., Mesa, O.J., Salazar, L.F., Arias, P.A., Moreno, H.A., Vieira, S.C., Agudelo, P.A., Toro, V.G., Alvarez, J.F., 2005. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather Rev. 133, 228–240. https://doi.org/10.1175/ MWR-2853.1Prospero, J.M., 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res. 104, 15917. https://doi.org/10.1029/1999JD900072Radelli, L., Forero, A., 1970. Acerca de la geologia de la Serrania de Perijá entre Codazzi y Villanueva (Magdalena-Guajira, Colombia). Geol. Colomb. 7, 7–77.Ramírez Builes, V.H., Jaramillo Robledo, Á., 2009. Balances de energía asociados a los cambios de cobertura en la zona andina colombiana. Cenicafé.Samoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., Dominici, F., Burnett, R., Cohen, A., Krewski, D., Samet, J., Katsouyanni, K., 2008. Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environ. Health Perspect. 116, 1480–1486. https://doi. org/10.1289/ehp.11345Sánchez-Triana, E., Ahmed, K., Awe, Y., 2007. Prioridades ambientales para la reducción de la pobreza en Colombia. Un análisis ambiental del país para Colombia, Banco Mund. ed. The International Bank for Reconstruction and Development/ The World Bank, Washington, DC.Santana, M.E.M., 2017. Parámetros de rugosidad representativos de terrenos naturales.Schutz, F., Massuquetti, A., Alves, T.W., 2013. Demanda e oferta energética : uma perspectiva mundial e nacional para o etanol. REGET 16, 3167–3186.Scire, J.S., Strimaitis, D.G., Yamartino, R.J., 2000. A User ’ s Guide for the CALPUFF Dispersion Model. Eearth Tech. Inc.Simon, H., Baker, K.R., Phillips, S., 2012. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 61, 124–139.Song, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 Mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci. Total Environ. 571, 1155–1163. https://doi.org/10.1016/j. scitotenv.2016.07.115Sud, Y.C., Shukla, J., Mintz, Y., Sud, Y.C., Shukla, J., Mintz, Y., 1988. Influence of Land Surface Roughness on Atmospheric Circulation and Precipitation: A Sensitivity Study with a General Circulation Model. J. Appl. Meteorol. 27, 1036–1054. https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2Sydow a, 2010. Encyclopedia of Life Support Systems, UNESCO. Elsevier.Tartakovsky, D., Broday, D.M., Stern, E., 2013. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ. Pollut. 179, 138–145. https://doi.org/10.1016/j.envpol.2013.04.023Tartakovsky, D., Stern, E., Broday, D.M., 2016. Dispersion of TSP and PM10 emissions from quarries in complex terrain. Sci. Total Environ. 542, 946–954. https://doi. org/10.1016/j.scitotenv.2015.10.133Toraño, J.A., Rodriguez, R., Diego, I., Rivas, J.M., Pelegry, A., 2007. Influence of the pile shape on wind erosion CFD emission simulation. Appl. Math. Model. 31, 2487–2502. https://doi.org/10.1016/j.apm.2006.10.012Trivedi, R., Mondal, A., Chakraborty, M.K., Tewary, B.K., 2010. A statistical analysis of ambient air quality around 969 opencast coal projects in wardha valley coalfields, western coal fields limited, India. Indian J. Environ. Prot. 30.Tschanz, C.M., Marvin, R.F., Cruz, B.J., Mehnert, H.H., Cebula, G.T., 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284.Turner, D.B., 1994. Workbook of Atmosphere Dispersion Estimates 1994, 1st ed. Lewis publishers, Chapel Hil North CarolinaUPME, 2017. Informe Departamental Minero-La Guajira.USEPA, 1995. Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors [WWW Document]. URL https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factorsValdés, D., Silverio, A.Q., González, Y., Santos, O.C., Díaz, A.S., Pinar, U. De, Técnicas, F.D.C., Física, D. De, Río, P., Pinar, U. De, Técnicas, F.D.C., Matemáticas, D. De, Río, P., 2015. Variación de la estabilidad y altura de la capa de mezcla en la ciudad de Pinar del Río : su relación con condiciones sinópticas. Rev. Bras. Meteorol. 30, 1–15. https://doi.org/10.1590/0102-778620140014Van Ulden, a. P., Holtslag, a. a. M., 1985. Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications. J. Clim. Appl. Meteorol. https://doi.org/10 .1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2van Zelm, R., Huijbregts, M. a J., den Hollander, H. a., van Jaarsveld, H. a., Sauter, F.J., Struijs, J., van Wijnen, H.J., van de Meent, D., 2008. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 42, 441–453. https://doi.org/10.1016/j.atmosenv.2007.09.072Venegas, L.E., Mazzeo, N.A., 2012. La velocidad del viento y la dispersión de contaminantes en la atmósfera. Argentina Cons. Nac. Investig. Cient. y Técnicas.WHO, 2016. Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization.Zhou, H., He, J., Zhao, B., Zhang, L., Fan, Q., Lü, C., Dudagula, Liu, T., Yuan, Y., 2016. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China. Atmos. Res. 178–179, 102–113. https://doi.org/10.1016/j.atmosres.2016.03.019Calidad del aireContaminación del aireSaneamiento ambientalInvestigación ambientalPublicationORIGINAL158. Modelacion de la calidad del aire -web-.pdf158. Modelacion de la calidad del aire -web-.pdfLibroapplication/pdf6322602http://dspace7-uniguajira.metabuscador.org/bitstreams/da5f2733-9720-4c06-90ca-47779e633569/download89b8343a122ed1612439af7a3a55d032MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828http://dspace7-uniguajira.metabuscador.org/bitstreams/f89b7a23-7fb3-4efc-94bf-784d52a92891/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXT158. Modelacion de la calidad del aire -web-.pdf.txt158. Modelacion de la calidad del aire -web-.pdf.txtExtracted texttext/plain274460http://dspace7-uniguajira.metabuscador.org/bitstreams/b89ecaa9-ac61-41fa-bf07-33eaa0ae5466/downloaddb28bcd9f2a54f26ac527d97f9cc5bd6MD53THUMBNAIL158. Modelacion de la calidad del aire -web-.pdf.jpg158. Modelacion de la calidad del aire -web-.pdf.jpgGenerated Thumbnailimage/jpeg18017http://dspace7-uniguajira.metabuscador.org/bitstreams/f096eda1-ae6c-4fa3-8873-236f622aa18a/download5ff2a13013bf5111f98a4957520c4485MD54uniguajira/749oai:dspace7-uniguajira.metabuscador.org:uniguajira/7492024-08-28 16:33:53.812open.accesshttp://dspace7-uniguajira.metabuscador.orgBiblioteca Digital Universidad de la Guajirarepositorio@uniguajira.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |