Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation
: figuras, tablas
- Autores:
-
Villada Castillo, Julian Felipe
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Pereira
- Repositorio:
- Repositorio Institucional UTP
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.utp.edu.co:11059/15553
- Acceso en línea:
- https://hdl.handle.net/11059/15553
https://repositorio.utp.edu.co/home
- Palabra clave:
- 370 - Educación
Realidad virtual - Equipo y accesorios
Telemedicina
Rehabilitación médica
Immersive Virtual Reality (IVR)
Exergame
User Experience (UX)
User-Centered Design (UCD)
Kinematic Adaptive System
Goniometry
Spasticity
Dimensionless Jerk
Playtesting
Neuroplasticity
Virtual Reality Neuroscience Questionnaire (VRNQ)
Adaptive Exergame
Telemedicine
Augmented Reality (AR)
Machine Learning (ML)
Rehabilitation
Fatigue
Physiatrist
Borg Scale
Wearable Sensors
Difficulty Adjusted Performance Index (DAPI)
Mechas
User Experience (UX)
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
UTP2_e9b409c306d6ccf20542cbb1295dad77 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.co:11059/15553 |
network_acronym_str |
UTP2 |
network_name_str |
Repositorio Institucional UTP |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
title |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
spellingShingle |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation 370 - Educación Realidad virtual - Equipo y accesorios Telemedicina Rehabilitación médica Immersive Virtual Reality (IVR) Exergame User Experience (UX) User-Centered Design (UCD) Kinematic Adaptive System Goniometry Spasticity Dimensionless Jerk Playtesting Neuroplasticity Virtual Reality Neuroscience Questionnaire (VRNQ) Adaptive Exergame Telemedicine Augmented Reality (AR) Machine Learning (ML) Rehabilitation Fatigue Physiatrist Borg Scale Wearable Sensors Difficulty Adjusted Performance Index (DAPI) Mechas User Experience (UX) |
title_short |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
title_full |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
title_fullStr |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
title_full_unstemmed |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
title_sort |
Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke Rehabilitation |
dc.creator.fl_str_mv |
Villada Castillo, Julian Felipe |
dc.contributor.advisor.none.fl_str_mv |
Muñoz, John Edison Gallo Henao, Oscar Alberto Lopez, Jose Fernando |
dc.contributor.author.none.fl_str_mv |
Villada Castillo, Julian Felipe |
dc.subject.ddc.none.fl_str_mv |
370 - Educación |
topic |
370 - Educación Realidad virtual - Equipo y accesorios Telemedicina Rehabilitación médica Immersive Virtual Reality (IVR) Exergame User Experience (UX) User-Centered Design (UCD) Kinematic Adaptive System Goniometry Spasticity Dimensionless Jerk Playtesting Neuroplasticity Virtual Reality Neuroscience Questionnaire (VRNQ) Adaptive Exergame Telemedicine Augmented Reality (AR) Machine Learning (ML) Rehabilitation Fatigue Physiatrist Borg Scale Wearable Sensors Difficulty Adjusted Performance Index (DAPI) Mechas User Experience (UX) |
dc.subject.armarc.none.fl_str_mv |
Realidad virtual - Equipo y accesorios Telemedicina Rehabilitación médica |
dc.subject.proposal.spa.fl_str_mv |
Immersive Virtual Reality (IVR) Exergame User Experience (UX) User-Centered Design (UCD) Kinematic Adaptive System Goniometry Spasticity Dimensionless Jerk Playtesting Neuroplasticity Virtual Reality Neuroscience Questionnaire (VRNQ) Adaptive Exergame Telemedicine Augmented Reality (AR) Machine Learning (ML) Rehabilitation Fatigue Physiatrist Borg Scale Wearable Sensors Difficulty Adjusted Performance Index (DAPI) Mechas User Experience (UX) |
description |
: figuras, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-12-05T14:26:56Z |
dc.date.available.none.fl_str_mv |
2024-12-05T14:26:56Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11059/15553 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad Tecnológica de Pereira |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.utp.edu.co/home |
url |
https://hdl.handle.net/11059/15553 https://repositorio.utp.edu.co/home |
identifier_str_mv |
Universidad Tecnológica de Pereira Repositorio Universidad Tecnológica de Pereira |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abd El-Kafy, E., Alshehri, M., El-Fiky, A., Guermazi, M., and Mahmoud, H. (2022). The effect of robot-mediated virtual reality gaming on upper limb spasticity post- stroke: a randomized-controlled trial. Games for health journal, 11(2):93–103. Aderinto, N., Olatunji, G., Abdulbasit, M., Edun, M., Aboderin, G., and Egbunu, E. (2023). Exploring the efficacy of virtual reality-based rehabilitation in stroke: a narrative review of current evidence. Annals of Medicine, 55(2):2285907. Ajani, O. and Mallipeddi, R. (2023). Pareto-based dynamic difficulty adjustment of a competitive exergame for arm rehabilitation. International Journal of Human- Computer Studies, 178:103100. Albanese, G., Bucchieri, A., Podda, J., Tacchino, A., Buccelli, S., De Momi, E., and Barresi, G. (2024). Robotic systems for upper-limb rehabilitation in multiple sclerosis: a swot analysis and the synergies with virtual and augmented environments. Frontiers in Robotics and AI, 11:1335147. Alder, G., Taylor, D., Rashid, U., Olsen, S., Brooks, T., Terry, G., Niazi, I. K., and Signal, N. (2023). A brain computer interface neuromodulatory device for stroke rehabilitation: Iterative user-centered design approach. JMIR Rehabilitation and Assistive Technologies, 10:e49702. Alt Murphy, M. and H¨ager, C. K. (2015). Kinematic analysis of the upper extremity after stroke–how far have we reached and what have we grasped? Physical Therapy Reviews, 20(3):137–155. Amorim, P., Serra, H., Sousa, B. S., Dias, P., Castelo-Branco, M., and Martins, H. (2023). Chronic stroke survivors’ perspective on the use of serious games to mo- tivate upper limb rehabilitation–a qualitative study. Health Informatics Journal, 29(2):14604582231171932. Andia, T., Alfonso, S., G´omez, J., Vargas, M., and Castro, C. (2023). Colombian health innovation landscape: Building bridges. Journal of Medical Research and Health Education, 3(2):12–21. Anwer, S., Waris, A., Gilani, S., Iqbal, J., Shaikh, N., Pujari, A., and Niazi, I. (2022). Rehabilitation of upper limb motor impairment in stroke: A narrative review on the prevalence, risk factors, and economic statistics of stroke and state of the art therapies. Healthcare, 10(2):190. Bavikatte, G., Subramanian, G., Ashford, S., Allison, R., and Hicklin, D. (2021). Early identification, intervention and management of post-stroke spasticity: ex- pert consensus recommendations. Journal of central nervous system disease, 13:11795735211036576. Ben Amara, B., Mhiri Sellami, H., and Ben Said, L. (2024). An approach for serious game design and development based on iterative evaluation. Journal of Software: Evolution and Process, page e2680. In press. Berglund, A., Jaarsma, T., Or¨add, H., Fallstr¨om, J., Str¨omberg, A., Klompstra, L., and Berglund, E. (2024). The application of a serious game framework to design and develop an exergame for patients with heart failure. JMIR Formative Research, 8:e50063. Borg, G. (1998). Borg’s perceived exertion and pain scales. Human kinetics. Bouatrous, A., Meziane, A., Zenati, N., and Hamitouche, C. (2023). A new adaptive vr- based exergame for hand rehabilitation after stroke. Multimedia Systems, 29(6):3385– 3402. Brunner, I., Skouen, J., Hofstad, H., Aßmus, J., Becker, F., Sanders, A., and Pallesen, H. (2017). Virtual reality training for upper extremity in subacute stroke (virtues): a multicenter rct. Neurology, 89(24):2413–2421. Bruno, F. and Muzzupappa, M. (2010). Product interface design: A participatory approach based on virtual reality. International journal of human-computer studies, 68(5):254–269. Brusola, G., Garcia, E., Albosta, M., Daly, A., Kafes, K., and Furtado, M. (2023). Effectiveness of physical therapy interventions on post-stroke spasticity: an umbrella review. NeuroRehabilitation, 52(3):349–363. Bryant, L., Sedlarevic, N., Stubbs, P., Bailey, B., Nguyen, V., Bluff, A., Barnett, D., Estela, M., Hayes, C., Jacobs, C., et al. (2022). Virtual reality in stroke rehabilitation: An overview. Journal of NeuroEngineering and Rehabilitation, 19(1):98–112. Camardella, C., Chiaradia, D., Bortone, I., Frisoli, A., and Leonardis, D. (2023). In- troducing wearable haptics for rendering velocity feedback in vr serious games for neuro-rehabilitation of children. Frontiers in Virtual Reality, 3:1019302. Cameir˜ao, M., Badia, S., Duarte, E., and Verschure, P. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative Neurology and Neuroscience, 29(5):287–298. Campo-Prieto, P., Cancela, J., and Rodr´ıguez-Fuentes, G. (2021). Immersive virtual reality as physical therapy in older adults: present or future (systematic review). Virtual Reality, 25(3):801–817. Castillo, J., Vega, M., Cardona, J., Lopez, D., Quin˜ones, L., Gallo, O., and Lopez, J. (2024a). Design of virtual reality exergames for upper limb stroke rehabilitation fol- lowing iterative design methods: usability study. JMIR Serious Games, 12(1):e48900. Castillo, J. F. V., Mun˜oz, J. E., Lopez, D., Lopez, J. F., and Gallo, O. H. (2024b). Exploratory analysis of game metrics of a multi-session study of a virtual reality exergame for stroke rehabilitation. In 2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH), pages 1–8. IEEE. Chan, Y., Tang, Y., and Teng, L. (2023). A comparative analysis of digital health usage intentions towards the adoption of virtual reality in telerehabilitation. International Journal of Medical Informatics, 174:105042. Charles, D., Holmes, D., Charles, T., and McDonough, S. (2020). Virtual reality design for stroke rehabilitation. Biomedical Visualisation: Volume 6, pages 53–87. Chen, J. and Eng, K. (2015). The efficacy of interactive computer gaming in stroke rehabilitation: a meta-analysis. Archives of Physical Medicine and Rehabilitation, 96(7):1223–1231. Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., and Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International journal of medical informatics, 123:11–22. Cho, Y., Hamm, J. M., Heckhausen, J., and Cramer, S. C. (2022). The role of goal adjustment during rehabilitation from stroke. Applied Psychology: Health and Well- Being, 14(1):26–43. Cho, Y., Hamm, J. M., Heckhausen, J., and Cramer, S. C. (2023). Downward adjust- ment of rehabilitation goals may facilitate post-stroke arm motor recovery. Psychology & Health, pages 1–17. Chu, C., Biss, R., Cooper, L., Quan, A., and Matulis, H. (2021). Exergaming platform for older adults residing in long-term care homes: user-centered design, development, and usability study. JMIR serious games, 9(1):e22370. Chung, J.-M. (2022). Emerging Metaverse XR and Video Multimedia Technologies. Apress, Berkeley, CA, USA. Cikajlo, I. and Matjaˇci´c, Z. (2007). Wii rehabilitation: video games help post-stroke patients. Science Daily. Cikajlo, I., Rudolf, M., Mainetti, R., and Borghese, N. (2020). Multi-exergames to set targets and supplement the intensified conventional balance training in patients with stroke: a randomized pilot trial. Frontiers in psychology, 11:572. Ciortea, V., Motoa¸sc˘a, I., Ungur, R., Borda, I., Ciubean, A., and Irsay, L. (2021). Telerehabilitation—a viable option for the recovery of post-stroke patients. Applied Sciences, 11(21):10116. Cobanoglu, A. (2023). The effect of range of motion exercises on functional inde- pendence and activities of daily living in patients with acute stroke: A randomized controlled study. Turkiye Klinikleri Journal of Nursing Sciences, 15(4):356–364. Cormio, L., Giaconi, C., Mengoni, M., and Santilli, T. (2024). Exploring game design approaches through conversations with designers. Design Studies, 91:101253. Crosbie, J., Lennon, S., McGoldrick, M., and McNeill, M. (2012). Virtual reality in stroke rehabilitation: still more virtual than real. Disability and Rehabilitation, 34(23):2035–2039. De Pasquale, P., Bonanno, M., Mojdehdehbaher, S., Quartarone, A., and Calabr`o, R. S. (2024). The use of head-mounted display systems for upper limb kinematic analysis in post-stroke patients: A perspective review on benefits, challenges and other solutions. Bioengineering, 11(6):538. Demeco, A., Zola, L., Frizziero, A., Martini, C., Palumbo, A., Foresti, R., and Costantino, C. (2023). Immersive virtual reality in post-stroke rehabilitation: a systematic review. Sensors, 23(3):1712. Duval, J. (2022). Playful health technology: A participatory, research through design approach to applications for wellness. University of California, Santa Cruz. Ekechukwu, E., Olowoyo, P., Nwankwo, K., Olaleye, O., Ogbodo, V., Hamzat, T., and Owolabi, M. (2020). Pragmatic solutions for stroke recovery and improved quality of life in low-and middle-income countries—a systematic review. Frontiers in Neurology, 11:337. Elor, A. and Kurniawan, S. (2020). The ultimate display for physical rehabilitation: A bridging review on immersive virtual reality. Frontiers in Virtual Reality, 1:585993. Espinosa, O., Puentes, G., Rodr´ıguez, J., Robayo, A., and Anaya, J. (2024). Science technology and innovation in health for the next twenty years: A survey analysis in colombia. Health Care Science, 3(2):78–87. Faria, A. L., Pinho, M. S., and Bermu´dez i Badia, S. (2020). A comparison of two personalization and adaptive cognitive rehabilitation approaches: a randomized con- trolled trial with chronic stroke patients. Journal of neuroengineering and rehabili- tation, 17:1–15. Fari´c, N., Smith, L., Hon, A., Potts, H., Newby, K., Steptoe, A., and Fisher, A. (2021). A virtual reality exergame to engage adolescents in physical activity: mixed methods study describing the formative intervention development process. Journal of medical Internet research, 23(2):e18161. FERNANDES, A. S. (2024). Evaluating visual-spatiotemporal co-registration of a physics-based virtual reality haptic interface. Figueiredo, A., Balbinot, G., Brauner, F., Schiavo, A., Baptista, R., Pagnussat, A., and Mestriner, R. (2020). Sparc metrics provide mobility smoothness assessment in oldest-old with and without a history of falls: a case control study. Front. Physiol., 11:1–11. Frank, L. (2024). Virtual reality and deep learning in therapy. Journal of Innovative Mental Health Care, 8(1):15–27. Gacar, B. and Kocako¸c, I˙. (2020). Regression analyses or decision trees? Manisa Celal Bayar U¨niversitesi Sosyal Bilimler Dergisi, 18(4):251–260. Gangwani, R., Cain, A., Collins, A., and Cassidy, J. (2022). Leveraging factors of self-efficacy and motivation to optimize stroke recovery. Frontiers in Neurology, 13:823202. Glegg, S. and Levac, D. (2018). Barriers, facilitators and interventions to support virtual reality implementation in rehabilitation: a scoping review. Journal of Neuro- Engineering and Rehabilitation, 15(1):1–20. Gonz´alez-Gonz´alez, C., Toledo-Delgado, P., Mun˜oz-Cruz, V., and Torres-Carrion, P. (2019). Serious games for rehabilitation: Gestural interaction in personalized gam- ified exercises through a recommender system. Journal of biomedical informatics, 97:103266. Harb, A. and Kishner, S. (2023). Modified ashworth scale. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554572/. Hasan, B. and Abdulazeez, A. (2021). A review of principal component analysis al- gorithm for dimensionality reduction. Journal of Soft Computing and Data Mining, 2(1):20–30. Herdy, A., L´opez-Jim´enez, F., Terzic, C., Milani, M., Stein, R., Carvalho, T., and Ilarraza- Lomel´ı, H. (2014). South american guidelines for cardiovascular disease pre- vention and rehabilitation. Arquivos brasileiros de cardiologia, 103(2 Suppl 1):1–31. Hogan, N. and Sternad, D. (2009). Sensitivity of smoothness measures to movement duration, amplitude, and arrests. Journal of motor behavior, 41(6):529–534. Holland, J. H. and Reitman, J. S. (1977). Cognitive systems based on adaptive algo- rithms. ACM SIGART Bulletin, (63):49–49. Holtzblatt, K. (2007). Disen˜o contextual. In The human-computer interaction handbook, pages 975–990. CRC press. Holtzblatt, K., Wendell, J., and Wood, S. (2004). Rapid contextual design: a how-to guide to key techniques for user-centered design. Elsevier. Huygelier, H., Mattheus, E., Abeele, V., Van Ee, R., and Gillebert, C. (2021). The use of the term virtual reality in post-stroke rehabilitation: a scoping review and commentary. Psychologica Belgica, 61(1):145. Huzaifa, M., Desai, R., Grayson, S., Jiang, X., Jing, Y., Lee, J., Lu, F., Pang, Y., Ravichandran, J., Sinclair, F., et al. (2020). Exploring extended reality with illixr: A new playground for architecture research. arXiv preprint arXiv:2004.04643. Islam, M. and Lim, S. (2022). Vibrotactile feedback in virtual motor learning: A systematic review. Applied Ergonomics, 101:103694. Jaros-lawski, S., Jaros-lawska, B., B-laszczyk, B., Auquier, P., and Toumi, M. (2020). Health- related quality of life of patients after ischaemic stroke treated in a provincial hospital in poland. Journal of market access & health policy, 8(1):1775933. Jeyakumar, V., Sundaram, P., Ramapathiran, N., and Kannan, P. (2022). Virtual reality- based rehabilitation gaming system. In Artificial Intelligence and Machine Learning for Healthcare: Vol. 2: Emerging Methodologies and Trends, pages 135– 180. Springer. Jia, X., Wang, Z., Huang, F., Su, C., Du, W., Jiang, H., and Zhang, B. (2021). A comparison of the mini-mental state examination (mmse) with the montreal cognitive assessment (moca) for mild cognitive impairment screening in chinese middle-aged and older population: a cross-sectional study. BMC psychiatry, 21:1–13. Jim´enez-Grande, D., Atashzar, S., Devecchi, V., Martinez-Valdes, E., and Falla, D. (2022). A machine learning approach for the identification of kinematic biomarkers of chronic neck pain during single-and dual-task gait. Gait & Posture, 96:81–86. Jung, H., Park, T., Mahyar, N., Park, S., Ryu, T., Kim, Y., and Lee, S. (2020). Rehabil- itation games in real-world clinical settings: Practices, challenges, and opportunities. ACM Transactions on Computer-Human Interaction (TOCHI), 27(6):1–43. Kabir, M., Abedin, M., Ahmed, R., Mahmud, H., and Hasan, M. (2022). Antasid: A novel temporal adjustment to shannon’s index of difficulty for quantifying the perceived difficulty of uncontrolled pointing tasks. IEEE Access, 10:21774–21786. Kang, D., Park, J., and Eun, S. (2023). Home-based virtual reality exergame program after stroke rehabilitation for patients with stroke: A study protocol for a multicenter, randomized controlled trial. Life, 13(12):2256. Khalid, U., Naeem, M., Stasolla, F., Syed, M., Abbas, M., and Coronato, A. (2024). Impact of ai-powered solutions in rehabilitation process: Recent improvements and future trends. International Journal of General Medicine, pages 943–969. Kim, B., Lee, D., Min, A., Paik, S., Frey, G., Bellini, S., and Shih, P. (2020a). Puz- zlewalk: A theory-driven iterative design inquiry of a mobile game for promoting physical activity in adults with autism spectrum disorder. Plos one, 15(9):e0237966. Kim, W. S., Cho, S. J., Ku, J. H., Kim, Y. B., Lee, K. W., Hwang, H. J., and Paik, N.- J. (2020b). Clinical application of virtual reality for upper limb motor rehabilitation in stroke: review of technologies and clinical evidence. Journal of clinical medicine, 9(10):3369. Kiper, P., Godart, N., Cavalier, M., Berard, C., Cie´slik, B., Federico, S., and Meroni, R. (2023). Effects of immersive virtual reality on upper-extremity stroke rehabilitation: A systematic review with meta-analysis. Journal of Clinical Medicine, 13(1):146. Kirginas, S. (2023). User experience evaluation methods for games in serious contexts. In Software Engineering for Games in Serious Contexts: Theories, Methods, Tools, and Experiences, pages 19–42. Springer Nature Switzerland. Kourtesis, P., Collina, S., Doumas, L. A., and MacPherson, S. E. (2019). Validation of the virtual reality neuroscience questionnaire: maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology. Frontiers in human neuroscience, 13:417. Krishnan, S., Mandala, M., Wolf, S., Howard, A., and Kesar, T. (2023). Perceptions of stroke survivors regarding factors affecting adoption of technology and exergames for rehabilitation. PM&R, 15(11):1403–1410. Kwakkel, G., van Peppen, R., Wagenaar, R., Wood-Dauphinee, S., Richards, C., Ash- burn, A., Miller, K., Lincoln, N., Partridge, C., Wellwood, I., and Langhorne, P. (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 35(11):2529–2539. Langhorne, P., Bernhardt, J., and Kwakkel, G. (2011). Stroke rehabilitation. The Lancet, 377(9778):1693–1702. Laver, K., George, S., Thomas, S., Deutsch, J., and Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (2):CD008349. Lavis, H., van Vliet, P., and Tavener, M. (2023). Stroke survivor, caregiver and therapist experiences of home-based stroke rehabilitation: a thematic synthesis of qualitative studies. Physical Therapy Reviews, 28(2):157–173. Le Franc, S., Herrera Altamira, G., Guillen, M., Butet, S., Fleck, S., L´ecuyer, A., and Bonan, I. (2022). Toward an adapted neurofeedback for post-stroke motor re- habilitation: state of the art and perspectives. Frontiers in Human Neuroscience, 16:917909. Lee, G.-H. (2023). Improving cognition and motor performances through fully immer- sive virtual reality using on a head mount device among patients with chronic stroke. APJCRI, 9:579–588. Lehmann, I., Baer, G., and Schuster-Amft, C. (2020). Experience of an upper limb training program with a non-immersive virtual reality system in patients after stroke: a qualitative study. Physiotherapy, 107:317–326. Levin, M. and Demers, M. (2020). Motor learning in virtual reality. In Virtual Reality for Physical and Motor Rehabilitation, pages 25–48. Springer, Cham. Li, Y., Mun˜oz, J., Mehrabi, S., Middleton, L., Cao, S., and Boger, J. (2020). Disen˜o iterativo multidisciplinario de juegos de ejercicios (mide): un marco para respaldar el disen˜o, desarrollo y evaluaci´on de juegos de ejercicios para la salud. In HCI in Games: Second International Conference, HCI-Games 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings 22, pages 128–147. Springer International Publishing. Liu, Y., Guo, S., Yang, Z., Hirata, H., and Tamiya, T. (2022). A home-based tele- rehabilitation system with enhanced therapist-patient remote interaction: A feasibil- ity study. IEEE Journal of Biomedical and Health Informatics, 26(8):4176–4186. Lohse, K., Boyd, L., and Hodges, N. (2014a). Engaging environments and personalized training: implications for the design of effective rehabilitation programs. Journal of Neurologic Physical Therapy, 38(3):154–161. Lohse, K., Hilderman, C., Cheung, K., Tatla, S., and Van der Loos, H. (2014b). Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis explor- ing virtual environments and commercial games in therapy. PLoS One, 9(3):e93318. Lohse, K., Shirzad, N., Verster, A., Hodges, N., and Van der Loos, H. (2013). Video games and rehabilitation: using design principles to enhance engagement in physical therapy. Journal of neurologic physical therapy, 37(4):166–175. Luo, Z., Lim, A. E. P., Durairaj, P., Tan, K. K., and Verawaty, V. (2023). Development of a compensation-aware virtual rehabilitation system for upper extremity rehabili- tation in community-dwelling older adults with stroke. Journal of NeuroEngineering and Rehabilitation, 20(1):56. Luong, T., Martin, N., Raison, A., Argelaguet, F., Diverrez, J.-M., and L´ecuyer, A. (2020). Towards real-time recognition of users mental workload using integrated physiological sensors into a vr hmd. In 2020 IEEE international symposium on mixed and augmented reality (ISMAR), pages 425–437. IEEE. Maggio, M. G., Latella, D., Maresca, G., Sciarrone, F., Manuli, A., Naro, A., and Calabr`o, R. S. (2019). Virtual reality and cognitive rehabilitation in people with stroke: an overview. Journal of Neuroscience Nursing, 51(2):101–105. Mahmood, A., Deshmukh, A., Natarajan, M., Marsden, D., Vyslysel, G., Padicka- parambil, S., and Solomon, J. (2022). Development of strategies to support home- based exercise adherence after stroke: a delphi consensus. BMJ open, 12(1):e055946. Maier, M., Ballester, B., Duarte, E., and Verschure, P. (2019). Effect of specific over nonspecific vr-based rehabilitation on poststroke motor recovery: a systematic meta- analysis. Neurorehabilitation and Neural Repair, 33(2):112–129. Martins, S. C. O., Lavados, P., Secchi, T. L., Brainin, M., Ameriso, S., Gongora-Rivera, F., Sacks, C., Cantu´-Brito, C., Alvarez Guzman, T. F., P´erez-Romero, G. E., et al. (2021). Fighting against stroke in latin america: a joint effort of medical professional societies and governments. Frontiers in neurology, 12:743732. Maskeliu¯nas, R., Damaˇseviˇcius, R., Blaˇzauskas, T., Canbulut, C., Adomaviˇcien¯e, A., and Griˇskeviˇcius, J. (2023). Biomacvr: A virtual reality-based system for precise human posture and motion analysis in rehabilitation exercises using depth sensors. Electronics, 12(2):339. Medeiros, C. S. P. d., Farias, L. B. A., Santana, M. C. d. L., Pacheco, T. B. F., Dantas, R. R., and Cavalcanti, F. A. d. C. (2024). A systematic review of exergame usability as home-based balance training tool for older adults usability of exergames as home- based balance training. PloS one, 19(8):e0306816. Medina, J. L. P., Acosta-Vargas, P., and Rybarczyk, Y. (2019). A systematic review of usability and accessibility in tele-rehabilitation systems. Assistive and Rehabilitation Engineering, 1357633X2098603. Milot, M. H., L´eonard, G., Corriveau, H., and Desrosiers, J. (2019). Using the borg rat- ing of perceived exertion scale to grade the intensity of a functional training program of the affected upper limb after a stroke: a feasibility study. Clinical Interventions in Aging, pages 9–16. Mirza-Babaei, P., Stahlke, S., Wallner, G., and Nova, A. (2020). A postmortem on playtesting: Exploring the impact of playtesting on the critical reception of video games. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12. ACM. Missura, O. (2015). Dynamic difficulty adjustment. PhD thesis, Universit¨ats-und Lan- desbibliothek Bonn. Moan, M., Vonstad, E., Su, X., Vereijken, B., Solbjør, M., and Skjæret-Maroni, N. (2021). Experiences of stroke survivors and clinicians with a fully immersive vir- tual reality treadmill exergame for stroke rehabilitation: a qualitative pilot study. Frontiers in Aging Neuroscience, 13:735251. Montoya, M. F., Villada, J. F. V., Cardona, J. E. M., Gallo, O. A. H., and L´opez, J. F. (2022). Disen˜o contextual para la creaci´on de videojuego basado en realidad virtual usado en terapia de rehabilitaci´on f´ısica en personas con accidente cerebrovascular. Revista EIA, 19(38):3817–pp. Morrow, K., Docan, C., Burdea, G., and Merians, A. (2006). Low-cost virtual re- habilitation of the hand for patients post-stroke. In Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications, pages 6–9. Mouawad, M., Doust, C., Max, M., and McNulty, P. (2011). Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. Journal of Rehabilitation Medicine, 43(6):527–533. Mubarrat, S. T., Chowdhury, S., and Fernandes, A. S. (2024). Evaluating visual- spatiotemporal co-registration of a physics-based virtual reality haptic interface. IEEE Access. Mugisha, S., Job, M., Zoppi, M., Testa, M., and Molfino, R. (2022). Computer-mediated therapies for stroke rehabilitation: A systematic review and meta-analysis. Journal of Stroke and Cerebrovascular Diseases, 31(6):106454. Mun˜oz, J., Ali, F., Basharat, A., Mehrabi, S., Barnett-Cowan, M., Cao, S., and Boger, J. (2023). Development of classifiers to determine factors associated with older adult’s cognitive functions and game user experience in vr using head kinematics. IEEE Transactions on Games. Mun˜oz, J., Gon¸calves, A., Ru´bio Gouveia, E´., Cameir˜ao, M., and Bermudez i Badia, S. (2019). Lessons learned from gamifying functional fitness training through human- centered design methods in older adults. Games for health journal, 8(6):387–406. Mun˜oz, J., Mehrabi, S., Li, Y., Basharat, A., Middleton, L., Cao, S., and Boger, J. (2022). Immersive virtual reality exergames for persons living with dementia: user- centered design study as a multistakeholder team during the covid-19 pandemic. JMIR Serious Games, 10(1):e29987. Mustafa, T., Matovu, R., Serwadda, A., and Muirhead, N. (2018). Unsure how to authenticate on your vr headset? come on, use your head! In Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics, pages 23– 30. ACM. Nascimento, L. M. S. D., Bonfati, L. V., Freitas, M. L. B., Mendes Junior, J. J. A., Siqueira, H. V., and Stevan Jr, S. L. (2020). Sensors and systems for physical reha- bilitation and health monitoring—a review. Sensors, 20(15):4063. Nath, D., Singh, N., Saini, M., Banduni, O., Kumar, N., Srivastava, M., and Mehndi- ratta, A. (2024). Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot obser- vational study. Disability and Rehabilitation, 46(12):2640–2649. Nielsen, L. (2013). Personas-user focused design, volume 15. Springer. Noblet, T., Marriott, J., Jones, T., Dean, C., and Rushton, A. (2019). Perceptions about the implementation of physiotherapist prescribing in australia: a national survey of australian physiotherapists. BMJ open, 9(5):e024991. Norouzi-Gheidari, N., Hernandez, A., Archambault, P., Higgins, J., Poissant, L., and Kairy, D. (2020). Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. International journal of environmental research and public health, 17(1):113. Oosterwijk, A. M., Nieuwenhuis, M. K., van der Schans, C. P., and Mouton, L. J. (2018). Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review. Physiotherapy theory and practice, 34(7):505–528. Owens, J., Rauzi, M., Kittelson, A., Graber, J., Bade, M., Johnson, J., and Nabhan, D. (2020). How new technology is improving physical therapy. Current Reviews in Musculoskeletal Medicine, 13:200–211. O¨ zkul, F., Palaska, Y., Masazade, E., and Erol-Barkana, D. (2019). Exploring dynamic difficulty adjustment mechanism for rehabilitation tasks using physiological measures and subjective ratings. IET Signal Processing, 13(3):378–386. Palomares-Pecho, J. M., Silva-Calpa, G. F. M., and Raposo, A. B. (2021). End-user adaptable technologies for rehabilitation: a systematic literature review. Universal Access in the Information Society, 20(2):299–319. Paraschos, P. and Koulouriotis, D. (2023). Game difficulty adaptation and experience personalization: A literature review. International Journal of Human–Computer Interaction, 39(1):1–22. Parger, M., Tang, C., Xu, Y., Twigg, C. D., Tao, L., Li, Y., et al. (2021). Unoc: Understanding occlusion for embodied presence in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 28(12):4240–4251. el´aez-V´elez, F., Eckert, M., Gacto-S´anchez, M., and Mart´ınez-Carrasco, A´. (2023). Use of virtual reality and videogames in the physiotherapy treatment of stroke pa- tients: a pilot randomized controlled trial. International journal of environmental research and public health, 20(6):4747. Pezzera, M. and Borghese, N. (2020). Dynamic difficulty adjustment in exer-games for rehabilitation: a mixed approach. Phelan, I., Carrion-Plaza, A., Furness, P. J., and Dimitri, P. (2023). Home-based immersive virtual reality physical rehabilitation in paediatric patients for upper limb motor impairment: a feasibility study. Virtual reality, 27(4):3505–3520. Piron, L., Turolla, A., Agostini, M., Zucconi, C., Cortese, F., Tonin, P., and Dam, M. (2009). Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. Journal of Rehabilitation Research and Development, 46(2):121–128. Pohl, J., Held, J. P. O., Verheyden, G., Alt Murphy, M., Engelter, S., Fl¨oel, A., Keller, T., Kwakkel, G., Nef, T., Ward, N., et al. (2020). Consensus-based core set of outcome measures for clinical motor rehabilitation after stroke—a delphi study. Frontiers in neurology, 11:875. Postolache, O., Hemanth, D. J., Alexandre, R., Gupta, D., Geman, O., and Khanna, A. (2020). Remote monitoring of physical rehabilitation of stroke patients using iot and virtual reality. IEEE Journal on Selected Areas in Communications, 39(2):562–573. Potter, T. B., Pratap, S., Nicolas, J. C., Khan, O. S., Pan, A. P., Bako, A. T., Hsu, E., Johnson, C., Jefferson, I. N., Adegbindin, S. K., et al. (2023). A neuro-informatics pipeline for cerebrovascular disease: Research registry development. JMIR Formative Research, 7:e40639. Prange, G., Jannink, M., Groothuis-Oudshoorn, C., Hermens, H., and Ijzerman, M. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 43(2):171. Proffitt, R. and Lange, B. (2015). Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward. Physical therapy, 95(3):441–448. Puzi, A., Sidek, S., Khairuddin, I., Yusof, H., and Rosly, H. (2018). Inter-rater and intra- rater reliability of quantitative upper limb spasticity evaluation based on modified ashworth scale tool. Pyae, A., Luimula, M., and Smed, J. (2015). Understanding stroke patients’ motivation for motivation-driven rehabilitative game design. In Internet of Things. User-Centric IoT: First International Summit, IoT360 2014, Rome, Italy, October 27-28, 2014, Revised Selected Papers, Part I, pages 99–111. Springer. Rahamatali, M., De Bont, N., Valet, M., Halkin, V., Hanson, P., Deltombe, T., and Selves, C. (2021). Post-stroke fatigue: how it relates to motor fatigability and other modifiable factors in people with chronic stroke. Acta Neurologica Belgica, 121:181– 189. R´ıos, J., Marcela, D., Moriones, S., Lucia, O., and Hurtado, M. (2015). Estrategias de intervenci´on de fisioterapia en neurorehabilitaci´on utilizadas en colombia: Revisi´on bibliogr´afica. Revista Movimiento Cient´ıfico, 9(1):60–66. Ritter, E., Baxter, D., and Churchill, F. (2014). Foundations for designing user-centered systems: What system designers need to know about people. Springer-Verlag London. Rizzo, A., Buckwalter, J., and Neumann, U. (1997). Virtual reality and cognitive rehabilitation: a brief review of the future. Journal of Head Trauma Rehabilitation, 12(6):1–15. Rizzo, A. and Kim, G. (2005). A swot analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators & Virtual Environments, 14(2):119–146. Rizzo, A., Schultheis, M., Kerns, K., and Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1-2):207–239. Rodr´ıguez-Hern´andez, M., Polonio-L´opez, B., Corregidor-S´anchez, A. I., Mart´ın-Conty, J. L., Mohedano-Moriano, A., and Criado-A´lvarez, J. J. (2023). Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? a randomized clinical trial. Journal of NeuroEngineering and Rehabilita- tion, 20(1):38. R´ozsa, S., Hargitai, R., L´ang, A., Osv´ath, A., Hupuczi, E., Tam´as, I., and K´allai, J. (2022). Measuring immersion, involvement, and attention focusing tendencies in the mediated environment: The applicability of the immersive tendencies questionnaire. Frontiers in Psychology, 13:931955. Rybensk´a, K., Knapov´a, L., Janiˇs, K., Ku¨hnov´a, J., Cimler, R., and Elavsky, S. (2024). Smart technologies in older adult care: a scoping review and guide for caregivers. Journal of Enabling Technologies. Sampaio, M., Navarro Haro, M., De Sousa, B., Vieira Melo, W., and Hoffman, H. (2021). Therapists make the switch to telepsychology to safely continue treating their patients during the covid-19 pandemic. virtual reality telepsychology may be next. Frontiers in Virtual Reality, 1:576421. Saposnik, G., Levin, M., and Group, O. R. C. S. W. (2011). Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke, 42(5):1380– 1386. Sarker, A., Emenonye, D.-R., Kelliher, A., Rikakis, T., Buehrer, R. M., and Asbeck, A. T. (2022). Capturing upper body kinematics and localization with low-cost sensors for rehabilitation applications. Sensors, 22(6):2300. Scarpa, M., Prilletensky, I., McMahon, A., Myers, N., Prilleltensky, O., Lee, S., and Brincks, A. (2021a). Is fun for wellness engaging? evaluation of user experience of an online intervention to promote physical and emotional wellbeing. Journal of Medical Internet Research, 23(5):e17129. Scarpa, M. P., Prilleltensky, I., McMahon, A., Myers, N. D., Prilleltensky, O., Lee, S., and Brincks, A. M. (2021b). Is fun for wellness engaging? evaluation of user experience of an online intervention to promote well-being and physical activity. Frontiers in Computer Science, 3:690389. Sch¨attin, A., H¨afliger, S., Meyer, A., Fru¨h, B., B¨ockler, S., Hungerbu¨hler, Y., and Martin-Niedecken, A. (2021). Design and evaluation of user-centered exergames for patients with multiple sclerosis: multilevel usability and feasibility studies. JMIR Serious Games, 9(2):e22826. Sch¨attin, A., Pickles, J., Flagmeier, D., Sch¨arer, B., Riederer, Y., Niedecken, S., and Martin-Niedecken, A. (2022). Development of a novel home-based exergame with on-body feedback: usability study. JMIR Serious Games, 10(4):e38703. Schell, J. (2008). The Art of Game Design: A book of lenses. CRC press. Schuster-Amft, C., Eng, K., Lehmann, I., Schmid, L., and Thaler, I. (2014). Using mixed reality in stroke rehabilitation: a pilot study to explore physical and virtual feedback modalities. International Journal of Rehabilitation Research, 37(3):225–232. Servotte, J.-C., Goosse, M., Campbell, S. H., Dardenne, N., Pilote, B., Simoneau, I. L., Guillaume, M., Bragard, I., and Ghuysen, A. (2020). Virtual reality experience: Immersion, sense of presence, and cybersickness. Clinical Simulation in Nursing, 38:35–43. Shahid, J., Kashif, A., and Shahid, M. K. (2023). A comprehensive review of physical therapy interventions for stroke rehabilitation: impairment-based approaches and functional goals. Brain Sciences, 13(5):717. Sharma, R., Dasgupta, A., Cheng, R., Mishra, C., and Nagaraja, V. H. (2022). Machine learning for musculoskeletal modeling of upper extremity. IEEE Sensors Journal, 22(19):18684–18697. Sia, L., Sharma, S., May, J., Kumar, S., and Singh, D. (2024). Physiotherapists’ perceptions, readiness, enablers, and barriers to use telerehabilitation: A scoping review. Journal of Back and Musculoskeletal Rehabilitation, pages 1–14. Silva-Sieger, F., Garz´on-Hern´andez, J., Mendoza-S´anchez, J., Arias, C., and Ortiz, H. (2021). Costos directos asumidos por pacientes y gastos de bolsillo en acv isqu´emico durante el primer an˜o. Revista de Salud Pu´blica, 23(4):134–145. Smuck, M., Odonkor, C. A., Wilt, J. K., Schmidt, N., and Swiernik, M. A. (2021). The emerging clinical role of wearables: factors for successful implementation in healthcare. NPJ digital medicine, 4(1):1–8. Somrak, A., Pogaˇcnik, M., and Guna, J. (2021a). Impact of different types of head- centric rest-frames on vrise and user experience in virtual environments. Applied Sciences, 11(4):1593. Somrak, A., Pogaˇcnik, M., and Guna, J. (2021b). Suitability and comparison of ques- tionnaires assessing virtual reality-induced symptoms and effects and user experience in virtual environments. Sensors, 21(4):1185. Song, Z., Zhang, X., Xu, X., Dong, J., Li, W., Jan, Y.-K., and Pu, F. (2024). The effects of immersion and visuo-tactile stimulation on motor imagery in stroke patients are related to the sense of ownership. IEEE Transactions on Neural Systems and Rehabilitation Engineering. Stahlke, S., Nova, A., and Mirza-Babaei, P. (2020). Artificial players in the design process: Developing an automated testing tool for game level and world design. In Proceedings of the annual symposium on computer-human interaction in play, pages 267–280. Stephenson, A., Howes, S., Murphy, P., Deutsch, J., Stokes, M., Pedlow, K., and Mc- Donough, S. (2022). Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PLoS One, 17(5):e0265828. Tao, G., Garrett, B., Taverner, T., Cordingley, E., and Sun, C. (2021). Immersive virtual reality health games: a narrative review of game design. Journal of Neuro- Engineering and Rehabilitation, 18:1–21. Toglia, J., Fitzgerald, K. A., O’Dell, M. W., Mastrogiovanni, A. R., and Lin, C. D. (2011). The mini-mental state examination and montreal cognitive assessment in persons with mild subacute stroke: relationship to functional outcome. Archives of physical medicine and rehabilitation, 92(5):792–798. Tosto-Mancuso, J., Tabacof, L., Herrera, J., Breyman, E., Dewil, S., Cortes, M., and Putrino, D. (2022). Gamified neurorehabilitation strategies for post-stroke motor recovery: challenges and advantages. Current Neurology and Neuroscience Reports, 22(3):183–195. Trejos, A. L. (2012). A sensorized instrument for minimally invasive surgery for the measurement of forces during training and surgery: development and applications. The University of Western Ontario (Canada). Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., and Piron, L. (2013). Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of NeuroEngineering and Rehabilita- tion, 10(1):85. Vasiljevas, M., Damaˇseviˇcius, R., and Maskeliu¯nas, R. (2023). A human-adaptive model for user performance and fatigue evaluation during gaze-tracking tasks. Electronics, 12(5):1130. Ventura, S., Ottoboni, G., Lullini, G., Chattat, R., Simoncini, L., Magni, E., et al. (2023). Co-designing an interactive artificial intelligent system with post-stroke pa- tients and caregivers to augment the lost abilities and improve their quality of life: a human-centric approach. Frontiers in Public Health, 11:1227748. Villada, J., Montoya, M., Mun˜oz, J., Henao, O., and L´opez, J. (2022). Disen˜o contextual para la creaci´on de exergame basado en realidad virtual usado en terapia de rehabil- itaci´on f´ısica en personas con accidente cerebrovascular. Revista EIA, 19(38):3817. Vismara, L., Ferraris, C., Amprimo, G., Pettiti, G., Buffone, F., Tarantino, A., and Priano, L. (2024). Exergames as a rehabilitation tool to enhance the upper limbs func- tionality and performance in chronic stroke survivors: a preliminary study. Frontiers in Neurology, 15:1347755. Voight, J. (2021). Quaternion algebras. Springer Nature. White, P., Moussavi, Z., and Overvliet, K. (2018). The effects of virtual reality on anx- iety and comfort in adults with stroke during rehabilitation: a randomized controlled trial. JMIR Rehabilitation and Assistive Technologies, 5(1):e10967. Wilcoxon, F., Katti, S., and Wilcox, R. (1970). Critical values and probability levels for the wilcoxon rank sum test and the wilcoxon signed rank test. Selected tables in mathematical statistics, 1:171–259. Winter, C., Kern, F., Gall, D., Latoschik, M. E., Pauli, P., and K¨athner, I. (2021). Immersive virtual reality during gait rehabilitation increases walking speed and mo- tivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Journal of neuroengineering and rehabilitation, 18(1):68. Wu, J., Zeng, A., Chen, Z., Wei, Y., Huang, K., Chen, J., and Ren, Z. (2021). Effects of virtual reality training on upper limb function and balance in stroke patients: systematic review and meta-meta-analysis. Journal of medical Internet research, 23(10):e31051. Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., and Saeed, J. (2020). A com- prehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends, 1(1):56–70. Zhang, S., Cheng, S., Zhang, Z., Wang, C., Wang, A., and Zhu, W. (2021). Related risk factors associated with post-stroke fatigue: a systematic review and meta-analysis. Neurological Sciences, 42:1463–1471. Ziefle, M., editor (2010). Human-centered design of e-health technologies: concepts, methods and applications. IGI Global. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
177 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.none.fl_str_mv |
Pereira |
publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
institution |
Universidad Tecnológica de Pereira |
bitstream.url.fl_str_mv |
https://repositorio.utp.edu.co/bitstreams/23ccb606-e861-43a6-b397-44b870c0806b/download https://repositorio.utp.edu.co/bitstreams/c7fc7e9b-7c66-424f-b5a0-1762e9d1954b/download https://repositorio.utp.edu.co/bitstreams/f33c31b0-f099-4aae-b02a-48ea498603f6/download https://repositorio.utp.edu.co/bitstreams/02599242-7d51-4206-b03e-7b4d8e2a7b77/download https://repositorio.utp.edu.co/bitstreams/d16fe66c-006d-4b01-8665-a49ff1534bb6/download |
bitstream.checksum.fl_str_mv |
87f124dbc6fae437e9e5a04dbf82cc68 73a5432e0b76442b22b026844140d683 c74c2b77d87077912b4aef7436d8cdcb b6bcff99a2e59dbcea9d0ea8363086d4 0fd40b9ed41906fc1000ccf194234d9e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica de Pereira |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1828202055227932672 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizacióNhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessMuñoz, John EdisonGallo Henao, Oscar AlbertoLopez, Jose FernandoVillada Castillo, Julian Felipe2024-12-05T14:26:56Z2024-12-05T14:26:56Z2024https://hdl.handle.net/11059/15553Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/home: figuras, tablasEsta tesis presenta el diseño o desarrollo y evaluación de un exergame adaptativo basado en Realidad Virtual Inmersiva (IVR), denominado Motion Health VR, como una herramienta complementaria para la rehabilitación del miembro superior en pacientes con stroke. La investigación aborda las limitaciones de los métodos tradicionales de rehabilitación caracterizados por la monotonía de los ejercicios, la falta de personalización y las dificultades para mantener la motivación y la adherencia de los pacientes. A través de un enfoque innovador que combina el diseño centrado en el usuario (UCD) con tecnologías adaptativas avanzadas, esta tesis propone una solución terapéutica interactiva, inmersiva y efectiva que busca maximizar los beneficios clínicos mientras mejora la experiencia del paciente. El desarrollo de Motion Health VR se fundamentó en principios de diseño centrado en el usuario (UCD), asegurando que las necesidades y limitaciones específicas de los pacientes con stroke guiaran cada etapa del proceso. Este enfoque involucró activamente a pacientes, terapeutas y especialistas en todas las fases del diseño desde la conceptualización hasta la implementación. Durante el desarrollo, se realizaron múltiples iteraciones de pruebas de usuario ( playtesting), lo que permitió refinar continuamente las mecánicas del juego, ajustar la interfaz y garantizar la efectividad del exergame.Introduction to Immersive Virtual Reality (IVR) in Rehabilitation 3 Background and Importance 3 Technological Advances 4 Clinical Applications and Benefits in Stroke 5 Current Research and Future Directions 6 Problem Statement 7 Challenges in Traditional Rehabilitation in Stroke 7 Accessibility and Economic Burden 8 Summary of Limitations of Current IVR Solutions . . . 9 Research Gaps and Opportunities 10 Research Motivation 12 Potential of IVR in Stroke Rehabilitation 12 Enhancing Patient Engagement and Adherence 12 Personalization and Adaptability 13 Optimizing User Experience and Functional Recovery . 14 Research Contribution 15 UCD and Iterative Design with Playtesting in the De- velopment of Motion Health VR for Post-Stroke Reha- bilitation. 15 Evaluation of the Personalized Exergames for Post- Stroke Home Rehabilitation and Exploratory Analysis of Game Metrics 15 Kinematic Analysis and Real-Time Adaptation Refine- ment in Exergames for Post-Stroke Rehabilitation 16 Clinical and Functional Efficacy of an Adaptive Ex- ergame in Post-Stroke Rehabilitation: Insights from Mo- tor Functions and Game User Experience 17 General Discussion, Conclusions, Limitations, and Fu- ture Work. 18 Publications and Conferences During the Doctoral Program . 18 UCD and Iterative Design with Playtesting in the Development of Motion Health IVR for Post-Stroke Rehabilitation. 22 Introduction 22 User Centered Design 23 Introduction to UCD in Rehabilitation Technologies 23 Methodology 24 Results 31 Conclusions from Archetype Analysis 37 Iterations of Playtesting in the Development of IVR Exergames for Post-Stroke Rehabilitation 37 The Importance of Playtesting in Exergame Development 37 Playtesting Methodology 38 Analysis of Playtesting Sessions 41 Clinical Perceptions and Feasibility Analysis of Motion Health VR in Post-Stroke Rehabilitation 47 Importance of Clinical Validation 47 Study Methodology 47 Study Results 50 Chapter Overview 53 Evaluation of the Personalized Exergame for Post-Stroke Home Re- habilitation and Exploratory Analysis of Game Metrics 55 Introduction 55 Study Objectives 56 Methodology 57 Study Design 57 Patient Selection 57 Inclusion Criteria: 58 Exclusion Criteria: 58 Demographic Profile: 59 Intervention Protocol 59 Clinical and Game User Experience Assessments 60 IVR Game User Experience: 61 Cognitive assessment and self-perceived health assessment 62 Game Metrics 62 Difficulty-Adjusted Performance Index (DAPI): 63 Data Analysis 64 Results 64 Mobility and Physical Activity 65 3.4.2 Modified Ashworth Spasticity Scale: 65 3.4.3 ITQ 66 3.4.4 VRNQ 67 3.4.5 Borg Fatigue Scale 67 3.4.6 Satisfaction Questionnaire 67 3.4.7 Game Metrics and DAPI Evaluation 69 3.4.8 Generalized Game Performance and DAPI Evaluation: . 71 3.4.9 Chapter Overview 73 Kinematic Analysis and Real-Time Adaptation Refinement in Ex- ergames for Post-Stroke Rehabilitation 74 Introduction 74 Methodology 74 Kinematic Data Collection: 74 IK Model Implementation 75 Dimensionality Reduction and Principal Component Analysis (PCA) 79 Classifier Analysis 79 Implementation of the Adaptive System Based on Di- mensionless Jerk 80 Improvements Implemented in Motion Health VR 82 Exploration of Advanced Methodologies for Real-Time Adaptation 83 Adaptability Process of Difficulty in Motion Health VR 85 Results 87 Overall Results 87 Playtest 1: Evaluation of the Environmental Graphical Enhancement 87 Playtest 2: Evaluation of the Auditory Guide and Feed- back 87 Playtest 3: Evaluation of the Base Difficulty System and Scenario 88 Playtest 4: Evaluation of Real-Time Difficulty Adapt- ability 89 Chapter Overview 91 Clinical and Functional Efficacy of an Adaptive Exergame in Post- Stroke Rehabilitation: Insights from Motor Functions and Game User Experience 92 Introduction 92 Methodology 92 Comparative Study 92 Session Structure 93 Inclusion and Exclusion Criteria 94 Hardware and Visualization 97 Outcome Measures 98 Movement and Physical Activity 98 Game User Experience in IVR Game 98 Game Metrics 99 Boxes Mechanic 99 5.4.2 Tejos Mechanic 99 5.4.3 Branches Mechanic 99 5.5 DAPI 100 5.5.1 Procedure 100 Results 101 ROM Assesment 101 Modified Ashworth Spasticity Scale 101 ITQ 103 VRNQ 103 Borg Fatigue Scale 106 Satisfaction Questionnaire 107 Game Metrics 108 DAPI Analysis 110 Chapter Overview 110 General Discussion, Conclusions, Limitations and Future Work. 112 UCD and, Cultural Integration and Iterative Development 112 Diversity in Physical and Cognitive Limitations 112 Cultural Integration and Contextual Relevance 112 Challenges in Cultural Integration 113 Iterative Design and Playtesting 113 Identifying Challenges and Continuous Improvement 114 User Experience of IVR in Stroke 115 Immersion and Engagement 115 Satisfaction and Enjoyment: Test Comparison 116 Motivation and Long-Term Adherence 117 Clinical Outcomes: Mobility, Spasticity, and Perceived Fatigue 118 Mobility Improvements 118 Spasticity Reduction 118 Perceived Fatigue and Therapy Sustainability 119 Comparative Overview: Control vs. Experimental Groups120 Game Metrics 121 The Role of Kinematic Adaptation 122 Real-Time Task Difficulty Adjustment 122 Personalized Therapy and Its Implications 123 Kinematic Data and Fatigue Prediction 123 Comparative Analysis: Control vs. Experimental Group 124 Implications for Clinical Practice and the Future of Home- Based Rehabilitation 125 The Future of IVR Based Rehabilitation 126 Conclusions 128 Limitations 131 Future Work 134DoctoradoDoctor(a) en Ingeniería177 páginasapplication/pdfspaUniversidad Tecnológica de PereiraDoctorado en IngenieríaFacultad de IngenieríasPereira370 - EducaciónRealidad virtual - Equipo y accesoriosTelemedicinaRehabilitación médicaImmersive Virtual Reality (IVR)ExergameUser Experience (UX)User-Centered Design (UCD)Kinematic Adaptive SystemGoniometrySpasticityDimensionless JerkPlaytestingNeuroplasticityVirtual Reality Neuroscience Questionnaire (VRNQ)Adaptive ExergameTelemedicineAugmented Reality (AR)Machine Learning (ML)RehabilitationFatiguePhysiatristBorg ScaleWearable SensorsDifficulty Adjusted Performance Index (DAPI)MechasUser Experience (UX)Design and evaluation of an immersive adaptive VR exergame for upper Limb Stroke RehabilitationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesisAbd El-Kafy, E., Alshehri, M., El-Fiky, A., Guermazi, M., and Mahmoud, H. (2022). The effect of robot-mediated virtual reality gaming on upper limb spasticity post- stroke: a randomized-controlled trial. Games for health journal, 11(2):93–103.Aderinto, N., Olatunji, G., Abdulbasit, M., Edun, M., Aboderin, G., and Egbunu, E. (2023). Exploring the efficacy of virtual reality-based rehabilitation in stroke: a narrative review of current evidence. Annals of Medicine, 55(2):2285907.Ajani, O. and Mallipeddi, R. (2023). Pareto-based dynamic difficulty adjustment of a competitive exergame for arm rehabilitation. International Journal of Human- Computer Studies, 178:103100.Albanese, G., Bucchieri, A., Podda, J., Tacchino, A., Buccelli, S., De Momi, E., and Barresi, G. (2024). Robotic systems for upper-limb rehabilitation in multiple sclerosis: a swot analysis and the synergies with virtual and augmented environments. Frontiers in Robotics and AI, 11:1335147.Alder, G., Taylor, D., Rashid, U., Olsen, S., Brooks, T., Terry, G., Niazi, I. K., and Signal, N. (2023). A brain computer interface neuromodulatory device for stroke rehabilitation: Iterative user-centered design approach. JMIR Rehabilitation and Assistive Technologies, 10:e49702.Alt Murphy, M. and H¨ager, C. K. (2015). Kinematic analysis of the upper extremity after stroke–how far have we reached and what have we grasped? Physical Therapy Reviews, 20(3):137–155.Amorim, P., Serra, H., Sousa, B. S., Dias, P., Castelo-Branco, M., and Martins, H. (2023). Chronic stroke survivors’ perspective on the use of serious games to mo- tivate upper limb rehabilitation–a qualitative study. Health Informatics Journal, 29(2):14604582231171932.Andia, T., Alfonso, S., G´omez, J., Vargas, M., and Castro, C. (2023). Colombian health innovation landscape: Building bridges. Journal of Medical Research and Health Education, 3(2):12–21.Anwer, S., Waris, A., Gilani, S., Iqbal, J., Shaikh, N., Pujari, A., and Niazi, I. (2022). Rehabilitation of upper limb motor impairment in stroke: A narrative review on the prevalence, risk factors, and economic statistics of stroke and state of the art therapies. Healthcare, 10(2):190.Bavikatte, G., Subramanian, G., Ashford, S., Allison, R., and Hicklin, D. (2021). Early identification, intervention and management of post-stroke spasticity: ex- pert consensus recommendations. Journal of central nervous system disease, 13:11795735211036576.Ben Amara, B., Mhiri Sellami, H., and Ben Said, L. (2024). An approach for serious game design and development based on iterative evaluation. Journal of Software: Evolution and Process, page e2680. In press.Berglund, A., Jaarsma, T., Or¨add, H., Fallstr¨om, J., Str¨omberg, A., Klompstra, L., and Berglund, E. (2024). The application of a serious game framework to design and develop an exergame for patients with heart failure. JMIR Formative Research, 8:e50063.Borg, G. (1998). Borg’s perceived exertion and pain scales. Human kinetics. Bouatrous, A.,Meziane, A., Zenati, N., and Hamitouche, C. (2023). A new adaptive vr- based exergame for hand rehabilitation after stroke. Multimedia Systems, 29(6):3385– 3402.Brunner, I., Skouen, J., Hofstad, H., Aßmus, J., Becker, F., Sanders, A., and Pallesen, H. (2017). Virtual reality training for upper extremity in subacute stroke (virtues): a multicenter rct. Neurology, 89(24):2413–2421.Bruno, F. and Muzzupappa, M. (2010). Product interface design: A participatory approach based on virtual reality. International journal of human-computer studies, 68(5):254–269.Brusola, G., Garcia, E., Albosta, M., Daly, A., Kafes, K., and Furtado, M. (2023). Effectiveness of physical therapy interventions on post-stroke spasticity: an umbrella review. NeuroRehabilitation, 52(3):349–363.Bryant, L., Sedlarevic, N., Stubbs, P., Bailey, B., Nguyen, V., Bluff, A., Barnett, D., Estela, M., Hayes, C., Jacobs, C., et al. (2022). Virtual reality in stroke rehabilitation: An overview. Journal of NeuroEngineering and Rehabilitation, 19(1):98–112.Camardella, C., Chiaradia, D., Bortone, I., Frisoli, A., and Leonardis, D. (2023). In- troducing wearable haptics for rendering velocity feedback in vr serious games for neuro-rehabilitation of children. Frontiers in Virtual Reality, 3:1019302.Cameir˜ao, M., Badia, S., Duarte, E., and Verschure, P. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative Neurology and Neuroscience, 29(5):287–298.Campo-Prieto, P., Cancela, J., and Rodr´ıguez-Fuentes, G. (2021). Immersive virtual reality as physical therapy in older adults: present or future (systematic review). Virtual Reality, 25(3):801–817.Castillo, J., Vega, M., Cardona, J., Lopez, D., Quin˜ones, L., Gallo, O., and Lopez, J. (2024a). Design of virtual reality exergames for upper limb stroke rehabilitation fol- lowing iterative design methods: usability study. JMIR Serious Games, 12(1):e48900.Castillo, J. F. V., Mun˜oz, J. E., Lopez, D., Lopez, J. F., and Gallo, O. H. (2024b). Exploratory analysis of game metrics of a multi-session study of a virtual reality exergame for stroke rehabilitation. In 2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH), pages 1–8. IEEE.Chan, Y., Tang, Y., and Teng, L. (2023). A comparative analysis of digital health usage intentions towards the adoption of virtual reality in telerehabilitation. International Journal of Medical Informatics, 174:105042.Charles, D., Holmes, D., Charles, T., and McDonough, S. (2020). Virtual reality design for stroke rehabilitation. Biomedical Visualisation: Volume 6, pages 53–87.Chen, J. and Eng, K. (2015). The efficacy of interactive computer gaming in stroke rehabilitation: a meta-analysis. Archives of Physical Medicine and Rehabilitation, 96(7):1223–1231.Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., and Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International journal of medical informatics, 123:11–22.Cho, Y., Hamm, J. M., Heckhausen, J., and Cramer, S. C. (2022). The role of goal adjustment during rehabilitation from stroke. Applied Psychology: Health and Well- Being, 14(1):26–43.Cho, Y., Hamm, J. M., Heckhausen, J., and Cramer, S. C. (2023). Downward adjust- ment of rehabilitation goals may facilitate post-stroke arm motor recovery. Psychology & Health, pages 1–17.Chu, C., Biss, R., Cooper, L., Quan, A., and Matulis, H. (2021). Exergaming platform for older adults residing in long-term care homes: user-centered design, development, and usability study. JMIR serious games, 9(1):e22370.Chung, J.-M. (2022). Emerging Metaverse XR and Video Multimedia Technologies. Apress, Berkeley, CA, USA.Cikajlo, I. and Matjaˇci´c, Z. (2007). Wii rehabilitation: video games help post-stroke patients. Science Daily.Cikajlo, I., Rudolf, M., Mainetti, R., and Borghese, N. (2020). Multi-exergames to set targets and supplement the intensified conventional balance training in patients with stroke: a randomized pilot trial. Frontiers in psychology, 11:572.Ciortea, V., Motoa¸sc˘a, I., Ungur, R., Borda, I., Ciubean, A., and Irsay, L. (2021). Telerehabilitation—a viable option for the recovery of post-stroke patients. Applied Sciences, 11(21):10116.Cobanoglu, A. (2023). The effect of range of motion exercises on functional inde- pendence and activities of daily living in patients with acute stroke: A randomized controlled study. Turkiye Klinikleri Journal of Nursing Sciences, 15(4):356–364.Cormio, L., Giaconi, C., Mengoni, M., and Santilli, T. (2024). Exploring game design approaches through conversations with designers. Design Studies, 91:101253.Crosbie, J., Lennon, S., McGoldrick, M., and McNeill, M. (2012). Virtual reality in stroke rehabilitation: still more virtual than real. Disability and Rehabilitation, 34(23):2035–2039.De Pasquale, P., Bonanno, M., Mojdehdehbaher, S., Quartarone, A., and Calabr`o, R. S. (2024). The use of head-mounted display systems for upper limb kinematic analysis in post-stroke patients: A perspective review on benefits, challenges and other solutions. Bioengineering, 11(6):538.Demeco, A., Zola, L., Frizziero, A., Martini, C., Palumbo, A., Foresti, R., and Costantino, C. (2023). Immersive virtual reality in post-stroke rehabilitation: a systematic review. Sensors, 23(3):1712.Duval, J. (2022). Playful health technology: A participatory, research through design approach to applications for wellness. University of California, Santa Cruz.Ekechukwu, E., Olowoyo, P., Nwankwo, K., Olaleye, O., Ogbodo, V., Hamzat, T., and Owolabi, M. (2020). Pragmatic solutions for stroke recovery and improved quality of life in low-and middle-income countries—a systematic review. Frontiers in Neurology, 11:337.Elor, A. and Kurniawan, S. (2020). The ultimate display for physical rehabilitation: A bridging review on immersive virtual reality. Frontiers in Virtual Reality, 1:585993.Espinosa, O., Puentes, G., Rodr´ıguez, J., Robayo, A., and Anaya, J. (2024). Science technology and innovation in health for the next twenty years: A survey analysis in colombia. Health Care Science, 3(2):78–87.Faria, A. L., Pinho, M. S., and Bermu´dez i Badia, S. (2020). A comparison of two personalization and adaptive cognitive rehabilitation approaches: a randomized con- trolled trial with chronic stroke patients. Journal of neuroengineering and rehabili- tation, 17:1–15.Fari´c, N., Smith, L., Hon, A., Potts, H., Newby, K., Steptoe, A., and Fisher, A. (2021). A virtual reality exergame to engage adolescents in physical activity: mixed methods study describing the formative intervention development process. Journal of medical Internet research, 23(2):e18161.FERNANDES, A. S. (2024). Evaluating visual-spatiotemporal co-registration of a physics-based virtual reality haptic interface.Figueiredo, A., Balbinot, G., Brauner, F., Schiavo, A., Baptista, R., Pagnussat, A., and Mestriner, R. (2020). Sparc metrics provide mobility smoothness assessment in oldest-old with and without a history of falls: a case control study. Front. Physiol., 11:1–11.Frank, L. (2024). Virtual reality and deep learning in therapy. Journal of Innovative Mental Health Care, 8(1):15–27.Gacar, B. and Kocako¸c, I˙. (2020). Regression analyses or decision trees? Manisa Celal Bayar U¨niversitesi Sosyal Bilimler Dergisi, 18(4):251–260.Gangwani, R., Cain, A., Collins, A., and Cassidy, J. (2022). Leveraging factors of self-efficacy and motivation to optimize stroke recovery. Frontiers in Neurology, 13:823202.Glegg, S. and Levac, D. (2018). Barriers, facilitators and interventions to support virtual reality implementation in rehabilitation: a scoping review. Journal of Neuro- Engineering and Rehabilitation, 15(1):1–20.Gonz´alez-Gonz´alez, C., Toledo-Delgado, P., Mun˜oz-Cruz, V., and Torres-Carrion, P. (2019). Serious games for rehabilitation: Gestural interaction in personalized gam- ified exercises through a recommender system. Journal of biomedical informatics, 97:103266.Harb, A. and Kishner, S. (2023). Modified ashworth scale. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554572/.Hasan, B. and Abdulazeez, A. (2021). A review of principal component analysis al- gorithm for dimensionality reduction. Journal of Soft Computing and Data Mining, 2(1):20–30.Herdy, A., L´opez-Jim´enez, F., Terzic, C., Milani, M., Stein, R., Carvalho, T., and Ilarraza- Lomel´ı, H. (2014). South american guidelines for cardiovascular disease pre- vention and rehabilitation. Arquivos brasileiros de cardiologia, 103(2 Suppl 1):1–31.Hogan, N. and Sternad, D. (2009). Sensitivity of smoothness measures to movement duration, amplitude, and arrests. Journal of motor behavior, 41(6):529–534.Holland, J. H. and Reitman, J. S. (1977). Cognitive systems based on adaptive algo- rithms. ACM SIGART Bulletin, (63):49–49.Holtzblatt, K. (2007). Disen˜o contextual. In The human-computer interaction handbook, pages 975–990. CRC press.Holtzblatt, K., Wendell, J., and Wood, S. (2004). Rapid contextual design: a how-to guide to key techniques for user-centered design. Elsevier.Huygelier, H., Mattheus, E., Abeele, V., Van Ee, R., and Gillebert, C. (2021). The use of the term virtual reality in post-stroke rehabilitation: a scoping review and commentary. Psychologica Belgica, 61(1):145.Huzaifa, M., Desai, R., Grayson, S., Jiang, X., Jing, Y., Lee, J., Lu, F., Pang, Y., Ravichandran, J., Sinclair, F., et al. (2020). Exploring extended reality with illixr: A new playground for architecture research. arXiv preprint arXiv:2004.04643.Islam, M. and Lim, S. (2022). Vibrotactile feedback in virtual motor learning: A systematic review. Applied Ergonomics, 101:103694.Jaros-lawski, S., Jaros-lawska, B., B-laszczyk, B., Auquier, P., and Toumi, M. (2020). Health- related quality of life of patients after ischaemic stroke treated in a provincial hospital in poland. Journal of market access & health policy, 8(1):1775933.Jeyakumar, V., Sundaram, P., Ramapathiran, N., and Kannan, P. (2022). Virtual reality- based rehabilitation gaming system. In Artificial Intelligence and Machine Learning for Healthcare: Vol. 2: Emerging Methodologies and Trends, pages 135– 180. Springer.Jia, X., Wang, Z., Huang, F., Su, C., Du, W., Jiang, H., and Zhang, B. (2021). A comparison of the mini-mental state examination (mmse) with the montreal cognitive assessment (moca) for mild cognitive impairment screening in chinese middle-aged and older population: a cross-sectional study. BMC psychiatry, 21:1–13.Jim´enez-Grande, D., Atashzar, S., Devecchi, V., Martinez-Valdes, E., and Falla, D. (2022). A machine learning approach for the identification of kinematic biomarkers of chronic neck pain during single-and dual-task gait. Gait & Posture, 96:81–86.Jung, H., Park, T., Mahyar, N., Park, S., Ryu, T., Kim, Y., and Lee, S. (2020). Rehabil- itation games in real-world clinical settings: Practices, challenges, and opportunities. ACM Transactions on Computer-Human Interaction (TOCHI), 27(6):1–43.Kabir, M., Abedin, M., Ahmed, R., Mahmud, H., and Hasan, M. (2022). Antasid: A novel temporal adjustment to shannon’s index of difficulty for quantifying the perceived difficulty of uncontrolled pointing tasks. IEEE Access, 10:21774–21786.Kang, D., Park, J., and Eun, S. (2023). Home-based virtual reality exergame program after stroke rehabilitation for patients with stroke: A study protocol for a multicenter, randomized controlled trial. Life, 13(12):2256.Khalid, U., Naeem, M., Stasolla, F., Syed, M., Abbas, M., and Coronato, A. (2024). Impact of ai-powered solutions in rehabilitation process: Recent improvements and future trends. International Journal of General Medicine, pages 943–969.Kim, B., Lee, D., Min, A., Paik, S., Frey, G., Bellini, S., and Shih, P. (2020a). Puz- zlewalk: A theory-driven iterative design inquiry of a mobile game for promoting physical activity in adults with autism spectrum disorder. Plos one, 15(9):e0237966.Kim, W. S., Cho, S. J., Ku, J. H., Kim, Y. B., Lee, K. W., Hwang, H. J., and Paik, N.- J. (2020b). Clinical application of virtual reality for upper limb motor rehabilitation in stroke: review of technologies and clinical evidence. Journal of clinical medicine, 9(10):3369.Kiper, P., Godart, N., Cavalier, M., Berard, C., Cie´slik, B., Federico, S., and Meroni, R. (2023). Effects of immersive virtual reality on upper-extremity stroke rehabilitation: A systematic review with meta-analysis. Journal of Clinical Medicine, 13(1):146.Kirginas, S. (2023). User experience evaluation methods for games in serious contexts. In Software Engineering for Games in Serious Contexts: Theories, Methods, Tools, and Experiences, pages 19–42. Springer Nature Switzerland.Kourtesis, P., Collina, S., Doumas, L. A., and MacPherson, S. E. (2019). Validation of the virtual reality neuroscience questionnaire: maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology. Frontiers in human neuroscience, 13:417.Krishnan, S., Mandala, M., Wolf, S., Howard, A., and Kesar, T. (2023). Perceptions of stroke survivors regarding factors affecting adoption of technology and exergames for rehabilitation. PM&R, 15(11):1403–1410.Kwakkel, G., van Peppen, R., Wagenaar, R., Wood-Dauphinee, S., Richards, C., Ash- burn, A., Miller, K., Lincoln, N., Partridge, C., Wellwood, I., and Langhorne, P. (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 35(11):2529–2539.Langhorne, P., Bernhardt, J., and Kwakkel, G. (2011). Stroke rehabilitation. The Lancet, 377(9778):1693–1702.Laver, K., George, S., Thomas, S., Deutsch, J., and Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (2):CD008349.Lavis, H., van Vliet, P., and Tavener, M. (2023). Stroke survivor, caregiver and therapist experiences of home-based stroke rehabilitation: a thematic synthesis of qualitative studies. Physical Therapy Reviews, 28(2):157–173.Le Franc, S., Herrera Altamira, G., Guillen, M., Butet, S., Fleck, S., L´ecuyer, A., and Bonan, I. (2022). Toward an adapted neurofeedback for post-stroke motor re- habilitation: state of the art and perspectives. Frontiers in Human Neuroscience, 16:917909.Lee, G.-H. (2023). Improving cognition and motor performances through fully immer- sive virtual reality using on a head mount device among patients with chronic stroke. APJCRI, 9:579–588.Lehmann, I., Baer, G., and Schuster-Amft, C. (2020). Experience of an upper limb training program with a non-immersive virtual reality system in patients after stroke: a qualitative study. Physiotherapy, 107:317–326.Levin, M. and Demers, M. (2020). Motor learning in virtual reality. In Virtual Reality for Physical and Motor Rehabilitation, pages 25–48. Springer, Cham.Li, Y., Mun˜oz, J., Mehrabi, S., Middleton, L., Cao, S., and Boger, J. (2020). Disen˜o iterativo multidisciplinario de juegos de ejercicios (mide): un marco para respaldar el disen˜o, desarrollo y evaluaci´on de juegos de ejercicios para la salud. In HCI in Games: Second International Conference, HCI-Games 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings 22, pages 128–147. Springer International Publishing.Liu, Y., Guo, S., Yang, Z., Hirata, H., and Tamiya, T. (2022). A home-based tele- rehabilitation system with enhanced therapist-patient remote interaction: A feasibil- ity study. IEEE Journal of Biomedical and Health Informatics, 26(8):4176–4186.Lohse, K., Boyd, L., and Hodges, N. (2014a). Engaging environments and personalized training: implications for the design of effective rehabilitation programs. Journal of Neurologic Physical Therapy, 38(3):154–161.Lohse, K., Hilderman, C., Cheung, K., Tatla, S., and Van der Loos, H. (2014b). Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis explor- ing virtual environments and commercial games in therapy. PLoS One, 9(3):e93318.Lohse, K., Shirzad, N., Verster, A., Hodges, N., and Van der Loos, H. (2013). Video games and rehabilitation: using design principles to enhance engagement in physical therapy. Journal of neurologic physical therapy, 37(4):166–175.Luo, Z., Lim, A. E. P., Durairaj, P., Tan, K. K., and Verawaty, V. (2023). Development of a compensation-aware virtual rehabilitation system for upper extremity rehabili- tation in community-dwelling older adults with stroke. Journal of NeuroEngineering and Rehabilitation, 20(1):56.Luong, T., Martin, N., Raison, A., Argelaguet, F., Diverrez, J.-M., and L´ecuyer, A. (2020). Towards real-time recognition of users mental workload using integrated physiological sensors into a vr hmd. In 2020 IEEE international symposium on mixed and augmented reality (ISMAR), pages 425–437. IEEE.Maggio, M. G., Latella, D., Maresca, G., Sciarrone, F., Manuli, A., Naro, A., and Calabr`o, R. S. (2019). Virtual reality and cognitive rehabilitation in people with stroke: an overview. Journal of Neuroscience Nursing, 51(2):101–105.Mahmood, A., Deshmukh, A., Natarajan, M., Marsden, D., Vyslysel, G., Padicka- parambil, S., and Solomon, J. (2022). Development of strategies to support home- based exercise adherence after stroke: a delphi consensus. BMJ open, 12(1):e055946.Maier, M., Ballester, B., Duarte, E., and Verschure, P. (2019). Effect of specific over nonspecific vr-based rehabilitation on poststroke motor recovery: a systematic meta- analysis. Neurorehabilitation and Neural Repair, 33(2):112–129.Martins, S. C. O., Lavados, P., Secchi, T. L., Brainin, M., Ameriso, S., Gongora-Rivera, F., Sacks, C., Cantu´-Brito, C., Alvarez Guzman, T. F., P´erez-Romero, G. E., et al. (2021). Fighting against stroke in latin america: a joint effort of medical professional societies and governments. Frontiers in neurology, 12:743732.Maskeliu¯nas, R., Damaˇseviˇcius, R., Blaˇzauskas, T., Canbulut, C., Adomaviˇcien¯e, A., and Griˇskeviˇcius, J. (2023). Biomacvr: A virtual reality-based system for precise human posture and motion analysis in rehabilitation exercises using depth sensors. Electronics, 12(2):339.Medeiros, C. S. P. d., Farias, L. B. A., Santana, M. C. d. L., Pacheco, T. B. F., Dantas,R. R., and Cavalcanti, F. A. d. C. (2024). A systematic review of exergame usability as home-based balance training tool for older adults usability of exergames as home- based balance training. PloS one, 19(8):e0306816.Medina, J. L. P., Acosta-Vargas, P., and Rybarczyk, Y. (2019). A systematic review of usability and accessibility in tele-rehabilitation systems. Assistive and Rehabilitation Engineering, 1357633X2098603.Milot, M. H., L´eonard, G., Corriveau, H., and Desrosiers, J. (2019). Using the borg rat- ing of perceived exertion scale to grade the intensity of a functional training program of the affected upper limb after a stroke: a feasibility study. Clinical Interventions in Aging, pages 9–16.Mirza-Babaei, P., Stahlke, S., Wallner, G., and Nova, A. (2020). A postmortem on playtesting: Exploring the impact of playtesting on the critical reception of video games. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12. ACM.Missura, O. (2015). Dynamic difficulty adjustment. PhD thesis, Universit¨ats-und Lan- desbibliothek Bonn.Moan, M., Vonstad, E., Su, X., Vereijken, B., Solbjør, M., and Skjæret-Maroni, N. (2021). Experiences of stroke survivors and clinicians with a fully immersive vir- tual reality treadmill exergame for stroke rehabilitation: a qualitative pilot study. Frontiers in Aging Neuroscience, 13:735251.Montoya, M. F., Villada, J. F. V., Cardona, J. E. M., Gallo, O. A. H., and L´opez, J. F. (2022). Disen˜o contextual para la creaci´on de videojuego basado en realidad virtual usado en terapia de rehabilitaci´on f´ısica en personas con accidente cerebrovascular. Revista EIA, 19(38):3817–pp.Morrow, K., Docan, C., Burdea, G., and Merians, A. (2006). Low-cost virtual re- habilitation of the hand for patients post-stroke. In Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications, pages 6–9.Mouawad, M., Doust, C., Max, M., and McNulty, P. (2011). Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. Journal of Rehabilitation Medicine, 43(6):527–533.Mubarrat, S. T., Chowdhury, S., and Fernandes, A. S. (2024). Evaluating visual- spatiotemporal co-registration of a physics-based virtual reality haptic interface. IEEE Access.Mugisha, S., Job, M., Zoppi, M., Testa, M., and Molfino, R. (2022). Computer-mediated therapies for stroke rehabilitation: A systematic review and meta-analysis. Journal of Stroke and Cerebrovascular Diseases, 31(6):106454.Mun˜oz, J., Ali, F., Basharat, A., Mehrabi, S., Barnett-Cowan, M., Cao, S., and Boger, J. (2023). Development of classifiers to determine factors associated with older adult’s cognitive functions and game user experience in vr using head kinematics. IEEE Transactions on Games.Mun˜oz, J., Gon¸calves, A., Ru´bio Gouveia, E´., Cameir˜ao, M., and Bermudez i Badia, S. (2019). Lessons learned from gamifying functional fitness training through human- centered design methods in older adults. Games for health journal, 8(6):387–406.Mun˜oz, J., Mehrabi, S., Li, Y., Basharat, A., Middleton, L., Cao, S., and Boger, J. (2022). Immersive virtual reality exergames for persons living with dementia: user- centered design study as a multistakeholder team during the covid-19 pandemic. JMIR Serious Games, 10(1):e29987.Mustafa, T., Matovu, R., Serwadda, A., and Muirhead, N. (2018). Unsure how to authenticate on your vr headset? come on, use your head! In Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics, pages 23– 30. ACM.Nascimento, L. M. S. D., Bonfati, L. V., Freitas, M. L. B., Mendes Junior, J. J. A., Siqueira, H. V., and Stevan Jr, S. L. (2020). Sensors and systems for physical reha- bilitation and health monitoring—a review. Sensors, 20(15):4063.Nath, D., Singh, N., Saini, M., Banduni, O., Kumar, N., Srivastava, M., and Mehndi- ratta, A. (2024). Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot obser- vational study. Disability and Rehabilitation, 46(12):2640–2649.Nielsen, L. (2013). Personas-user focused design, volume 15. Springer.Noblet, T., Marriott, J., Jones, T., Dean, C., and Rushton, A. (2019). Perceptions about the implementation of physiotherapist prescribing in australia: a national survey of australian physiotherapists. BMJ open, 9(5):e024991.Norouzi-Gheidari, N., Hernandez, A., Archambault, P., Higgins, J., Poissant, L., and Kairy, D. (2020). Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. International journal of environmental research and public health, 17(1):113.Oosterwijk, A. M., Nieuwenhuis, M. K., van der Schans, C. P., and Mouton, L. J. (2018). Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review. Physiotherapy theory and practice, 34(7):505–528.Owens, J., Rauzi, M., Kittelson, A., Graber, J., Bade, M., Johnson, J., and Nabhan, D. (2020). How new technology is improving physical therapy. Current Reviews in Musculoskeletal Medicine, 13:200–211.O¨ zkul, F., Palaska, Y., Masazade, E., and Erol-Barkana, D. (2019). Exploring dynamic difficulty adjustment mechanism for rehabilitation tasks using physiological measures and subjective ratings. IET Signal Processing, 13(3):378–386.Palomares-Pecho, J. M., Silva-Calpa, G. F. M., and Raposo, A. B. (2021). End-user adaptable technologies for rehabilitation: a systematic literature review. Universal Access in the Information Society, 20(2):299–319.Paraschos, P. and Koulouriotis, D. (2023). Game difficulty adaptation and experience personalization: A literature review. International Journal of Human–Computer Interaction, 39(1):1–22.Parger, M., Tang, C., Xu, Y., Twigg, C. D., Tao, L., Li, Y., et al. (2021). Unoc: Understanding occlusion for embodied presence in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 28(12):4240–4251.el´aez-V´elez, F., Eckert, M., Gacto-S´anchez, M., and Mart´ınez-Carrasco, A´. (2023).Use of virtual reality and videogames in the physiotherapy treatment of stroke pa- tients: a pilot randomized controlled trial. International journal of environmental research and public health, 20(6):4747.Pezzera, M. and Borghese, N. (2020). Dynamic difficulty adjustment in exer-games for rehabilitation: a mixed approach.Phelan, I., Carrion-Plaza, A., Furness, P. J., and Dimitri, P. (2023). Home-based immersive virtual reality physical rehabilitation in paediatric patients for upper limb motor impairment: a feasibility study. Virtual reality, 27(4):3505–3520.Piron, L., Turolla, A., Agostini, M., Zucconi, C., Cortese, F., Tonin, P., and Dam, M. (2009). Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. Journal of Rehabilitation Research and Development, 46(2):121–128.Pohl, J., Held, J. P. O., Verheyden, G., Alt Murphy, M., Engelter, S., Fl¨oel, A., Keller, T., Kwakkel, G., Nef, T., Ward, N., et al. (2020). Consensus-based core set of outcome measures for clinical motor rehabilitation after stroke—a delphi study. Frontiers in neurology, 11:875.Postolache, O., Hemanth, D. J., Alexandre, R., Gupta, D., Geman, O., and Khanna, A. (2020). Remote monitoring of physical rehabilitation of stroke patients using iot and virtual reality. IEEE Journal on Selected Areas in Communications, 39(2):562–573.Potter, T. B., Pratap, S., Nicolas, J. C., Khan, O. S., Pan, A. P., Bako, A. T., Hsu, E., Johnson, C., Jefferson, I. N., Adegbindin, S. K., et al. (2023). A neuro-informatics pipeline for cerebrovascular disease: Research registry development. JMIR Formative Research, 7:e40639.Prange, G., Jannink, M., Groothuis-Oudshoorn, C., Hermens, H., and Ijzerman, M. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 43(2):171.Proffitt, R. and Lange, B. (2015). Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward. Physical therapy, 95(3):441–448.Puzi, A., Sidek, S., Khairuddin, I., Yusof, H., and Rosly, H. (2018). Inter-rater and intra- rater reliability of quantitative upper limb spasticity evaluation based on modified ashworth scale tool.Pyae, A., Luimula, M., and Smed, J. (2015). Understanding stroke patients’ motivation for motivation-driven rehabilitative game design. In Internet of Things. User-Centric IoT: First International Summit, IoT360 2014, Rome, Italy, October 27-28, 2014, Revised Selected Papers, Part I, pages 99–111. Springer.Rahamatali, M., De Bont, N., Valet, M., Halkin, V., Hanson, P., Deltombe, T., and Selves, C. (2021). Post-stroke fatigue: how it relates to motor fatigability and other modifiable factors in people with chronic stroke. Acta Neurologica Belgica, 121:181– 189.R´ıos, J., Marcela, D., Moriones, S., Lucia, O., and Hurtado, M. (2015). Estrategias de intervenci´on de fisioterapia en neurorehabilitaci´on utilizadas en colombia: Revisi´on bibliogr´afica. Revista Movimiento Cient´ıfico, 9(1):60–66.Ritter, E., Baxter, D., and Churchill, F. (2014). Foundations for designing user-centered systems: What system designers need to know about people. Springer-Verlag London.Rizzo, A., Buckwalter, J., and Neumann, U. (1997). Virtual reality and cognitive rehabilitation: a brief review of the future. Journal of Head Trauma Rehabilitation, 12(6):1–15.Rizzo, A. and Kim, G. (2005). A swot analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators & Virtual Environments, 14(2):119–146.Rizzo, A., Schultheis, M., Kerns, K., and Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1-2):207–239.Rodr´ıguez-Hern´andez, M., Polonio-L´opez, B., Corregidor-S´anchez, A. I., Mart´ın-Conty, J. L., Mohedano-Moriano, A., and Criado-A´lvarez, J. J. (2023). Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? a randomized clinical trial. Journal of NeuroEngineering and Rehabilita- tion, 20(1):38.R´ozsa, S., Hargitai, R., L´ang, A., Osv´ath, A., Hupuczi, E., Tam´as, I., and K´allai, J. (2022). Measuring immersion, involvement, and attention focusing tendencies in the mediated environment: The applicability of the immersive tendencies questionnaire. Frontiers in Psychology, 13:931955.Rybensk´a, K., Knapov´a, L., Janiˇs, K., Ku¨hnov´a, J., Cimler, R., and Elavsky, S. (2024). Smart technologies in older adult care: a scoping review and guide for caregivers. Journal of Enabling Technologies.Sampaio, M., Navarro Haro, M., De Sousa, B., Vieira Melo, W., and Hoffman, H. (2021). Therapists make the switch to telepsychology to safely continue treating their patients during the covid-19 pandemic. virtual reality telepsychology may be next. Frontiers in Virtual Reality, 1:576421.Saposnik, G., Levin, M., and Group, O. R. C. S. W. (2011). Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke, 42(5):1380– 1386.Sarker, A., Emenonye, D.-R., Kelliher, A., Rikakis, T., Buehrer, R. M., and Asbeck,A. T. (2022). Capturing upper body kinematics and localization with low-cost sensors for rehabilitation applications. Sensors, 22(6):2300.Scarpa, M., Prilletensky, I., McMahon, A., Myers, N., Prilleltensky, O., Lee, S., and Brincks, A. (2021a). Is fun for wellness engaging? evaluation of user experience of an online intervention to promote physical and emotional wellbeing. Journal of Medical Internet Research, 23(5):e17129.Scarpa, M. P., Prilleltensky, I., McMahon, A., Myers, N. D., Prilleltensky, O., Lee, S., and Brincks, A. M. (2021b). Is fun for wellness engaging? evaluation of user experience of an online intervention to promote well-being and physical activity. Frontiers in Computer Science, 3:690389.Sch¨attin, A., H¨afliger, S., Meyer, A., Fru¨h, B., B¨ockler, S., Hungerbu¨hler, Y., and Martin-Niedecken, A. (2021). Design and evaluation of user-centered exergames for patients with multiple sclerosis: multilevel usability and feasibility studies. JMIR Serious Games, 9(2):e22826.Sch¨attin, A., Pickles, J., Flagmeier, D., Sch¨arer, B., Riederer, Y., Niedecken, S., and Martin-Niedecken, A. (2022). Development of a novel home-based exergame with on-body feedback: usability study. JMIR Serious Games, 10(4):e38703.Schell, J. (2008). The Art of Game Design: A book of lenses. CRC press.Schuster-Amft, C., Eng, K., Lehmann, I., Schmid, L., and Thaler, I. (2014). Using mixed reality in stroke rehabilitation: a pilot study to explore physical and virtual feedback modalities. International Journal of Rehabilitation Research, 37(3):225–232.Servotte, J.-C., Goosse, M., Campbell, S. H., Dardenne, N., Pilote, B., Simoneau, I. L., Guillaume, M., Bragard, I., and Ghuysen, A. (2020). Virtual reality experience: Immersion, sense of presence, and cybersickness. Clinical Simulation in Nursing, 38:35–43.Shahid, J., Kashif, A., and Shahid, M. K. (2023). A comprehensive review of physical therapy interventions for stroke rehabilitation: impairment-based approaches and functional goals. Brain Sciences, 13(5):717.Sharma, R., Dasgupta, A., Cheng, R., Mishra, C., and Nagaraja, V. H. (2022). Machine learning for musculoskeletal modeling of upper extremity. IEEE Sensors Journal, 22(19):18684–18697.Sia, L., Sharma, S., May, J., Kumar, S., and Singh, D. (2024). Physiotherapists’ perceptions, readiness, enablers, and barriers to use telerehabilitation: A scoping review. Journal of Back and Musculoskeletal Rehabilitation, pages 1–14.Silva-Sieger, F., Garz´on-Hern´andez, J., Mendoza-S´anchez, J., Arias, C., and Ortiz, H. (2021). Costos directos asumidos por pacientes y gastos de bolsillo en acv isqu´emico durante el primer an˜o. Revista de Salud Pu´blica, 23(4):134–145.Smuck, M., Odonkor, C. A., Wilt, J. K., Schmidt, N., and Swiernik, M. A. (2021). The emerging clinical role of wearables: factors for successful implementation in healthcare. NPJ digital medicine, 4(1):1–8.Somrak, A., Pogaˇcnik, M., and Guna, J. (2021a). Impact of different types of head- centric rest-frames on vrise and user experience in virtual environments. Applied Sciences, 11(4):1593.Somrak, A., Pogaˇcnik, M., and Guna, J. (2021b). Suitability and comparison of ques- tionnaires assessing virtual reality-induced symptoms and effects and user experience in virtual environments. Sensors, 21(4):1185.Song, Z., Zhang, X., Xu, X., Dong, J., Li, W., Jan, Y.-K., and Pu, F. (2024). The effects of immersion and visuo-tactile stimulation on motor imagery in stroke patients are related to the sense of ownership. IEEE Transactions on Neural Systems and Rehabilitation Engineering.Stahlke, S., Nova, A., and Mirza-Babaei, P. (2020). Artificial players in the design process: Developing an automated testing tool for game level and world design. In Proceedings of the annual symposium on computer-human interaction in play, pages 267–280.Stephenson, A., Howes, S., Murphy, P., Deutsch, J., Stokes, M., Pedlow, K., and Mc- Donough, S. (2022). Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PLoS One, 17(5):e0265828.Tao, G., Garrett, B., Taverner, T., Cordingley, E., and Sun, C. (2021). Immersive virtual reality health games: a narrative review of game design. Journal of Neuro- Engineering and Rehabilitation, 18:1–21.Toglia, J., Fitzgerald, K. A., O’Dell, M. W., Mastrogiovanni, A. R., and Lin, C. D. (2011). The mini-mental state examination and montreal cognitive assessment in persons with mild subacute stroke: relationship to functional outcome. Archives of physical medicine and rehabilitation, 92(5):792–798.Tosto-Mancuso, J., Tabacof, L., Herrera, J., Breyman, E., Dewil, S., Cortes, M., and Putrino, D. (2022). Gamified neurorehabilitation strategies for post-stroke motor recovery: challenges and advantages. Current Neurology and Neuroscience Reports, 22(3):183–195.Trejos, A. L. (2012). A sensorized instrument for minimally invasive surgery for the measurement of forces during training and surgery: development and applications. The University of Western Ontario (Canada).Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., and Piron, L. (2013). Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of NeuroEngineering and Rehabilita- tion, 10(1):85.Vasiljevas, M., Damaˇseviˇcius, R., and Maskeliu¯nas, R. (2023). A human-adaptive model for user performance and fatigue evaluation during gaze-tracking tasks. Electronics, 12(5):1130.Ventura, S., Ottoboni, G., Lullini, G., Chattat, R., Simoncini, L., Magni, E., et al. (2023). Co-designing an interactive artificial intelligent system with post-stroke pa- tients and caregivers to augment the lost abilities and improve their quality of life: a human-centric approach. Frontiers in Public Health, 11:1227748.Villada, J., Montoya, M., Mun˜oz, J., Henao, O., and L´opez, J. (2022). Disen˜o contextual para la creaci´on de exergame basado en realidad virtual usado en terapia de rehabil- itaci´on f´ısica en personas con accidente cerebrovascular. Revista EIA, 19(38):3817.Vismara, L., Ferraris, C., Amprimo, G., Pettiti, G., Buffone, F., Tarantino, A., and Priano, L. (2024). Exergames as a rehabilitation tool to enhance the upper limbs func- tionality and performance in chronic stroke survivors: a preliminary study. Frontiers in Neurology, 15:1347755.Voight, J. (2021). Quaternion algebras. Springer Nature.White, P., Moussavi, Z., and Overvliet, K. (2018). The effects of virtual reality on anx- iety and comfort in adults with stroke during rehabilitation: a randomized controlled trial. JMIR Rehabilitation and Assistive Technologies, 5(1):e10967.Wilcoxon, F., Katti, S., and Wilcox, R. (1970). Critical values and probability levels for the wilcoxon rank sum test and the wilcoxon signed rank test. Selected tables in mathematical statistics, 1:171–259.Winter, C., Kern, F., Gall, D., Latoschik, M. E., Pauli, P., and K¨athner, I. (2021). Immersive virtual reality during gait rehabilitation increases walking speed and mo- tivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Journal of neuroengineering and rehabilitation, 18(1):68.Wu, J., Zeng, A., Chen, Z., Wei, Y., Huang, K., Chen, J., and Ren, Z. (2021). Effects of virtual reality training on upper limb function and balance in stroke patients: systematic review and meta-meta-analysis. Journal of medical Internet research, 23(10):e31051.Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., and Saeed, J. (2020). A com- prehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends, 1(1):56–70.Zhang, S., Cheng, S., Zhang, Z., Wang, C., Wang, A., and Zhu, W. (2021). Related risk factors associated with post-stroke fatigue: a systematic review and meta-analysis. Neurological Sciences, 42:1463–1471.Ziefle, M., editor (2010). Human-centered design of e-health technologies: concepts, methods and applications. IGI Global.PublicationORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf27015904https://repositorio.utp.edu.co/bitstreams/23ccb606-e861-43a6-b397-44b870c0806b/download87f124dbc6fae437e9e5a04dbf82cc68MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.utp.edu.co/bitstreams/c7fc7e9b-7c66-424f-b5a0-1762e9d1954b/download73a5432e0b76442b22b026844140d683MD52THUMBNAILImagen2.pngimage/png60895https://repositorio.utp.edu.co/bitstreams/f33c31b0-f099-4aae-b02a-48ea498603f6/downloadc74c2b77d87077912b4aef7436d8cdcbMD53Trabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg7512https://repositorio.utp.edu.co/bitstreams/02599242-7d51-4206-b03e-7b4d8e2a7b77/downloadb6bcff99a2e59dbcea9d0ea8363086d4MD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain100273https://repositorio.utp.edu.co/bitstreams/d16fe66c-006d-4b01-8665-a49ff1534bb6/download0fd40b9ed41906fc1000ccf194234d9eMD5411059/15553oai:repositorio.utp.edu.co:11059/155532024-12-06 04:01:02.334https://creativecommons.org/licenses/by-nc-nd/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizacióNopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |